Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2018 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2018 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K

  • Authors:
    • Yongsheng Ma
    • Hao Yang
    • Junqing Huang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedics, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
    Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1633-1641
    |
    Published online on: November 15, 2017
       https://doi.org/10.3892/mmr.2017.8065
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present study aimed to investigate bone deterioration in glucocorticoid‑induced osteoporosis (GIOP) mice, and the anti‑osteoporosis effect and underlying molecular mechanism of icariin. Dexamethasone (DSM) treatment was demonstrated to facilitate the induction of hypercalciuria in GIOP mice. Icariin treatment reversed the dexamethasone (DXM)‑induced disequilibrium of calcium homeostasis and bone resorption, and increased serum alkaline phosphatase, tartrate resistant acid phosphatase, osteocalcin and deoxypyridinoline. Haematoxylin and eosin staining revealed an increase in disconnections and separation in the trabecular bone network of the tibial proximal metaphysis, in the GIOP group. Icariin treatment reversed the DXM‑induced trabecular deleterious effects, and stimulated bone remodeling in GIOP mice. Furthermore, the results demonstrated that the mRNA and protein expression of cathepsin K were significantly increased in GIOP mice, compared with the control group. Icariin treatment may suppress the expression of cathepsin K in the tibia of GIOP mice. The levels of microRNA (miR)‑186 were markedly reduced in the tibia of GIOP mice compared with control group; however, this was inhibited by icariin treatment. Bioinformatics analysis demonstrated that miR‑186 regulates cathepsin K via binding to the upstream 3'‑untranslated region. Furthermore, transfection with miR‑186 mimics resulted in inhibition of cathepsin K expression, whereas miR‑186 inhibitors facilitated cathepsin K expression in osteoclasts. In conclusion, the present study demonstrated the protective effects of icariin against bone deteriorations in the experimental GIOP mice, and the underlying mechanism was mediated, at least partially, via activation of miR‑186‑mediated suppression of cathepsin K. These results provide evidence to support the use of icariin as a therapeutic approach in the management of glucocorticoid‑induced bone loss, and the disequilibrium of calcium homeostasis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Spreafico A, Frediani B, Francucci CM, Capperucci C, Chellini F and Galeazzi M: Role of apoptosis in osteoporosis induced by glucocorticoids. J Endocrinol Invest. 31 Suppl 7:S22–S27. 2008.

2 

Yongtao Z, Kunzheng W, Jingjing Z, Hu S, Jianqiang K, Ruiyu L and Chunsheng W: Glucocorticoids activate the local renin-angiotensin system in bone: Possible mechanism for glucocorticoid-induced osteoporosis. Endocrine. 47:598–608. 2014. View Article : Google Scholar

3 

Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC and Khosla S: Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: Potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 140:4382–4389. 1999. View Article : Google Scholar

4 

Shaker JL and Lukert BP: Osteoporosis associated with excess glucocorticoids. Endocrinol Metab Clin North Am. 34:341–356. 2005. View Article : Google Scholar

5 

Li C, Li Q, Mei Q and Lu T: Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 126:57–68. 2015. View Article : Google Scholar

6 

Zhang X, Liu T, Huang Y, Wismeijer D and Liu Y: Icariin: Does it have an osteoinductive potential for bone tissue engineering? Phytother Res. 28:498–509. 2014. View Article : Google Scholar

7 

Yang L, Yu Z, Qu H and Li M: Comparative effects of hispidulin, genistein, and icariin with estrogen on bone tissue in ovariectomized rats. Cell Biochem Biophys. 70:485–490. 2014. View Article : Google Scholar

8 

Liu M, Zhong C, He RX and Chen LF: Icariin associated with exercise therapy is an effective treatment for postmenopausal osteoporosis. Chin Med J (Engl). 125:1784–1789. 2012.

9 

Feng R, Feng L, Yuan Z, Wang D, Wang F, Tan B, Han S, Li T, Li D and Han Y: Icariin protects against glucocorticoid-induced osteoporosis in vitro and prevents glucocorticoid-induced osteocyte apoptosis in vivo. Cell Biochem Biophys. 67:189–197. 2013. View Article : Google Scholar

10 

Zhang G, Qin L and Shi Y: Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: A 24-month randomized, double-blind and placebo-controlled trial. J Bone Miner Res. 22:1072–1079. 2007. View Article : Google Scholar

11 

Song L, Zhao J, Zhang X, Li H and Zhou Y: Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur J Pharmacol. 714:15–22. 2013. View Article : Google Scholar

12 

Wu Y, Xia L, Zhou Y, Xu Y and Jiang X: Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a MAPK-dependent manner. Cell Prolif. 48:375–384. 2015. View Article : Google Scholar

13 

Sun P, Liu Y, Deng X, Yu C, Dai N, Yuan X, Chen L, Yu S, Si W, Wang X, et al: An inhibitor of cathepsin K, icariin suppresses cartilage and bone degradation in mice of collagen-induced arthritis. Phytomedicine. 20:975–979. 2013. View Article : Google Scholar

14 

Skoumal M, Haberhauer G, Kolarz G, Hawa G, Woloszczuk W, Klingler A, Varga F and Klaushofer K: The imbalance between osteoprotegerin and cathepsin K in the serum of patients with longstanding rheumatoid arthritis. Rheumatol Int. 28:637–641. 2008. View Article : Google Scholar

15 

Lewiecki EM: Odanacatib, a cathepsin K inhibitor for the treatment of osteoporosis and other skeletal disorders associated with excessive bone remodeling. IDrugs. 12:799–809. 2009.

16 

Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, Hustad CM, DaSilva C, Santora AC and Ince BA: Odanacatib, a cathepsin-K inhibitor for osteoporosis: A two-year study in postmenopausal women with low bone density. J Bone Miner Res. 25:937–947. 2010.

17 

Dole NS and Delany AM: MicroRNA variants as genetic determinants of bone mass. Bone. 84:57–68. 2016. View Article : Google Scholar

18 

Kagiya T: MicroRNAs and osteolytic bone metastasis: The roles of microRNAs in tumor-induced osteoclast differentiation. J Clin Med. 4:1741–1752. 2015. View Article : Google Scholar :

19 

Xia Z, Chen C, Chen P, Xie H and Luo X: MicroRNAs and their roles in osteoclast differentiation. Front Med. 5:414–419. 2011. View Article : Google Scholar

20 

Arfat Y, Xiao WZ, Ahmad M, Zhao F, Li DJ, Sun YL, Hu L, Zhihao C, Zhang G, Iftikhar S, et al: Role of microRNAs in osteoblasts differentiation and bone disorders. Curr Med Chem. 22:748–758. 2015. View Article : Google Scholar

21 

Gamez B, Rodriguez-Carballo E and Ventura F: MicroRNAs and post-transcriptional regulation of skeletal development. J Mol Endocrinol. 52:R179–R197. 2014. View Article : Google Scholar

22 

Taipaleenmäki H, Hokland Bjerre L, Chen L, Kauppinen S and Kassem M: Mechanisms in endocrinology: micro-RNAs: Targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol. 166:359–371. 2012. View Article : Google Scholar

23 

Cuetara BL, Crotti TN, O'Donoghue AJ and McHugh KP: Cloning and characterization of osteoclast precursors from the RAW264.7 cell line. In Vitro Cell Dev Biol Anim. 42:182–188. 2006. View Article : Google Scholar :

24 

Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM and Recker RR: Bone histomorphometry: Standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2:595–610. 1987. View Article : Google Scholar

25 

Turner CH and Burr DB: Basic biomechanical measurements of bone: A tutorial. Bone. 14:595–608. 1993. View Article : Google Scholar

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

27 

Jensen PR, Andersen TL, Hauge EM, Bollerslev J and Delaisse JM: A joined role of canopy and reversal cells in bone remodeling-lessons from glucocorticoid-induced osteoporosis. Bone. 73:16–23. 2014. View Article : Google Scholar

28 

Tamura Y, Kawao N, Yano M, Okada K, Okumoto K, Chiba Y, Matsuo O and Kaji H: Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes. 64:2194–2206. 2015. View Article : Google Scholar

29 

Panwar P, Soe K, Guido RV, Bueno RV, Delaisse JM and Bromme D: A novel approach to inhibit bone resorption: Exosite inhibitors against cathepsin K. Br J Pharmacol. 173:396–410. 2016. View Article : Google Scholar

30 

Helali AM, Iti FM and Mohamed IN: Cathepsin K inhibitors: A novel target but promising approach in the treatment of osteoporosis. Curr Drug Targets. 14:1591–1600. 2013. View Article : Google Scholar

31 

Brixen K, Chapurlat R, Cheung AM, Keaveny TM, Fuerst T, Engelke K, Recker R, Dardzinski B, Verbruggen N, Ather S, et al: Bone density, turnover, and estimated strength in postmenopausal women treated with odanacatib: A randomized trial. J Clin Endocrinol Metab. 98:571–580. 2013. View Article : Google Scholar

32 

Fan JJ, Cao LG, Wu T, Wang DX, Jin D, Jiang S, Zhang ZY, Bi L and Pei GX: The dose-effect of icariin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cells. Molecules. 16:10123–10133. 2011. View Article : Google Scholar

33 

Cui J, Zhu M, Zhu S, Wang G, Xu Y and Geng D: Inhibitory effect of icariin on Ti-induced inflammatory osteoclastogenesis. J Surg Res. 192:447–453. 2014. View Article : Google Scholar

34 

Li T, Li H, Li T, Fan J, Zhao RC and Weng X: MicroRNA expression profile of dexamethasone-induced human bone marrow-derived mesenchymal stem cells during osteogenic differentiation. J Cell Biochem. 115:1683–1691. 2014. View Article : Google Scholar

35 

Ko JY, Chuang PC, Chen MW, Ke HC, Wu SL, Chang YH, Chen YS and Wang FS: MicroRNA-29a ameliorates glucocorticoid-induced suppression of osteoblast differentiation by regulating β-catenin acetylation. Bone. 57:468–475. 2013. View Article : Google Scholar

36 

Wang FS, Chuang PC, Lin CL, Chen MW, Ke HJ, Chang YH, Chen YS, Wu SL and Ko JY: MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum. 65:1530–1540. 2013. View Article : Google Scholar

37 

Li H, Li T, Fan J, Li T, Fan L, Wang S, Weng X, Han Q and Zhao RC: miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ. 22:1935–1945. 2015. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ma Y, Yang H and Huang J: Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K. Mol Med Rep 17: 1633-1641, 2018.
APA
Ma, Y., Yang, H., & Huang, J. (2018). Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K. Molecular Medicine Reports, 17, 1633-1641. https://doi.org/10.3892/mmr.2017.8065
MLA
Ma, Y., Yang, H., Huang, J."Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K". Molecular Medicine Reports 17.1 (2018): 1633-1641.
Chicago
Ma, Y., Yang, H., Huang, J."Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K". Molecular Medicine Reports 17, no. 1 (2018): 1633-1641. https://doi.org/10.3892/mmr.2017.8065
Copy and paste a formatted citation
x
Spandidos Publications style
Ma Y, Yang H and Huang J: Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K. Mol Med Rep 17: 1633-1641, 2018.
APA
Ma, Y., Yang, H., & Huang, J. (2018). Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K. Molecular Medicine Reports, 17, 1633-1641. https://doi.org/10.3892/mmr.2017.8065
MLA
Ma, Y., Yang, H., Huang, J."Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K". Molecular Medicine Reports 17.1 (2018): 1633-1641.
Chicago
Ma, Y., Yang, H., Huang, J."Icariin ameliorates dexamethasone‑induced bone deterioration in an experimental mouse model via activation of microRNA‑186 inhibition of cathepsin K". Molecular Medicine Reports 17, no. 1 (2018): 1633-1641. https://doi.org/10.3892/mmr.2017.8065
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team