Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2018 Volume 17 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2018 Volume 17 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review)

  • Authors:
    • Emmanuel Papadakis
    • Meletios Kanakis
    • Agapi Kataki
    • Demetrios A. Spandidos
  • View Affiliations / Copyright

    Affiliations: Department of Cardiac Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece, Cardiothoracic Surgery Unit, Great Ormond Street Hospital for Children, WC1N 3JH London, UK, Propaedeutic Surgery First Department, University of Athens, 11527 Athens, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
    Copyright: © Papadakis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2089-2099
    |
    Published online on: November 28, 2017
       https://doi.org/10.3892/mmr.2017.8174
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Classic cardiac surgery, determined through the function of cardiopulmonary bypass machine and myocardial cardioplegic arrest, represents the most controlled scenario for cardiomyocyte homeostatic disturbances due to systemic inflammatory response and myocardial reperfusion injury. An increasing number of studies have demonstrated that myocardial cell homeostasis in cardiac surgery procedures is a sequence of molecularly interrelated and overlapping mechanisms in the form of apoptosis, autophagy and necrosis, which are activated by a plethora of induced inflammatory mediators and gene‑related signaling pathways. In this study, we outline the molecular mechanisms of the cardiomyocyte adaptive homeostatic process and the associated clinical implications, in the settings of classic cardiac surgery procedures.
View Figures
View References

1 

Lutz W, Sanderson W and Scherbov S: The coming acceleration of global population ageing. Nature. 451:716–719. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, et al American Heart Association Statistics Committee and Stroke Statistics Subcommittee, : Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation. 131:e29–e322. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Turer AT and Hill JA: Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 106:360–368. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Whelan RS, Kaplinskiy V and Kitsis RN: Cell death in the pathogenesis of heart disease: Mechanisms and significance. Annu Rev Physiol. 72:19–44. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill JA and Lavandero S: Cardiomyocyte death: Mechanisms and translational implications. Cell Death Dis. 2:e2442011. View Article : Google Scholar : PubMed/NCBI

6 

Marunouchi T and Tanonaka K: Cell death in the cardiac myocyte. Biol Pharm Bull. 38:1094–1097. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Tavernarakis N: Cardiomyocyte necrosis: Alternative mechanisms, effective interventions. Biochim Biophys Acta. 1773:480–482. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Golstein P and Kroemer G: Cell death by necrosis: Towards a molecular definition. Trends Biochem Sci. 32:37–43. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Khoynezhad A, Jalali Z and Tortolani AJ: Apoptosis: Pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg. 78:1109–1118. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Anselmi A, Abbate A, Girola F, Nasso G, Biondi-Zoccai GG, Possati G and Gaudino M: Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: A review of evidence. Eur J Cardiothorac Surg. 25:304–311. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Fischer UM, Klass O, Stock U, Easo J, Geissler HJ, Fischer JH, Bloch W and Mehlhorn U: Cardioplegic arrest induces apoptosis signal-pathway in myocardial endothelial cells and cardiac myocytes. Eur J Cardiothorac Surg. 23:984–990. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Schmitt JP, Schröder J, Schunkert H, Birnbaum DE and Aebert H: Role of apoptosis in myocardial stunning after open heart surgery. Ann Thorac Surg. 73:1229–1235. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Gatica D, Chiong M, Lavandero S and Klionsky DJ2: Molecular mechanisms of autophagy in the cardiovascular system. Circ Res. 116:456–467. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Jia G and Sowers J: Autophagy: A housekeeper in cardiorenal metabolic health and disease. Biochim Biophys Acta. 1852:219–224. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Martinet W, Knaapen MW, Kockx MM and De Meyer GRY: Autophagy in cardiovascular disease. Trends Mol Med. 13:482–491. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 90:1383–1435. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Levine B, Mizushima N and Virgin HW: Autophagy in immunity and inflammation. Nature. 469:323–335. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Yang L, Li P, Fu S, Calay ES and Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11:467–478. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Jia G and Sowers JR: Autophagy: A housekeeper in cardiorenal metabolic health and disease. Biochim Biophys Acta. 1852:219–224. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Riehle C, Wende AR, Sena S, Pires KM, Pereira RO, Zhu Y, Bugger H, Frank D, Bevins J, Chen D, et al: Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest. 123:5319–5333. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Levine B and Klionsky DJ: Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell. 6:463–477. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Yorimitsu T and Klionsky DJ: Autophagy: Molecular machinery for self-eating. Cell Death Differ. 12 Suppl 2:1542–1552. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Levine B and Yuan J: Autophagy in cell death: An innocent convict? J Clin Invest. 115:2679–2688. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Yang YP, Liang ZQ, Gu ZL and Qin ZH: Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin. 26:1421–1434. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Kanamori H, Takemura G, Maruyama R, Goto K, Tsujimoto A, Ogino A, Li L, Kawamura I, Takeyama T, Kawaguchi T, et al: Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. Am J Pathol. 174:1705–1714. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Galluzzi L, Pietrocola F, Levine B and Kroemer G: Metabolic control of autophagy. Cell. 159:1263–1276. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N and Vandenabeele P: Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 8:207–220. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Henriquez M, Armisén R, Stutzin A and Quest AF: Cell death by necrosis, a regulated way to go. Curr Mol Med. 8:187–206. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Kroemer G, Galluzzi L and Brenner C: Mitochondrial membrane permeabilization in cell death. Physiol Rev. 87:99–163. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Jahania SM, Sengstock D, Vaitkevicius P, Andres A, Ito BR, Gottlieb RA and Mentzer RM Jr: Activation of the homeostatic intracellular repair response during cardiac surgery. J Am Coll Surg. 216:719–726, discussion 726–729. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Nishida K, Yamaguchi O and Otsu K: Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 103:343–351. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Lavandero S, Chiong M, Rothermel BA and Hill JA: Autophagy in cardiovascular biology. J Clin Invest. 125:55–64. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Thorburn A: Apoptosis and autophagy: Regulatory connections between two supposedly different processes. Apoptosis. 13:1–9. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Osellame LD, Blacker TS and Duchen MR: Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 26:711–723. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Seo AY, Joseph AM, Dutta D, Hwang JCY, Aris JP and Leeuwenburgh C: New insights into the role of mitochondria in aging: Mitochondrial dynamics and more. J Cell Sci. 123:2533–2542. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A and Nagata S: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 391:43–50. 1998. View Article : Google Scholar : PubMed/NCBI

38 

Nicholson DW and Thornberry NA: Caspases: Killer proteases. Trends Biochem Sci. 22:299–306. 1997. View Article : Google Scholar : PubMed/NCBI

39 

Quinsay MN, Lee Y, Rikka S, Sayen MR, Molkentin JD, Gottlieb RA and Gustafsson AB: Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. J Mol Cell Cardiol. 48:1146–1156. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T and Tanaka N: Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 288:1053–1058. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Lorenzo HK, Susin SA, Penninger J and Kroemer G: Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 6:516–524. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Tanaka M, Nakae S, Terry RD, Mokhtari GK, Gunawan F, Balsam LB, Kaneda H, Kofidis T, Tsao PS and Robbins RC: Cardiomyocyte-specific Bcl-2 overexpression attenuates ischemia-reperfusion injury, immune response during acute rejection, and graft coronary artery disease. Blood. 104:3789–3796. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science. 267:1456–1462. 1995. View Article : Google Scholar : PubMed/NCBI

44 

Saraste A, Voipio-Pulkki LM, Parvinen M and Pulkki K: Apoptosis in the heart. N Engl J Med. 336:1025–1026. 1997. View Article : Google Scholar : PubMed/NCBI

45 

Kang PM and Izumo S: Apoptosis and heart failure: A critical review of the literature. Circ Res. 86:1107–1113. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, et al: Apoptosis in the failing human heart. N Engl J Med. 336:1131–1141. 1997. View Article : Google Scholar : PubMed/NCBI

47 

Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M and Voipio-Pulkki LM: Apoptosis in human acute myocardial infarction. Circulation. 95:320–323. 1997. View Article : Google Scholar : PubMed/NCBI

48 

Kim NH and Kang PM: Apoptosis in cardiovascular diseases: Mechanism and clinical implications. Korean Circ J. 40:299–305. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E and Anversa P: Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol. 28:2005–2016. 1996. View Article : Google Scholar : PubMed/NCBI

50 

Kalra M and Miller VM: Early remodeling of saphenous vein grafts: Proliferation, migration and apoptosis of adventitial and medial cells occur simultaneously with changes in graft diameter and blood flow. J Vasc Res. 37:576–584. 2000. View Article : Google Scholar : PubMed/NCBI

51 

Kovacević M, Simić O, Jonjić N and Stifter S: Apoptosis and cardiopulmonary bypass. J Card Surg. 22:129–134. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Vaage J and Valen G: Pathophysiology and mediators of ischemia-reperfusion injury with special reference to cardiac surgery. A review. Scand J Thorac Cardiovasc Surg Suppl. 41:1–18. 1993.PubMed/NCBI

53 

Royston D: The inflammatory response and extracorporeal circulation. J Cardiothorac Vasc Anesth. 11:341–354. 1997. View Article : Google Scholar : PubMed/NCBI

54 

Beal AL and Cerra FB: Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA. 271:226–233. 1994. View Article : Google Scholar : PubMed/NCBI

55 

Wu ZK, Laurikka J, Saraste A, Kytö V, Pehkonen EJ, Savunen T and Tarkka MR: Cardiomyocyte apoptosis and ischemic preconditioning in open heart operations. Ann Thorac Surg. 76:528–534. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Boyle EM Jr, Pohlman TH, Johnson MC and Verrier ED: Endothelial cell injury in cardiovascular surgery: The systemic inflammatory response. Ann Thorac Surg. 63:277–284. 1997.PubMed/NCBI

57 

Moat NE, Shore DF and Evans TW: Organ dysfunction and cardiopulmonary bypass: The role of complement and complement regulatory proteins. Eur J Cardiothorac Surg. 7:563–573. 1993. View Article : Google Scholar : PubMed/NCBI

58 

Kawahito K, Misawa Y and Fuse K: Transient rise in serum soluble Fas (APO-1/CD95) in patients undergoing cardiac surgery. Artif Organs. 24:628–631. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Meldrum DR and Donnahoo KK: Role of TNF in mediating renal insufficiency following cardiac surgery: Evidence of a postbypass cardiorenal syndrome. J Surg Res. 85:185–199. 1999. View Article : Google Scholar : PubMed/NCBI

60 

Ramlawi B, Feng J and Mieno S: Indices of apoptosis activation after blood cardioplegia and cardiopulmonary bypass. Circulation. 114 suppl I:I-257–I-263. 2006. View Article : Google Scholar

61 

Maulik N, Yoshida T and Das DK: Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radic Biol Med. 24:869–875. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Kruman I, Guo Q and Mattson MP: Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res. 51:293–308. 1998. View Article : Google Scholar : PubMed/NCBI

63 

Aebert H, Cornelius T, Birnbaum DE, Siegel AV, Riegger GA and Schunkert H: Induction of early immediate genes and programmed cell death following cardioplegic arrest in human hearts. Eur J Cardiothorac Surg. 12:261–267. 1997. View Article : Google Scholar : PubMed/NCBI

64 

Sybers HD, Ingwall J and DeLuca M: Autophagy in cardiac myocytes. Recent Adv Stud Cardiac Struct Metab. 12:453–463. 1976.PubMed/NCBI

65 

Nikoletopoulou V, Markaki M, Palikaras K and Tavernarakis N: Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 1833:3448–3459. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Li M, Gao P and Zhang J: Crosstalk between autophagy and apoptosis: Potential and emerging therapeutic targets for cardiac diseases. Int J Mol Sci. 17:3322016. View Article : Google Scholar : PubMed/NCBI

67 

Kunapuli S, Rosanio S and Schwarz ER: ‘How do cardiomyocytes die?’ apoptosis and autophagic cell death in cardiac myocytes. J Card Fail. 12:381–391. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Mukhopadhyay S, Panda PK, Sinha N, Das DN and Bhutia SK: Autophagy and apoptosis: Where do they meet? Apoptosis. 19:555–566. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Gordy C and He YW: The crosstalk between autophagy and apoptosis: Where does this lead? Protein Cell. 3:17–27. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN and Gustafsson AB: Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem. 288:915–926. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Schiattarella GG and Hill JA: Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol. 95:86–93. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Mughal W, Dhingra R and Kirshenbaum LA: Striking a balance: Autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep. 14:540–547. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Konstantinidis K, Whelan RS and Kitsis RN: Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol. 32:1552–1562. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Linton P-J, Gurney M, Sengstock D, Mentzer RM Jr and Gottlieb RA: This old heart: Cardiac aging and autophagy. J Mol Cell Cardiol. 83:44–54. 2015. View Article : Google Scholar : PubMed/NCBI

75 

McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T and Izumo S: Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 109:3050–3055. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Frenzel H, Schwartzkopff B, Rettig B and Vogelsang H: Morphologic criteria of progression and regression of cardiac hypertrophy. J Cardiovasc Pharmacol. 10 Suppl 6:S20–S28. 1987. View Article : Google Scholar : PubMed/NCBI

78 

Zhou L, Ma B and Han X: The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy. J Mol Endocrinol. 57:R143–R152. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Kostin S, Pool L, Elsässer A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn WP and Schaper J: Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 92:715–724. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Diwan A and Dorn GW II: Decompensation of cardiac hypertrophy: Cellular mechanisms and novel therapeutic targets. Physiology (Bethesda). 22:56–64. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C and Debnath J: ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell. 142:590–600. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Singh K, Communal C, Sawyer DB and Colucci WS: Adrenergic regulation of myocardial apoptosis. Cardiovasc Res. 45:713–719. 2000. View Article : Google Scholar : PubMed/NCBI

83 

Nishida K, Kyoi S, Yamaguchi O, Sadoshima J and Otsu K: The role of autophagy in the heart. Cell Death Differ. 16:31–38. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T, Fujiwara T, et al: The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res. 91:330–339. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Vatner SF and Sadoshima J: Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy. 4:409–415. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Rifki OF and Hill JA: Cardiac autophagy: Good with the bad. J Cardiovasc Pharmacol. 60:248–252. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Gustafsson AB and Gottlieb RA: Recycle or die: The role of autophagy in cardioprotection. J Mol Cell Cardiol. 44:654–661. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Terman A and Brunk UT: Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res. 68:355–365. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Dutta D, Calvani R, Bernabei R, Leeuwenburgh C and Marzetti E: Contribution of impaired mitochondrial autophagy to cardiac aging: Mechanisms and therapeutic opportunities. Circ Res. 110:1125–1138. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, et al: Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy. 6:600–606. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Qin F, Siwik DA, Lancel S, Zhang J, Kuster GM, Luptak I, Wang L, Tong X, Kang YJ, Cohen RA and Colucci WS: Hydrogen peroxide-mediated SERCA cysteine 674 oxidation contributes to impaired cardiac myocyte relaxation in senescent mouse heart. J Am Heart Assoc. 2:e0001842013. View Article : Google Scholar : PubMed/NCBI

92 

Newman AB, Arnold AM, Naydeck BL, Fried LP, Burke GL, Enright P, Gottdiener J, Hirsch C, O'Leary D and Tracy R; Cardiovascular Health Study Research Group, : ‘Successful aging’: Effect of subclinical cardiovascular disease. Arch Intern Med. 163:2315–2322. 2003. View Article : Google Scholar : PubMed/NCBI

93 

Garcia L, Verdejo HE, Kuzmicic J, Zalaquett R, Gonzalez S, Lavandero S and Corbalan R: Impaired cardiac autophagy in patients developing postoperative atrial fibrillation. J Thorac Cardiovasc Surg. 143:451–459. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R, Frazier OH and Taegtmeyer H: Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation. 120 Suppl:S191–S197. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Singh KK, Yanagawa B, Quan A, Wang R, Garg A, Khan R, Pan Y, Wheatcroft MD, Lovren F, Teoh H and Verma S: Autophagy gene fingerprint in human ischemia and reperfusion. J Thorac Cardiovasc Surg. 147:1065–1072.e1. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Paparella D, Yau TM and Young E: Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. An update. Eur J Cardiothorac Surg. 21:232–244. 2002. View Article : Google Scholar : PubMed/NCBI

97 

Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M and Eckle T: Myocardial ischemia reperfusion injury: From basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 16:123–132. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Chen X, Zhang X, Kubo H, Harris DM, Mills GD, Moyer J, Berretta R, Potts ST, Marsh JD and Houser SR: Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res. 97:1009–1017. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Di Lisa F and Bernardi P: Mitochondria and ischemia-reperfusion injury of the heart: Fixing a hole. Cardiovasc Res. 70:191–199. 2006. View Article : Google Scholar : PubMed/NCBI

100 

Kirklin JK: Prospects for understanding and eliminating the deleterious effects of cardiopulmonary bypass. Ann Thorac Surg. 51:529–531. 1991. View Article : Google Scholar : PubMed/NCBI

101 

Westaby S: Organ dysfunction after cardiopulmonary bypass. A systemic inflammatory reaction initiated by the extracorporeal circuit. Intensive Care Med. 13:89–95. 1987. View Article : Google Scholar : PubMed/NCBI

102 

Landis RC, Brown JR, Fitzgerald D, Likosky DS, Shore-Lesserson L, Baker RA and Hammon JW: Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: A critical review of the evidence base. J Extra Corpor Technol. 46:197–211. 2014.PubMed/NCBI

103 

Ruel M, Bianchi C, Khan TA, Xu S, Liddicoat JR, Voisine P, Araujo E, Lyon H, Kohane IS, Libermann TA and Sellke FW: Gene expression profile after cardiopulmonary bypass and cardioplegic arrest. J Thorac Cardiovasc Surg. 126:1521–1530. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Vähäsilta T, Saraste A, Kytö V, Malmberg M, Kiss J, Kentala E, Kallajoki M and Savunen T: Cardiomyocyte apoptosis after antegrade and retrograde cardioplegia. Ann Thorac Surg. 80:2229–2234. 2005. View Article : Google Scholar : PubMed/NCBI

105 

Suleiman MS, Zacharowski K and Angelini GD: Inflammatory response and cardioprotection during open-heart surgery: The importance of anaesthetics. Br J Pharmacol. 153:21–33. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Klatte K, Chaitman BR, Theroux P, Gavard JA, Stocke K, Boyce S, Bartels C, Keller B and Jessel A; GUARDIAN Investigators (The GUARD during Ischemia Against Necrosis), : Increased mortality after coronary artery bypass graft surgery is associated with increased levels of postoperative creatine kinase-myocardial band isoenzyme release: Results from the GUARDIAN trial. J Am Coll Cardiol. 38:1070–1077. 2001. View Article : Google Scholar : PubMed/NCBI

107 

Weman SM, Karhunen PJ, Penttilä A, Järvinen AA and Salminen US: Reperfusion injury associated with one-fourth of deaths after coronary artery bypass grafting. Ann Thorac Surg. 70:807–812. 2000. View Article : Google Scholar : PubMed/NCBI

108 

Braunwald E and Kloner RA: The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation. 66:1146–1149. 1982. View Article : Google Scholar : PubMed/NCBI

109 

Bolli R: Basic and clinical aspects of myocardial stunning. Prog Cardiovasc Dis. 40:477–516. 1998. View Article : Google Scholar : PubMed/NCBI

110 

Ritchie MF, Zhou Y and Soboloff J: Transcriptional mechanisms regulating Ca(2+) homeostasis. Cell Calcium. 49:314–321. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Koretsune Y and Marban E: Cell calcium in the pathophysiology of ventricular fibrillation and in the pathogenesis of postarrhythmic contractile dysfunction. Circulation. 80:369–379. 1989. View Article : Google Scholar : PubMed/NCBI

112 

Pinton P, Giorgi C, Siviero R, Zecchini E and Rizzuto R: Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 27:6407–6418. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Marks AR: Calcium and the heart: A question of life and death. J Clin Invest. 111:597–600. 2003. View Article : Google Scholar : PubMed/NCBI

114 

Piper HM, Abdallah Y and Schäfer C: The first minutes of reperfusion: A window of opportunity for cardioprotection. Cardiovasc Res. 61:365–371. 2004. View Article : Google Scholar : PubMed/NCBI

115 

French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KK and Powers SK: Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol. 290:H128–H136. 2006. View Article : Google Scholar : PubMed/NCBI

116 

Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al: Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell. 25:193–205. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Kranias EG and Hajjar RJ: Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res. 110:1646–1660. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Chen Y, Escoubet B, Prunier F, Amour J, Simonides WS, Vivien B, Lenoir C, Heimburger M, Choqueux C, Gellen B, et al: Constitutive cardiac overexpression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase delays myocardial failure after myocardial infarction in rats at a cost of increased acute arrhythmias. Circulation. 109:1898–1903. 2004. View Article : Google Scholar : PubMed/NCBI

119 

Walker JD, Crawford FA Jr, Mukherjee R and Spinale FG: The direct effects of 3,5,3′-triiodo-L-thyronine (T3) on myocyte contractile processes. Insights into mechanisms of action. J Thorac Cardiovasc Surg. 110:1369–1379, discussion 1379–1380. 1995. View Article : Google Scholar : PubMed/NCBI

120 

Walker JD, Crawford FA Jr, Mukherjee R, Zile MR and Spinale FG: Direct effects of acute administration of 3, 5, 3′ triiodo-L-thyronine on myocyte function. Ann Thorac Surg. 58:851–856. 1994. View Article : Google Scholar : PubMed/NCBI

121 

Khoury SF, Hoit BD, Dave V, Pawloski-Dahm CM, Shao Y, Gabel M, Periasamy M and Walsh RA: Effects of thyroid hormone on left ventricular performance and regulation of contractile and Ca(2+)-cycling proteins in the baboon. Implications for the force-frequency and relaxation-frequency relationships. Circ Res. 79:727–735. 1996. View Article : Google Scholar : PubMed/NCBI

122 

Fargnoli AS, Katz MG, Yarnall C, Isidro A, Petrov M, Steuerwald N, Ghosh S, Richardville KC, Hillesheim R, Williams RD, et al: Cardiac surgical delivery of the sarcoplasmic reticulum calcium ATPase rescues myocytes in ischemic heart failure. Ann Thorac Surg. 96:586–595. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P, Spanou D, et al: Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: A new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res Cardiol. 104:69–77. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Holland FW II, Brown PS Jr, Weintraub BD and Clark RE: Cardiopulmonary bypass and thyroid function: A ‘euthyroid sick syndrome’. Ann Thorac Surg. 52:46–50. 1991. View Article : Google Scholar : PubMed/NCBI

125 

Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, L'Abbate A and Donato L: Low-T3 syndrome: A strong prognostic predictor of death in patients with heart disease. Circulation. 107:708–713. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Ranasinghe AM and Bonser RS: Thyroid hormone in cardiac surgery. Vascul Pharmacol. 52:131–137. 2010. View Article : Google Scholar : PubMed/NCBI

127 

Galli E, Pingitore A and Iervasi G: The role of thyroid hormone in the pathophysiology of heart failure: Clinical evidence. Heart Fail Rev. 15:155–169. 2010. View Article : Google Scholar : PubMed/NCBI

128 

Cerillo AG, Storti S, Kallushi E, Haxhiademi D, Miceli A, Murzi M, Berti S, Glauber M, Clerico A and Iervasi G: The low triiodothyronine syndrome: A strong predictor of low cardiac output and death in patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 97:2089–2095. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Ranasinghe AM, Quinn DW, Pagano D, Edwards N, Faroqui M, Graham TR, Keogh BE, Mascaro J, Riddington DW, Rooney SJ, et al: Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation. 114 Suppl:I245–I250. 2006. View Article : Google Scholar : PubMed/NCBI

130 

Portman MA, Slee A, Olson AK, Cohen G, Karl T, Tong E, Hastings L, Patel H, Reinhartz O, Mott AR, Mainwaring R, Linam J and Danzi S: TRICC Investigators: Triiodothyronine supplementation in infants and children undergoing cardiopulmonary bypass (TRICC): A multicenter placebo-controlled randomized trial: Age analysis. Circulation. 122 11 Suppl:S224–S233. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Klemperer JD, Klein IL, Ojamaa K, Helm RE, Gomez M, Isom OW and Krieger KH: Triiodothyronine therapy lowers the incidence of atrial fibrillation after cardiac operations. Ann Thorac Surg. 61:1323–1327, discussion 1328–1329. 1996. View Article : Google Scholar : PubMed/NCBI

132 

Novitzky D and Cooper DK: Thyroid hormone and the stunned myocardium. J Endocrinol. 223:1–8. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Roukounakis N, Kokkinos AD, Cokkinos DV and Pantos C: Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: Potential involvement of Akt and ERK signalings. Mol Cell Biochem. 363:235–243. 2012. View Article : Google Scholar : PubMed/NCBI

134 

Fan GC, Chu G, Mitton B, Song Q, Yuan Q and Kranias EG: Small heat-shock protein Hsp20 phosphorylation inhibits beta-agonist-induced cardiac apoptosis. Circ Res. 94:1474–1482. 2004. View Article : Google Scholar : PubMed/NCBI

135 

Chambers DJ and Fallouh HB: Cardioplegia and cardiac surgery: Pharmacological arrest and cardioprotection during global ischemia and reperfusion. Pharmacol Ther. 127:41–52. 2010. View Article : Google Scholar : PubMed/NCBI

136 

Yao H and Han X and Han X: The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am J Cardiovasc Drugs. 14:433–442. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Fan GC, Ren X, Qian J, Yuan Q, Nicolaou P, Wang Y, Jones WK, Chu G and Kranias EG: Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation. 111:1792–1799. 2005. View Article : Google Scholar : PubMed/NCBI

138 

Suleiman MS, Hancock M, Shukla R, Rajakaruna C and Angelini GD: Cardioplegic strategies to protect the hypertrophic heart during cardiac surgery. Perfusion. 26 Suppl 1:48–56. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Habertheuer A, Kocher A, Laufer G, Andreas M, Szeto WY, Petzelbauer P, Ehrlich M and Wiedemann D: Cardioprotection: A review of current practice in global ischemia and future translational perspective. BioMed Res Int. 2014:3257252014. View Article : Google Scholar : PubMed/NCBI

140 

Juhl-Olsen P, Bhavsar R, Frederiksen CA, Sloth E and Jakobsen CJ: Systolic heart function remains depressed for at least 30 days after on-pump cardiac surgery. Interact Cardiovasc Thorac Surg. 15:395–399. 2012. View Article : Google Scholar : PubMed/NCBI

141 

Breisblatt WMI, Stein KL, Wolfe CJ, Follansbee WP, Capozzi J, Armitage JM and Hardesty RL: Acute myocardial dysfunction and recovery: A common occurrence after coronary bypass surgery. J Am Coll Cardiol. 15:1261–1269. 1990. View Article : Google Scholar : PubMed/NCBI

142 

Lefkowitz RJ, Rockman HA and Koch WJ: Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation. 101:1634–1637. 2000. View Article : Google Scholar : PubMed/NCBI

143 

Heringlake M, Wernerus M, Grünefeld J, Klaus S, Heinze H, Bechtel M, Bahlmann L, Poeling J and Schön J: The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care. 11:R512007. View Article : Google Scholar : PubMed/NCBI

144 

Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J and Anversa P: Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest. 101:1326–1342. 1998. View Article : Google Scholar : PubMed/NCBI

145 

Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG and Anversa P: Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol. 29:859–870. 1997. View Article : Google Scholar : PubMed/NCBI

146 

Filippatos G and Uhal BD: Blockade of apoptosis by ACE inhibitors and angiotensin receptor antagonists. Curr Pharm Des. 9:707–714. 2003. View Article : Google Scholar : PubMed/NCBI

147 

Disque Al and Neelankavil J: Con: ACE inhibitors should be stopped prior to cardiovascular surgery. J Cardiothorac Vasc Anesth. 30:820–822. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Bhatia M, Arora H and Kumar PA: Pro: ACE inhibitors should be continued perioperatively and prior to cardiovascular operations. J Cardiothorac Vasc Anesth. 30:816–819. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Pearl JM, Plank DM, McLean KM, Wagner CJ and Duffy JY: Glucocorticoids improve calcium cycling in cardiac myocytes after cardiopulmonary bypass. J Surg Res. 167:279–286. 2011. View Article : Google Scholar : PubMed/NCBI

150 

Ho KM and Tan JA: Benefits and risks of corticosteroid prophylaxis in adult cardiac surgery: A dose-response meta-analysis. Circulation. 119:1853–1866. 2009. View Article : Google Scholar : PubMed/NCBI

151 

Prasongsukarn K, Abel JG, Jamieson WR, Cheung A, Russell JA, Walley KR and Lichtenstein SV: The effects of steroids on the occurrence of postoperative atrial fibrillation after coronary artery bypass grafting surgery: A prospective randomized trial. J Thorac Cardiovasc Surg. 130:93–98. 2005. View Article : Google Scholar : PubMed/NCBI

152 

Asou T, Oe M, Tominaga R, Fukamachi K, Morita S, Kishizaki K, Toshima Y, Nakamura Y, Mitani A and Sakamoto M: Optimal timing for application of ventricular assist devices in patients who cannot be weaned from cardiopulmonary bypass. An experimental study. ASAIO Trans. 34:466–469. 1988.PubMed/NCBI

153 

Ooka T and Matsui Y: Optimal timing of left ventricular assist device implantation for severe heart failure patients: Focus on end-organ function not hemodynamics. Circ J. 76:1587–1588. 2012. View Article : Google Scholar : PubMed/NCBI

154 

Yoshioka D, Sakaguchi T, Saito S, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, Saito T, Daimon T, Ueno T, et al: Predictor of early mortality for severe heart failure patients with left ventricular assist device implantation: Significance of INTERMACS level and renal function. Circ J. 76:1631–1638. 2012. View Article : Google Scholar : PubMed/NCBI

155 

Prasad H, Ryan DA, Celzo MF and Stapleton D: Metabolic syndrome: Definition and therapeutic implications. Postgrad Med. 124:21–30. 2012. View Article : Google Scholar : PubMed/NCBI

156 

Milano CA, White WD, Smith LR, Jones RH, Lowe JE, Smith PK and Van Trigt P III: Coronary artery bypass in patients with severely depressed ventricular function. Ann Thorac Surg. 56:487–493. 1993. View Article : Google Scholar : PubMed/NCBI

157 

Chakravarthy M: Modifying risks to improve outcome in cardiac surgery: An anesthesiologist's perspective. Ann Card Anaesth. 20:226–233. 2017. View Article : Google Scholar : PubMed/NCBI

158 

Ferdinandy P, Schulz R and Baxter GF: Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 59:418–458. 2007. View Article : Google Scholar : PubMed/NCBI

159 

Sciarretta S, Zhai P, Volpe M and Sadoshima J: Pharmacological modulation of autophagy during cardiac stress. J Cardiovasc Pharmacol. 60:235–241. 2012. View Article : Google Scholar : PubMed/NCBI

160 

Sciarretta S, Yee D, Shenoy V, Nagarajan N and Sadoshima J: The importance of autophagy in cardioprotection. High Blood Press Cardiovasc Prev. 21:21–28. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Head SJ, Kaul S, Mack MJ, Serruys PW, Taggart DP, Holmes DR Jr, Leon MB, Marco J, Bogers AJ and Kappetein AP: The rationale for Heart Team decision-making for patients with stable, complex coronary artery disease. Eur Heart J. 34:2510–2518. 2013. View Article : Google Scholar : PubMed/NCBI

162 

Sabik JF III: Fit the operation to the patient, not the patient to the operation. J Thorac Cardiovasc Surg. 150:1393–1395. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Papadakis E, Kanakis M, Kataki A and Spandidos DA: The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review). Mol Med Rep 17: 2089-2099, 2018.
APA
Papadakis, E., Kanakis, M., Kataki, A., & Spandidos, D.A. (2018). The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review). Molecular Medicine Reports, 17, 2089-2099. https://doi.org/10.3892/mmr.2017.8174
MLA
Papadakis, E., Kanakis, M., Kataki, A., Spandidos, D. A."The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review)". Molecular Medicine Reports 17.2 (2018): 2089-2099.
Chicago
Papadakis, E., Kanakis, M., Kataki, A., Spandidos, D. A."The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review)". Molecular Medicine Reports 17, no. 2 (2018): 2089-2099. https://doi.org/10.3892/mmr.2017.8174
Copy and paste a formatted citation
x
Spandidos Publications style
Papadakis E, Kanakis M, Kataki A and Spandidos DA: The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review). Mol Med Rep 17: 2089-2099, 2018.
APA
Papadakis, E., Kanakis, M., Kataki, A., & Spandidos, D.A. (2018). The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review). Molecular Medicine Reports, 17, 2089-2099. https://doi.org/10.3892/mmr.2017.8174
MLA
Papadakis, E., Kanakis, M., Kataki, A., Spandidos, D. A."The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review)". Molecular Medicine Reports 17.2 (2018): 2089-2099.
Chicago
Papadakis, E., Kanakis, M., Kataki, A., Spandidos, D. A."The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review)". Molecular Medicine Reports 17, no. 2 (2018): 2089-2099. https://doi.org/10.3892/mmr.2017.8174
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team