|
1
|
Lutz W, Sanderson W and Scherbov S: The
coming acceleration of global population ageing. Nature.
451:716–719. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mozaffarian D, Benjamin EJ, Go AS, Arnett
DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ,
Howard VJ, et al American Heart Association Statistics Committee
and Stroke Statistics Subcommittee, : Heart disease and stroke
statistics-2015 update: A report from the American Heart
Association. Circulation. 131:e29–e322. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Turer AT and Hill JA: Pathogenesis of
myocardial ischemia-reperfusion injury and rationale for therapy.
Am J Cardiol. 106:360–368. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Whelan RS, Kaplinskiy V and Kitsis RN:
Cell death in the pathogenesis of heart disease: Mechanisms and
significance. Annu Rev Physiol. 72:19–44. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chiong M, Wang ZV, Pedrozo Z, Cao DJ,
Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill JA and
Lavandero S: Cardiomyocyte death: Mechanisms and translational
implications. Cell Death Dis. 2:e2442011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Marunouchi T and Tanonaka K: Cell death in
the cardiac myocyte. Biol Pharm Bull. 38:1094–1097. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tavernarakis N: Cardiomyocyte necrosis:
Alternative mechanisms, effective interventions. Biochim Biophys
Acta. 1773:480–482. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Golstein P and Kroemer G: Cell death by
necrosis: Towards a molecular definition. Trends Biochem Sci.
32:37–43. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Khoynezhad A, Jalali Z and Tortolani AJ:
Apoptosis: Pathophysiology and therapeutic implications for the
cardiac surgeon. Ann Thorac Surg. 78:1109–1118. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Anselmi A, Abbate A, Girola F, Nasso G,
Biondi-Zoccai GG, Possati G and Gaudino M: Myocardial ischemia,
stunning, inflammation, and apoptosis during cardiac surgery: A
review of evidence. Eur J Cardiothorac Surg. 25:304–311. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Fischer UM, Klass O, Stock U, Easo J,
Geissler HJ, Fischer JH, Bloch W and Mehlhorn U: Cardioplegic
arrest induces apoptosis signal-pathway in myocardial endothelial
cells and cardiac myocytes. Eur J Cardiothorac Surg. 23:984–990.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Schmitt JP, Schröder J, Schunkert H,
Birnbaum DE and Aebert H: Role of apoptosis in myocardial stunning
after open heart surgery. Ann Thorac Surg. 73:1229–1235. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gatica D, Chiong M, Lavandero S and
Klionsky DJ2: Molecular mechanisms of autophagy in the
cardiovascular system. Circ Res. 116:456–467. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jia G and Sowers J: Autophagy: A
housekeeper in cardiorenal metabolic health and disease. Biochim
Biophys Acta. 1852:219–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Martinet W, Knaapen MW, Kockx MM and De
Meyer GRY: Autophagy in cardiovascular disease. Trends Mol Med.
13:482–491. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ravikumar B, Sarkar S, Davies JE, Futter
M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M,
Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of mammalian
autophagy in physiology and pathophysiology. Physiol Rev.
90:1383–1435. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Levine B, Mizushima N and Virgin HW:
Autophagy in immunity and inflammation. Nature. 469:323–335. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yang L, Li P, Fu S, Calay ES and
Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER
stress and causes insulin resistance. Cell Metab. 11:467–478. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Jia G and Sowers JR: Autophagy: A
housekeeper in cardiorenal metabolic health and disease. Biochim
Biophys Acta. 1852:219–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Riehle C, Wende AR, Sena S, Pires KM,
Pereira RO, Zhu Y, Bugger H, Frank D, Bevins J, Chen D, et al:
Insulin receptor substrate signaling suppresses neonatal autophagy
in the heart. J Clin Invest. 123:5319–5333. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Levine B and Klionsky DJ: Development by
self-digestion: Molecular mechanisms and biological functions of
autophagy. Dev Cell. 6:463–477. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yorimitsu T and Klionsky DJ: Autophagy:
Molecular machinery for self-eating. Cell Death Differ. 12 Suppl
2:1542–1552. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Levine B and Yuan J: Autophagy in cell
death: An innocent convict? J Clin Invest. 115:2679–2688. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang YP, Liang ZQ, Gu ZL and Qin ZH:
Molecular mechanism and regulation of autophagy. Acta Pharmacol
Sin. 26:1421–1434. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kanamori H, Takemura G, Maruyama R, Goto
K, Tsujimoto A, Ogino A, Li L, Kawamura I, Takeyama T, Kawaguchi T,
et al: Functional significance and morphological characterization
of starvation-induced autophagy in the adult heart. Am J Pathol.
174:1705–1714. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Galluzzi L, Pietrocola F, Levine B and
Kroemer G: Metabolic control of autophagy. Cell. 159:1263–1276.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Vanlangenakker N, Vanden Berghe T, Krysko
DV, Festjens N and Vandenabeele P: Molecular mechanisms and
pathophysiology of necrotic cell death. Curr Mol Med. 8:207–220.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Henriquez M, Armisén R, Stutzin A and
Quest AF: Cell death by necrosis, a regulated way to go. Curr Mol
Med. 8:187–206. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kroemer G, Galluzzi L and Brenner C:
Mitochondrial membrane permeabilization in cell death. Physiol Rev.
87:99–163. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jahania SM, Sengstock D, Vaitkevicius P,
Andres A, Ito BR, Gottlieb RA and Mentzer RM Jr: Activation of the
homeostatic intracellular repair response during cardiac surgery. J
Am Coll Surg. 216:719–726, discussion 726–729. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nishida K, Yamaguchi O and Otsu K:
Crosstalk between autophagy and apoptosis in heart disease. Circ
Res. 103:343–351. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lavandero S, Chiong M, Rothermel BA and
Hill JA: Autophagy in cardiovascular biology. J Clin Invest.
125:55–64. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Thorburn A: Apoptosis and autophagy:
Regulatory connections between two supposedly different processes.
Apoptosis. 13:1–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Osellame LD, Blacker TS and Duchen MR:
Cellular and molecular mechanisms of mitochondrial function. Best
Pract Res Clin Endocrinol Metab. 26:711–723. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Seo AY, Joseph AM, Dutta D, Hwang JCY,
Aris JP and Leeuwenburgh C: New insights into the role of
mitochondria in aging: Mitochondrial dynamics and more. J Cell Sci.
123:2533–2542. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Enari M, Sakahira H, Yokoyama H, Okawa K,
Iwamatsu A and Nagata S: A caspase-activated DNase that degrades
DNA during apoptosis, and its inhibitor ICAD. Nature. 391:43–50.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nicholson DW and Thornberry NA: Caspases:
Killer proteases. Trends Biochem Sci. 22:299–306. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Quinsay MN, Lee Y, Rikka S, Sayen MR,
Molkentin JD, Gottlieb RA and Gustafsson AB: Bnip3 mediates
permeabilization of mitochondria and release of cytochrome c via a
novel mechanism. J Mol Cell Cardiol. 48:1146–1156. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Oda E, Ohki R, Murasawa H, Nemoto J,
Shibue T, Yamashita T, Tokino T, Taniguchi T and Tanaka N: Noxa, a
BH3-only member of the Bcl-2 family and candidate mediator of
p53-induced apoptosis. Science. 288:1053–1058. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lorenzo HK, Susin SA, Penninger J and
Kroemer G: Apoptosis inducing factor (AIF): A phylogenetically old,
caspase-independent effector of cell death. Cell Death Differ.
6:516–524. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tanaka M, Nakae S, Terry RD, Mokhtari GK,
Gunawan F, Balsam LB, Kaneda H, Kofidis T, Tsao PS and Robbins RC:
Cardiomyocyte-specific Bcl-2 overexpression attenuates
ischemia-reperfusion injury, immune response during acute
rejection, and graft coronary artery disease. Blood. 104:3789–3796.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Thompson CB: Apoptosis in the pathogenesis
and treatment of disease. Science. 267:1456–1462. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Saraste A, Voipio-Pulkki LM, Parvinen M
and Pulkki K: Apoptosis in the heart. N Engl J Med. 336:1025–1026.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kang PM and Izumo S: Apoptosis and heart
failure: A critical review of the literature. Circ Res.
86:1107–1113. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Olivetti G, Abbi R, Quaini F, Kajstura J,
Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski
S, et al: Apoptosis in the failing human heart. N Engl J Med.
336:1131–1141. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Saraste A, Pulkki K, Kallajoki M,
Henriksen K, Parvinen M and Voipio-Pulkki LM: Apoptosis in human
acute myocardial infarction. Circulation. 95:320–323. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kim NH and Kang PM: Apoptosis in
cardiovascular diseases: Mechanism and clinical implications.
Korean Circ J. 40:299–305. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Olivetti G, Quaini F, Sala R, Lagrasta C,
Corradi D, Bonacina E, Gambert SR, Cigola E and Anversa P: Acute
myocardial infarction in humans is associated with activation of
programmed myocyte cell death in the surviving portion of the
heart. J Mol Cell Cardiol. 28:2005–2016. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kalra M and Miller VM: Early remodeling of
saphenous vein grafts: Proliferation, migration and apoptosis of
adventitial and medial cells occur simultaneously with changes in
graft diameter and blood flow. J Vasc Res. 37:576–584. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kovacević M, Simić O, Jonjić N and Stifter
S: Apoptosis and cardiopulmonary bypass. J Card Surg. 22:129–134.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vaage J and Valen G: Pathophysiology and
mediators of ischemia-reperfusion injury with special reference to
cardiac surgery. A review. Scand J Thorac Cardiovasc Surg Suppl.
41:1–18. 1993.PubMed/NCBI
|
|
53
|
Royston D: The inflammatory response and
extracorporeal circulation. J Cardiothorac Vasc Anesth. 11:341–354.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Beal AL and Cerra FB: Multiple organ
failure syndrome in the 1990s. Systemic inflammatory response and
organ dysfunction. JAMA. 271:226–233. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu ZK, Laurikka J, Saraste A, Kytö V,
Pehkonen EJ, Savunen T and Tarkka MR: Cardiomyocyte apoptosis and
ischemic preconditioning in open heart operations. Ann Thorac Surg.
76:528–534. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Boyle EM Jr, Pohlman TH, Johnson MC and
Verrier ED: Endothelial cell injury in cardiovascular surgery: The
systemic inflammatory response. Ann Thorac Surg. 63:277–284.
1997.PubMed/NCBI
|
|
57
|
Moat NE, Shore DF and Evans TW: Organ
dysfunction and cardiopulmonary bypass: The role of complement and
complement regulatory proteins. Eur J Cardiothorac Surg. 7:563–573.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kawahito K, Misawa Y and Fuse K: Transient
rise in serum soluble Fas (APO-1/CD95) in patients undergoing
cardiac surgery. Artif Organs. 24:628–631. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Meldrum DR and Donnahoo KK: Role of TNF in
mediating renal insufficiency following cardiac surgery: Evidence
of a postbypass cardiorenal syndrome. J Surg Res. 85:185–199. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ramlawi B, Feng J and Mieno S: Indices of
apoptosis activation after blood cardioplegia and cardiopulmonary
bypass. Circulation. 114 suppl I:I-257–I-263. 2006. View Article : Google Scholar
|
|
61
|
Maulik N, Yoshida T and Das DK: Oxidative
stress developed during the reperfusion of ischemic myocardium
induces apoptosis. Free Radic Biol Med. 24:869–875. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kruman I, Guo Q and Mattson MP: Calcium
and reactive oxygen species mediate staurosporine-induced
mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci
Res. 51:293–308. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Aebert H, Cornelius T, Birnbaum DE, Siegel
AV, Riegger GA and Schunkert H: Induction of early immediate genes
and programmed cell death following cardioplegic arrest in human
hearts. Eur J Cardiothorac Surg. 12:261–267. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sybers HD, Ingwall J and DeLuca M:
Autophagy in cardiac myocytes. Recent Adv Stud Cardiac Struct
Metab. 12:453–463. 1976.PubMed/NCBI
|
|
65
|
Nikoletopoulou V, Markaki M, Palikaras K
and Tavernarakis N: Crosstalk between apoptosis, necrosis and
autophagy. Biochim Biophys Acta. 1833:3448–3459. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li M, Gao P and Zhang J: Crosstalk between
autophagy and apoptosis: Potential and emerging therapeutic targets
for cardiac diseases. Int J Mol Sci. 17:3322016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kunapuli S, Rosanio S and Schwarz ER: ‘How
do cardiomyocytes die?’ apoptosis and autophagic cell death in
cardiac myocytes. J Card Fail. 12:381–391. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mukhopadhyay S, Panda PK, Sinha N, Das DN
and Bhutia SK: Autophagy and apoptosis: Where do they meet?
Apoptosis. 19:555–566. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gordy C and He YW: The crosstalk between
autophagy and apoptosis: Where does this lead? Protein Cell.
3:17–27. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kubli DA, Zhang X, Lee Y, Hanna RA,
Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN and
Gustafsson AB: Parkin protein deficiency exacerbates cardiac injury
and reduces survival following myocardial infarction. J Biol Chem.
288:915–926. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Schiattarella GG and Hill JA: Therapeutic
targeting of autophagy in cardiovascular disease. J Mol Cell
Cardiol. 95:86–93. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Mughal W, Dhingra R and Kirshenbaum LA:
Striking a balance: Autophagy, apoptosis, and necrosis in a normal
and failing heart. Curr Hypertens Rep. 14:540–547. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Konstantinidis K, Whelan RS and Kitsis RN:
Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc
Biol. 32:1552–1562. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Linton P-J, Gurney M, Sengstock D, Mentzer
RM Jr and Gottlieb RA: This old heart: Cardiac aging and autophagy.
J Mol Cell Cardiol. 83:44–54. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
McMullen JR, Sherwood MC, Tarnavski O,
Zhang L, Dorfman AL, Shioi T and Izumo S: Inhibition of mTOR
signaling with rapamycin regresses established cardiac hypertrophy
induced by pressure overload. Circulation. 109:3050–3055. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Nakai A, Yamaguchi O, Takeda T, Higuchi Y,
Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et
al: The role of autophagy in cardiomyocytes in the basal state and
in response to hemodynamic stress. Nat Med. 13:619–624. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Frenzel H, Schwartzkopff B, Rettig B and
Vogelsang H: Morphologic criteria of progression and regression of
cardiac hypertrophy. J Cardiovasc Pharmacol. 10 Suppl 6:S20–S28.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhou L, Ma B and Han X: The role of
autophagy in angiotensin II-induced pathological cardiac
hypertrophy. J Mol Endocrinol. 57:R143–R152. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kostin S, Pool L, Elsässer A, Hein S,
Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn
WP and Schaper J: Myocytes die by multiple mechanisms in failing
human hearts. Circ Res. 92:715–724. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Diwan A and Dorn GW II: Decompensation of
cardiac hypertrophy: Cellular mechanisms and novel therapeutic
targets. Physiology (Bethesda). 22:56–64. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Radoshevich L, Murrow L, Chen N, Fernandez
E, Roy S, Fung C and Debnath J: ATG12 conjugation to ATG3 regulates
mitochondrial homeostasis and cell death. Cell. 142:590–600. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Singh K, Communal C, Sawyer DB and Colucci
WS: Adrenergic regulation of myocardial apoptosis. Cardiovasc Res.
45:713–719. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Nishida K, Kyoi S, Yamaguchi O, Sadoshima
J and Otsu K: The role of autophagy in the heart. Cell Death
Differ. 16:31–38. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kanamori H, Takemura G, Goto K, Maruyama
R, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T,
Fujiwara T, et al: The role of autophagy emerging in postinfarction
cardiac remodelling. Cardiovasc Res. 91:330–339. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Matsui Y, Kyoi S, Takagi H, Hsu CP,
Hariharan N, Ago T, Vatner SF and Sadoshima J: Molecular mechanisms
and physiological significance of autophagy during myocardial
ischemia and reperfusion. Autophagy. 4:409–415. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Rifki OF and Hill JA: Cardiac autophagy:
Good with the bad. J Cardiovasc Pharmacol. 60:248–252. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gustafsson AB and Gottlieb RA: Recycle or
die: The role of autophagy in cardioprotection. J Mol Cell Cardiol.
44:654–661. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Terman A and Brunk UT: Autophagy in
cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res.
68:355–365. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Dutta D, Calvani R, Bernabei R,
Leeuwenburgh C and Marzetti E: Contribution of impaired
mitochondrial autophagy to cardiac aging: Mechanisms and
therapeutic opportunities. Circ Res. 110:1125–1138. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Taneike M, Yamaguchi O, Nakai A, Hikoso S,
Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, et al:
Inhibition of autophagy in the heart induces age-related
cardiomyopathy. Autophagy. 6:600–606. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Qin F, Siwik DA, Lancel S, Zhang J, Kuster
GM, Luptak I, Wang L, Tong X, Kang YJ, Cohen RA and Colucci WS:
Hydrogen peroxide-mediated SERCA cysteine 674 oxidation contributes
to impaired cardiac myocyte relaxation in senescent mouse heart. J
Am Heart Assoc. 2:e0001842013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Newman AB, Arnold AM, Naydeck BL, Fried
LP, Burke GL, Enright P, Gottdiener J, Hirsch C, O'Leary D and
Tracy R; Cardiovascular Health Study Research Group, : ‘Successful
aging’: Effect of subclinical cardiovascular disease. Arch Intern
Med. 163:2315–2322. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Garcia L, Verdejo HE, Kuzmicic J,
Zalaquett R, Gonzalez S, Lavandero S and Corbalan R: Impaired
cardiac autophagy in patients developing postoperative atrial
fibrillation. J Thorac Cardiovasc Surg. 143:451–459. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kassiotis C, Ballal K, Wellnitz K, Vela D,
Gong M, Salazar R, Frazier OH and Taegtmeyer H: Markers of
autophagy are downregulated in failing human heart after mechanical
unloading. Circulation. 120 Suppl:S191–S197. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Singh KK, Yanagawa B, Quan A, Wang R, Garg
A, Khan R, Pan Y, Wheatcroft MD, Lovren F, Teoh H and Verma S:
Autophagy gene fingerprint in human ischemia and reperfusion. J
Thorac Cardiovasc Surg. 147:1065–1072.e1. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Paparella D, Yau TM and Young E:
Cardiopulmonary bypass induced inflammation: Pathophysiology and
treatment. An update. Eur J Cardiothorac Surg. 21:232–244. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Frank A, Bonney M, Bonney S, Weitzel L,
Koeppen M and Eckle T: Myocardial ischemia reperfusion injury: From
basic science to clinical bedside. Semin Cardiothorac Vasc Anesth.
16:123–132. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chen X, Zhang X, Kubo H, Harris DM, Mills
GD, Moyer J, Berretta R, Potts ST, Marsh JD and Houser SR:
Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload
causes mitochondrial-dependent apoptosis in ventricular myocytes.
Circ Res. 97:1009–1017. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Di Lisa F and Bernardi P: Mitochondria and
ischemia-reperfusion injury of the heart: Fixing a hole. Cardiovasc
Res. 70:191–199. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kirklin JK: Prospects for understanding
and eliminating the deleterious effects of cardiopulmonary bypass.
Ann Thorac Surg. 51:529–531. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Westaby S: Organ dysfunction after
cardiopulmonary bypass. A systemic inflammatory reaction initiated
by the extracorporeal circuit. Intensive Care Med. 13:89–95. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Landis RC, Brown JR, Fitzgerald D, Likosky
DS, Shore-Lesserson L, Baker RA and Hammon JW: Attenuating the
systemic inflammatory response to adult cardiopulmonary bypass: A
critical review of the evidence base. J Extra Corpor Technol.
46:197–211. 2014.PubMed/NCBI
|
|
103
|
Ruel M, Bianchi C, Khan TA, Xu S,
Liddicoat JR, Voisine P, Araujo E, Lyon H, Kohane IS, Libermann TA
and Sellke FW: Gene expression profile after cardiopulmonary bypass
and cardioplegic arrest. J Thorac Cardiovasc Surg. 126:1521–1530.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Vähäsilta T, Saraste A, Kytö V, Malmberg
M, Kiss J, Kentala E, Kallajoki M and Savunen T: Cardiomyocyte
apoptosis after antegrade and retrograde cardioplegia. Ann Thorac
Surg. 80:2229–2234. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Suleiman MS, Zacharowski K and Angelini
GD: Inflammatory response and cardioprotection during open-heart
surgery: The importance of anaesthetics. Br J Pharmacol. 153:21–33.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Klatte K, Chaitman BR, Theroux P, Gavard
JA, Stocke K, Boyce S, Bartels C, Keller B and Jessel A; GUARDIAN
Investigators (The GUARD during Ischemia Against Necrosis), :
Increased mortality after coronary artery bypass graft surgery is
associated with increased levels of postoperative creatine
kinase-myocardial band isoenzyme release: Results from the GUARDIAN
trial. J Am Coll Cardiol. 38:1070–1077. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Weman SM, Karhunen PJ, Penttilä A,
Järvinen AA and Salminen US: Reperfusion injury associated with
one-fourth of deaths after coronary artery bypass grafting. Ann
Thorac Surg. 70:807–812. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Braunwald E and Kloner RA: The stunned
myocardium: Prolonged, postischemic ventricular dysfunction.
Circulation. 66:1146–1149. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Bolli R: Basic and clinical aspects of
myocardial stunning. Prog Cardiovasc Dis. 40:477–516. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ritchie MF, Zhou Y and Soboloff J:
Transcriptional mechanisms regulating Ca(2+) homeostasis. Cell
Calcium. 49:314–321. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Koretsune Y and Marban E: Cell calcium in
the pathophysiology of ventricular fibrillation and in the
pathogenesis of postarrhythmic contractile dysfunction.
Circulation. 80:369–379. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Pinton P, Giorgi C, Siviero R, Zecchini E
and Rizzuto R: Calcium and apoptosis: ER-mitochondria Ca2+ transfer
in the control of apoptosis. Oncogene. 27:6407–6418. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Marks AR: Calcium and the heart: A
question of life and death. J Clin Invest. 111:597–600. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Piper HM, Abdallah Y and Schäfer C: The
first minutes of reperfusion: A window of opportunity for
cardioprotection. Cardiovasc Res. 61:365–371. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
French JP, Quindry JC, Falk DJ, Staib JL,
Lee Y, Wang KK and Powers SK: Ischemia-reperfusion-induced calpain
activation and SERCA2a degradation are attenuated by exercise
training and calpain inhibition. Am J Physiol Heart Circ Physiol.
290:H128–H136. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Høyer-Hansen M, Bastholm L, Szyniarowski
P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N,
Elling F, Rizzuto R, et al: Control of macroautophagy by calcium,
calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell.
25:193–205. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kranias EG and Hajjar RJ: Modulation of
cardiac contractility by the phospholamban/SERCA2a regulatome. Circ
Res. 110:1646–1660. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chen Y, Escoubet B, Prunier F, Amour J,
Simonides WS, Vivien B, Lenoir C, Heimburger M, Choqueux C, Gellen
B, et al: Constitutive cardiac overexpression of
sarcoplasmic/endoplasmic reticulum Ca2+-ATPase delays
myocardial failure after myocardial infarction in rats at a cost of
increased acute arrhythmias. Circulation. 109:1898–1903. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Walker JD, Crawford FA Jr, Mukherjee R and
Spinale FG: The direct effects of 3,5,3′-triiodo-L-thyronine (T3)
on myocyte contractile processes. Insights into mechanisms of
action. J Thorac Cardiovasc Surg. 110:1369–1379, discussion
1379–1380. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Walker JD, Crawford FA Jr, Mukherjee R,
Zile MR and Spinale FG: Direct effects of acute administration of
3, 5, 3′ triiodo-L-thyronine on myocyte function. Ann Thorac Surg.
58:851–856. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Khoury SF, Hoit BD, Dave V, Pawloski-Dahm
CM, Shao Y, Gabel M, Periasamy M and Walsh RA: Effects of thyroid
hormone on left ventricular performance and regulation of
contractile and Ca(2+)-cycling proteins in the baboon. Implications
for the force-frequency and relaxation-frequency relationships.
Circ Res. 79:727–735. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Fargnoli AS, Katz MG, Yarnall C, Isidro A,
Petrov M, Steuerwald N, Ghosh S, Richardville KC, Hillesheim R,
Williams RD, et al: Cardiac surgical delivery of the sarcoplasmic
reticulum calcium ATPase rescues myocytes in ischemic heart
failure. Ann Thorac Surg. 96:586–595. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Pantos C, Mourouzis I, Saranteas T, Clavé
G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M,
Perimenis P, Spanou D, et al: Thyroid hormone improves
postischaemic recovery of function while limiting apoptosis: A new
therapeutic approach to support hemodynamics in the setting of
ischaemia-reperfusion? Basic Res Cardiol. 104:69–77. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Holland FW II, Brown PS Jr, Weintraub BD
and Clark RE: Cardiopulmonary bypass and thyroid function: A
‘euthyroid sick syndrome’. Ann Thorac Surg. 52:46–50. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Iervasi G, Pingitore A, Landi P, Raciti M,
Ripoli A, Scarlattini M, L'Abbate A and Donato L: Low-T3 syndrome:
A strong prognostic predictor of death in patients with heart
disease. Circulation. 107:708–713. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ranasinghe AM and Bonser RS: Thyroid
hormone in cardiac surgery. Vascul Pharmacol. 52:131–137. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Galli E, Pingitore A and Iervasi G: The
role of thyroid hormone in the pathophysiology of heart failure:
Clinical evidence. Heart Fail Rev. 15:155–169. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Cerillo AG, Storti S, Kallushi E,
Haxhiademi D, Miceli A, Murzi M, Berti S, Glauber M, Clerico A and
Iervasi G: The low triiodothyronine syndrome: A strong predictor of
low cardiac output and death in patients undergoing coronary artery
bypass grafting. Ann Thorac Surg. 97:2089–2095. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Ranasinghe AM, Quinn DW, Pagano D, Edwards
N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW, Rooney
SJ, et al: Glucose-insulin-potassium and tri-iodothyronine
individually improve hemodynamic performance and are associated
with reduced troponin I release after on-pump coronary artery
bypass grafting. Circulation. 114 Suppl:I245–I250. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Portman MA, Slee A, Olson AK, Cohen G,
Karl T, Tong E, Hastings L, Patel H, Reinhartz O, Mott AR,
Mainwaring R, Linam J and Danzi S: TRICC Investigators:
Triiodothyronine supplementation in infants and children undergoing
cardiopulmonary bypass (TRICC): A multicenter placebo-controlled
randomized trial: Age analysis. Circulation. 122 11
Suppl:S224–S233. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Klemperer JD, Klein IL, Ojamaa K, Helm RE,
Gomez M, Isom OW and Krieger KH: Triiodothyronine therapy lowers
the incidence of atrial fibrillation after cardiac operations. Ann
Thorac Surg. 61:1323–1327, discussion 1328–1329. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Novitzky D and Cooper DK: Thyroid hormone
and the stunned myocardium. J Endocrinol. 223:1–8. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Mourouzis I, Mantzouratou P, Galanopoulos
G, Kostakou E, Roukounakis N, Kokkinos AD, Cokkinos DV and Pantos
C: Dose-dependent effects of thyroid hormone on post-ischemic
cardiac performance: Potential involvement of Akt and ERK
signalings. Mol Cell Biochem. 363:235–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Fan GC, Chu G, Mitton B, Song Q, Yuan Q
and Kranias EG: Small heat-shock protein Hsp20 phosphorylation
inhibits beta-agonist-induced cardiac apoptosis. Circ Res.
94:1474–1482. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Chambers DJ and Fallouh HB: Cardioplegia
and cardiac surgery: Pharmacological arrest and cardioprotection
during global ischemia and reperfusion. Pharmacol Ther. 127:41–52.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Yao H and Han X and Han X: The
cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling
pathway. Am J Cardiovasc Drugs. 14:433–442. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Fan GC, Ren X, Qian J, Yuan Q, Nicolaou P,
Wang Y, Jones WK, Chu G and Kranias EG: Novel cardioprotective role
of a small heat-shock protein, Hsp20, against ischemia/reperfusion
injury. Circulation. 111:1792–1799. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Suleiman MS, Hancock M, Shukla R,
Rajakaruna C and Angelini GD: Cardioplegic strategies to protect
the hypertrophic heart during cardiac surgery. Perfusion. 26 Suppl
1:48–56. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Habertheuer A, Kocher A, Laufer G, Andreas
M, Szeto WY, Petzelbauer P, Ehrlich M and Wiedemann D:
Cardioprotection: A review of current practice in global ischemia
and future translational perspective. BioMed Res Int.
2014:3257252014. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Juhl-Olsen P, Bhavsar R, Frederiksen CA,
Sloth E and Jakobsen CJ: Systolic heart function remains depressed
for at least 30 days after on-pump cardiac surgery. Interact
Cardiovasc Thorac Surg. 15:395–399. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Breisblatt WMI, Stein KL, Wolfe CJ,
Follansbee WP, Capozzi J, Armitage JM and Hardesty RL: Acute
myocardial dysfunction and recovery: A common occurrence after
coronary bypass surgery. J Am Coll Cardiol. 15:1261–1269. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Lefkowitz RJ, Rockman HA and Koch WJ:
Catecholamines, cardiac beta-adrenergic receptors, and heart
failure. Circulation. 101:1634–1637. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Heringlake M, Wernerus M, Grünefeld J,
Klaus S, Heinze H, Bechtel M, Bahlmann L, Poeling J and Schön J:
The metabolic and renal effects of adrenaline and milrinone in
patients with myocardial dysfunction after coronary artery bypass
grafting. Crit Care. 11:R512007. View
Article : Google Scholar : PubMed/NCBI
|
|
144
|
Leri A, Claudio PP, Li Q, Wang X, Reiss K,
Wang S, Malhotra A, Kajstura J and Anversa P: Stretch-mediated
release of angiotensin II induces myocyte apoptosis by activating
p53 that enhances the local renin-angiotensin system and decreases
the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest.
101:1326–1342. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
145
|
Kajstura J, Cigola E, Malhotra A, Li P,
Cheng W, Meggs LG and Anversa P: Angiotensin II induces apoptosis
of adult ventricular myocytes in vitro. J Mol Cell Cardiol.
29:859–870. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Filippatos G and Uhal BD: Blockade of
apoptosis by ACE inhibitors and angiotensin receptor antagonists.
Curr Pharm Des. 9:707–714. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Disque Al and Neelankavil J: Con: ACE
inhibitors should be stopped prior to cardiovascular surgery. J
Cardiothorac Vasc Anesth. 30:820–822. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Bhatia M, Arora H and Kumar PA: Pro: ACE
inhibitors should be continued perioperatively and prior to
cardiovascular operations. J Cardiothorac Vasc Anesth. 30:816–819.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Pearl JM, Plank DM, McLean KM, Wagner CJ
and Duffy JY: Glucocorticoids improve calcium cycling in cardiac
myocytes after cardiopulmonary bypass. J Surg Res. 167:279–286.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Ho KM and Tan JA: Benefits and risks of
corticosteroid prophylaxis in adult cardiac surgery: A
dose-response meta-analysis. Circulation. 119:1853–1866. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Prasongsukarn K, Abel JG, Jamieson WR,
Cheung A, Russell JA, Walley KR and Lichtenstein SV: The effects of
steroids on the occurrence of postoperative atrial fibrillation
after coronary artery bypass grafting surgery: A prospective
randomized trial. J Thorac Cardiovasc Surg. 130:93–98. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Asou T, Oe M, Tominaga R, Fukamachi K,
Morita S, Kishizaki K, Toshima Y, Nakamura Y, Mitani A and Sakamoto
M: Optimal timing for application of ventricular assist devices in
patients who cannot be weaned from cardiopulmonary bypass. An
experimental study. ASAIO Trans. 34:466–469. 1988.PubMed/NCBI
|
|
153
|
Ooka T and Matsui Y: Optimal timing of
left ventricular assist device implantation for severe heart
failure patients: Focus on end-organ function not hemodynamics.
Circ J. 76:1587–1588. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Yoshioka D, Sakaguchi T, Saito S, Miyagawa
S, Nishi H, Yoshikawa Y, Fukushima S, Saito T, Daimon T, Ueno T, et
al: Predictor of early mortality for severe heart failure patients
with left ventricular assist device implantation: Significance of
INTERMACS level and renal function. Circ J. 76:1631–1638. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Prasad H, Ryan DA, Celzo MF and Stapleton
D: Metabolic syndrome: Definition and therapeutic implications.
Postgrad Med. 124:21–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Milano CA, White WD, Smith LR, Jones RH,
Lowe JE, Smith PK and Van Trigt P III: Coronary artery bypass in
patients with severely depressed ventricular function. Ann Thorac
Surg. 56:487–493. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Chakravarthy M: Modifying risks to improve
outcome in cardiac surgery: An anesthesiologist's perspective. Ann
Card Anaesth. 20:226–233. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Ferdinandy P, Schulz R and Baxter GF:
Interaction of cardiovascular risk factors with myocardial
ischemia/reperfusion injury, preconditioning, and postconditioning.
Pharmacol Rev. 59:418–458. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Sciarretta S, Zhai P, Volpe M and
Sadoshima J: Pharmacological modulation of autophagy during cardiac
stress. J Cardiovasc Pharmacol. 60:235–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Sciarretta S, Yee D, Shenoy V, Nagarajan N
and Sadoshima J: The importance of autophagy in cardioprotection.
High Blood Press Cardiovasc Prev. 21:21–28. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Head SJ, Kaul S, Mack MJ, Serruys PW,
Taggart DP, Holmes DR Jr, Leon MB, Marco J, Bogers AJ and Kappetein
AP: The rationale for Heart Team decision-making for patients with
stable, complex coronary artery disease. Eur Heart J. 34:2510–2518.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Sabik JF III: Fit the operation to the
patient, not the patient to the operation. J Thorac Cardiovasc
Surg. 150:1393–1395. 2015. View Article : Google Scholar : PubMed/NCBI
|