Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2018 Volume 17 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 17 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus

  • Authors:
    • Qian Li
    • Tao Yang
    • An‑Chen Guo
    • Yong‑Ping Fan
  • View Affiliations / Copyright

    Affiliations: Department of Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China, Laboratory of Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4163-4172
    |
    Published online on: January 5, 2018
       https://doi.org/10.3892/mmr.2018.8378
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The endogenous neurotransmitter, noradrenaline, exerts anti-inflammatory and neuroprotective effects in vivo and in vitro. Reduced noradrenaline levels results in increased inflammation and neuronal damage. The primary source of noradrenaline in the central nervous system is tyrosine hydroxylase (TH)‑positive neurons, located in the locus coeruleus (LC). TH is the rate‑limiting enzyme for noradrenaline synthesis; therefore, regulation of TH protein expression and intrinsic enzyme activity represents the central means for controlling the synthesis of noradrenaline. Catalpol is an iridoid glycoside purified from Rehmannia glutinosa Libosch, which exerts a neuroprotective effect in multiple sclerosis (MS). The present study used an experimental mouse model of autoimmune encephalomyelitis to verify the neuroprotective effects of catalpol. Significant improvements in the clinical scores were observed in catalpol‑treated mice. Furthermore, catalpol increased TH expression and increased noradrenaline levels in the spinal cord. In primary cultures, catalpol exerted a neuroprotective effect in rat LC neurons by increasing the noradrenaline output. These results suggested that drugs targeting LC survival and function, including catalpol, may be able to benefit patients with MS.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

McQualter JL and Bernard CC: Multiple sclerosis: A battle between destruction and repair. J Neurochem. 100:295–306. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Deckx N, Lee WP, Berneman ZN and Cools N: Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol. 2013:7052322013. View Article : Google Scholar : PubMed/NCBI

3 

Alvarez JI, Cayrol R and Prat A: Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta. 1812:252–264. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Gadea M, Martinez-Bisbal MC, Marti-Bonmati L, Espert R, Casanova B, Coret F and Celda B: Spectroscopic axonal damage of the right locus coeruleus relates to selective attention impairment in early stage relapsing-remitting multiple sclerosis. Brain. 127:89–98. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Polak PE, Kalinin S and Feinstein DL: Locus coeruleus damage and noradrenaline reductions in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain. 134:665–677. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Fritschy JM and Grzanna R: Experimentally-induced neuron loss in the locus coeruleus of adult rats. Exp Neurol. 111:123–127. 1991. View Article : Google Scholar : PubMed/NCBI

7 

Simonini MV, Polak PE, Sharp A, McGuire S, Galea E and Feinstein DL: Increasing CNS noradrenaline reduces EAE severity. J Neuroimmune Pharmacol. 5:252–259. 2010. View Article : Google Scholar : PubMed/NCBI

8 

White SR, Bhatnagar RK and Bardo MT: Norepinephrine depletion in the spinal cord gray matter of rats with experimental allergic encephalomyelitis. J Neurochem. 40:1771–1773. 1983. View Article : Google Scholar : PubMed/NCBI

9 

Krenger W, Honegger CG, Feurer C and Cammisuli S: Changes of neurotransmitter systems in chronic relapsing experimental allergic encephalomyelitis in rat brain and spinal cord. J Neurochem. 47:1247–1254. 1986. View Article : Google Scholar : PubMed/NCBI

10 

Marien MR, Colpaert FC and Rosenquist AC: Noradrenergic mechanisms in neurodegenerative diseases: A theory. Brain Res Brain Res Rev. 45:38–78. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Madrigal JL, Kalinin S, Richardson JC and Feinstein DL: Neuroprotective actions of noradrenaline: Effects on glutathione synthesis and activation of peroxisome proliferator activated receptor delta. J Neurochem. 103:2092–2101. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Frohman EM, Vayuvegula B, Gupta S and van den Noort S: Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms. Proc Natl Acad Sci USA. 85:pp. 1292–1296. 1988; View Article : Google Scholar : PubMed/NCBI

13 

Benveniste EN, Huneycutt BS, Shrikant P and Ballestas ME: Second messenger systems in the regulation of cytokines and adhesion molecules in the central nervous system. Brain Behav Immun. 9:304–314. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Feinstein DL: Suppression of astroglial nitric oxide synthase expression by norepinephrine results from decreased NOS-2 promoter activity. J Neurochem. 70:1484–1496. 1998. View Article : Google Scholar : PubMed/NCBI

15 

Nakamura A, Johns EJ, Imaizumi A, Abe T and Kohsaka T: Regulation of tumour necrosis factor and interleukin-6 gene transcription by beta2-adrenoceptor in the rat astrocytes. J Neuroimmunol. 88:144–153. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Galea E, Heneka MT, Dello RC and Feinstein DL: Intrinsic regulation of brain inflammatory responses. Cell Mol Neurobiol. 23:625–635. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Fujita H, Tanaka J, Maeda N and Sakanaka M: Adrenergic agonists suppress the proliferation of microglia through beta 2-adrenergic receptor. Neurosci Lett. 242:37–40. 1998. View Article : Google Scholar : PubMed/NCBI

18 

Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK and Kummer MP: Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA. 107:pp. 6058–6063. 2010; View Article : Google Scholar : PubMed/NCBI

19 

Kong Y, Ruan L, Qian L, Liu X and Le Y: Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci. 30:11848–11857. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Campbell A: Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci. 1035:117–132. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Zafra F, Lindholm D, Castrén E, Hartikka J and Thoenen H: Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci. 12:4793–4799. 1992.PubMed/NCBI

22 

Remy S, Naveilhan P, Brachet P and Neveu I: Differential regulation of GDNF, neurturin, and their receptors in primary cultures of rat glial cells. J Neurosci Res. 64:242–251. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Kajitani N, Hisaoka-Nakashima K, Morioka N, Okada-Tsuchioka M, Kaneko M, Kasai M, Shibasaki C, Nakata Y and Takebayashi M: Antidepressant acts on astrocytes leading to an increase in the expression of neurotrophic/growth factors: Differential regulation of FGF-2 by noradrenaline. PLoS One. 7:e511972012. View Article : Google Scholar : PubMed/NCBI

24 

Ghiani CA, Eisen AM, Yuan X, DePinho RA, McBain CJ and Gallo V: Neurotransmitter receptor activation triggers p27 (Kip1) and p21 (CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors. Development. 126:1077–1090. 1999.PubMed/NCBI

25 

Kaneko YS, Mori K, Nakashima A, Sawada M, Nagatsu I and Ota A: Peripheral injection of lipopolysaccharide enhances expression of inflammatory cytokines in murine locus coeruleus: Possible role of increased norepinephrine turnover. J Neurochem. 94:393–404. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Kalinin S, Polak PE, Madrigal JL, Gavrilyuk V, Sharp A, Chauhan N, Marien M, Colpaert F and Feinstein DL: Beta-amyloid-dependent expression of NOS2 in neurons: Prevention by an alpha2-adrenergic antagonist. Antioxid Redox Signal. 8:873–883. 2006. View Article : Google Scholar : PubMed/NCBI

27 

O'Sullivan JB, Ryan KM, Curtin NM, Harkin A and Connor TJ: Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: Implications for depression and neurodegeneration. Int J Neuropsychopharmacol. 12:687–699. 2009. View Article : Google Scholar : PubMed/NCBI

28 

O'Sullivan JB, Ryan KM, Harkin A and Connor TJ: Noradrenaline reuptake inhibitors inhibit expression of chemokines IP-10 and RANTES and cell adhesion molecules VCAM-1 and ICAM-1 in the CNS following a systemic inflammatory challenge. J Neuroimmunol. 220:34–42. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Benarroch EE: The locus ceruleus norepinephrine system: Functional organization and potential clinical significance. Neurology. 73:1699–1704. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Szabadi E: Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol. 27:659–693. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Iversen LL, Rossor MN, Reynolds GP, Hills R, Roth M, Mountjoy CQ, Foote SL, Morrison JH and Bloom FE: Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer's type. Neurosci Lett. 39:95–100. 1983. View Article : Google Scholar : PubMed/NCBI

32 

Berridge CW and Waterhouse BD: The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 42:33–84. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Li DQ, Bao YM, Li Y, Wang CF, Liu Y and An LJ: Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after ischemic injury. Brain Res. 1115:179–185. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Tian YY, Jiang B, An LJ and Bao YM: Neuroprotective effect of catalpol against MPP(+)-induced oxidative stress in mesencephalic neurons. Eur J Pharmacol. 568:142–148. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Jiang B, Du J, Liu JH, Bao YM and An LJ: Catalpol attenuates the neurotoxicity induced by beta-amyloid (1–42) in cortical neuron-glia cultures. Brain Res. 1188:139–147. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Liang JH, Du J, Xu LD, Jiang T, Hao S, Bi J and Jiang B: Catalpol protects primary cultured cortical neurons induced by Abeta(1–42) through a mitochondrial-dependent caspase pathway. Neurochem Int. 55:741–746. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Liu J, He QJ, Zou W, Wang HX, Bao YM, Liu YX and An LJ: Catalpol increases hippocampal neuroplasticity and up-regulates PKC and BDNF in the aged rats. Brain Res. 1123:68–79. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Zhang XL, An LJ, Bao YM, Wang JY and Jiang B: d-galactose administration induces memory loss and energy metabolism disturbance in mice: Protective effects of catalpol. Food Chem Toxicol. 46:2888–2894. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Xia Z, Zhang R, Wu P, Xia Z and Hu Y: Memory defect induced by β-amyloid plus glutamate receptor agonist is alleviated by catalpol and donepezil through different mechanisms. Brain Res. 1441:27–37. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE, Pershadsingh HA, Weinberg G and Heneka MT: Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol. 51:694–702. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Heneka MT, Galea E, Gavriluyk V, Dumitrescu-Ozimek L, Daeschner J, O'Banion MK, Weinberg G, Klockgether T and Feinstein DL: Noradrenergic depletion potentiates beta-amyloid-induced cortical inflammation: Implications for Alzheimer's disease. J Neurosci. 22:2434–2442. 2002.PubMed/NCBI

42 

Giuliani F, Metz LM, Wilson T, Fan Y, Bar-Or A and Yong VW: Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. J Neuroimmunol. 158:213–221. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Weaver A, Goncalves da Silva A, Nuttall RK, Edwards DR, Shapiro SD, Rivest S and Yong VW: An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB J. 19:1668–1670. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Jiang B, Zhang H, Bi J and Zhang XL: Neuroprotective activities of catalpol on MPP+/MPTP-induced neurotoxicity. Neurol Res. 30:639–644. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Holm PC, Rodriguez FJ, Kresse A, Canals JM, Silos-Santiago I and Arenas E: Crucial role of TrkB ligands in the survival and phenotypic differentiation of developing locus coeruleus noradrenergic neurons. Development. 130:3535–3545. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Flueraru M, So R, Willmore WG, Poulter MO, Durst T, Charron M and Wright JS: Cytotoxicity and cytoprotective activity of naphthalenediols in rat cortical neurons. Chem Res Toxicol. 19:1221–1217. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Jonsson G, Hallman H, Ponzio F and Ross S: DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)-a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol. 72:173–188. 1981. View Article : Google Scholar : PubMed/NCBI

48 

Hallman H and Jonsson G: Pharmacological modifications of the neurotoxic action of the noradrenaline neurotoxin DSP4 on central noradrenaline neurons. Eur J Pharmacol. 103:269–278. 1984. View Article : Google Scholar : PubMed/NCBI

49 

Landa ME, Rubio MC and Jaim-Etcheverry G: The neurotoxic compound N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4) depletes endogenous norepinephrine and enhances release of [3H]norepinephrine from rat cortical slices. J Pharmacol Exp Ther. 231:131–136. 1984.PubMed/NCBI

50 

Cassano T, Gaetani S, Morgese MG, Macheda T, Laconca L, Dipasquale P, Taltavull J, Shippenberg TS, Cuomo V and Gobbi G: Monoaminergic changes in locus coeruleus and dorsal raphe nucleus following noradrenaline depletion. Neurochem Res. 34:1417–1426. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Dowdell KC, Gienapp IE, Stuckman S, Wardrop RM and Whitacre CC: Neuroendocrine modulation of chronic relapsing experimental autoimmune encephalomyelitis: A critical role for the hypothalamic-pituitary-adrenal axis. J Neuroimmunol. 100:243–251. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A and Frigo G: Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: Effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol. 133:233–240. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Rajda C, Bencsik K, Vécsei LL and Bergquist J: Catecholamine levels in peripheral blood lymphocytes from multiple sclerosis patients. J Neuroimmunol. 124:93–100. 2002. View Article : Google Scholar : PubMed/NCBI

54 

Helkamaa T, Reenilä I, Tuominen RK, Soinila S, Väänänen A, Tilgmann C and Rauhala P: Increased catechol-O-methyltransferase activity and protein expression in OX-42-positive cells in the substantia nigra after lipopolysaccharide microinfusion. Neurochem Int. 51:412–423. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Samantaray S, Knaryan VH, Butler JT, Ray SK and Banik NL: Spinal cord degeneration in C57BL/6N mice following induction of experimental parkinsonism with MPTP. J Neurochem. 104:1309–1320. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Martel J, Chopin P, Colpaert F and Marien M: Neuroprotective effects of the alpha2-adrenoceptor antagonists, (+)-efaroxan and (+/-)-idazoxan, against quinolinic acid-induced lesions of the rat striatum. Exp Neurol. 154:595–601. 1998. View Article : Google Scholar : PubMed/NCBI

57 

Veyrac A, Didier A, Colpaert F, Jourdan F and Marien M: Activation of noradrenergic transmission by alpha2-adrenoceptor antagonists counteracts deafferentation-induced neuronal death and cell proliferation in the adult mouse olfactory bulb. Exp Neurol. 194:444–456. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Hashioka S, Klegeris A, Monji A, Kato T, Sawada M, McGeer PL and Kanba S: Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp Neurol. 206:33–42. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Russo-Neustadt A, Beard RC and Cotman CW: Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology. 21:679–682. 1999. View Article : Google Scholar : PubMed/NCBI

60 

Goldstein DS: L-Dihydroxyphenylserine (L-DOPS): A norepinephrine prodrug. Cardiovasc Drug Rev. 24:189–203. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Puri BK, Bydder GM, Chaudhuri KR, Al Saffar BY, Curati WL, White SJ, Mitchell L, Hajnal JV and Horrobin DF: MRI changes in multiple sclerosis following treatment with lofepramine and L-phenylalanine. Neuroreport. 12:1821–1824. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Loder C, Allawi J and Horrobin DF: Treatment of multiple sclerosis with lofepramine, L-phenylalanine and vitamin B (12): Mechanism of action and clinical importance: Roles of the locus coeruleus and central noradrenergic systems. Med Hypotheses. 59:594–602. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Stjarne L, Lishajko F and Roth RH: Regulation of noradrenaline biosynthesis in nerve tissue. Nature. 215:770–772. 1967. View Article : Google Scholar : PubMed/NCBI

64 

Bardou I, Kaercher RM, Brothers HM, Hopp SC, Royer S and Wenk GL: Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem. Neurobiol Aging. 35:1065–1073. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC and Mesulam MM: Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer's disease. Neurobiol Aging. 28:327–335. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Polak PE, Kalinin S, Braun D, Sharp A, Lin SX and Feinstein DL: The vincamine derivative vindeburnol provides benefit in a mouse model of multiple sclerosis: Effects on the Locus coeruleus. J Neurochem. 121:206–216. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Weissmann D, Labatut R, Gillon J, Richard F and Pujol J: Measurement of brain tyrosine hydroxylase concentrations by quantitative autoradiography after transfer of soluble proteins to nitro-cellulose. C R Acad Sci III. 306:457–460. 1988.(In French). PubMed/NCBI

68 

He Y, Zhu H, Li W, Chen G, Li Z and Xu X: HPLC determination of catalpol in cerebrospinal fluid of rats. Zhong Guo Zhong Yao Za Zhi. 34:1717–1719. 2009.(In Chinese).

69 

Wan D, Zhu HF, Luo Y, Xie P and Xu XY: Study of catalpol promoting axonal growth for cultured cortical neurons from rats. Zhongguo Zhong Yao Za Zhi. 32:1771–1774. 2007.(In Chinese). PubMed/NCBI

70 

Tian YY, An LJ, Jiang L, Duan YL, Chen J and Jiang B: Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures. Life Sci. 80:193–199. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Q, Yang T, Guo AC and Fan YP: Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus. Mol Med Rep 17: 4163-4172, 2018.
APA
Li, Q., Yang, T., Guo, A., & Fan, Y. (2018). Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus. Molecular Medicine Reports, 17, 4163-4172. https://doi.org/10.3892/mmr.2018.8378
MLA
Li, Q., Yang, T., Guo, A., Fan, Y."Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus". Molecular Medicine Reports 17.3 (2018): 4163-4172.
Chicago
Li, Q., Yang, T., Guo, A., Fan, Y."Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus". Molecular Medicine Reports 17, no. 3 (2018): 4163-4172. https://doi.org/10.3892/mmr.2018.8378
Copy and paste a formatted citation
x
Spandidos Publications style
Li Q, Yang T, Guo AC and Fan YP: Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus. Mol Med Rep 17: 4163-4172, 2018.
APA
Li, Q., Yang, T., Guo, A., & Fan, Y. (2018). Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus. Molecular Medicine Reports, 17, 4163-4172. https://doi.org/10.3892/mmr.2018.8378
MLA
Li, Q., Yang, T., Guo, A., Fan, Y."Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus". Molecular Medicine Reports 17.3 (2018): 4163-4172.
Chicago
Li, Q., Yang, T., Guo, A., Fan, Y."Role of catalpol in ameliorating the pathogenesis of experimental autoimmune encephalomyelitis by increasing the level of noradrenaline in the locus coeruleus". Molecular Medicine Reports 17, no. 3 (2018): 4163-4172. https://doi.org/10.3892/mmr.2018.8378
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team