|
1
|
McQualter JL and Bernard CC: Multiple
sclerosis: A battle between destruction and repair. J Neurochem.
100:295–306. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Deckx N, Lee WP, Berneman ZN and Cools N:
Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev
Immunol. 2013:7052322013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Alvarez JI, Cayrol R and Prat A:
Disruption of central nervous system barriers in multiple
sclerosis. Biochim Biophys Acta. 1812:252–264. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gadea M, Martinez-Bisbal MC, Marti-Bonmati
L, Espert R, Casanova B, Coret F and Celda B: Spectroscopic axonal
damage of the right locus coeruleus relates to selective attention
impairment in early stage relapsing-remitting multiple sclerosis.
Brain. 127:89–98. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Polak PE, Kalinin S and Feinstein DL:
Locus coeruleus damage and noradrenaline reductions in multiple
sclerosis and experimental autoimmune encephalomyelitis. Brain.
134:665–677. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fritschy JM and Grzanna R:
Experimentally-induced neuron loss in the locus coeruleus of adult
rats. Exp Neurol. 111:123–127. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Simonini MV, Polak PE, Sharp A, McGuire S,
Galea E and Feinstein DL: Increasing CNS noradrenaline reduces EAE
severity. J Neuroimmune Pharmacol. 5:252–259. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
White SR, Bhatnagar RK and Bardo MT:
Norepinephrine depletion in the spinal cord gray matter of rats
with experimental allergic encephalomyelitis. J Neurochem.
40:1771–1773. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Krenger W, Honegger CG, Feurer C and
Cammisuli S: Changes of neurotransmitter systems in chronic
relapsing experimental allergic encephalomyelitis in rat brain and
spinal cord. J Neurochem. 47:1247–1254. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Marien MR, Colpaert FC and Rosenquist AC:
Noradrenergic mechanisms in neurodegenerative diseases: A theory.
Brain Res Brain Res Rev. 45:38–78. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Madrigal JL, Kalinin S, Richardson JC and
Feinstein DL: Neuroprotective actions of noradrenaline: Effects on
glutathione synthesis and activation of peroxisome proliferator
activated receptor delta. J Neurochem. 103:2092–2101. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Frohman EM, Vayuvegula B, Gupta S and van
den Noort S: Norepinephrine inhibits gamma-interferon-induced major
histocompatibility class II (Ia) antigen expression on cultured
astrocytes via beta-2-adrenergic signal transduction mechanisms.
Proc Natl Acad Sci USA. 85:pp. 1292–1296. 1988; View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Benveniste EN, Huneycutt BS, Shrikant P
and Ballestas ME: Second messenger systems in the regulation of
cytokines and adhesion molecules in the central nervous system.
Brain Behav Immun. 9:304–314. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Feinstein DL: Suppression of astroglial
nitric oxide synthase expression by norepinephrine results from
decreased NOS-2 promoter activity. J Neurochem. 70:1484–1496. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Nakamura A, Johns EJ, Imaizumi A, Abe T
and Kohsaka T: Regulation of tumour necrosis factor and
interleukin-6 gene transcription by beta2-adrenoceptor in the rat
astrocytes. J Neuroimmunol. 88:144–153. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Galea E, Heneka MT, Dello RC and Feinstein
DL: Intrinsic regulation of brain inflammatory responses. Cell Mol
Neurobiol. 23:625–635. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fujita H, Tanaka J, Maeda N and Sakanaka
M: Adrenergic agonists suppress the proliferation of microglia
through beta 2-adrenergic receptor. Neurosci Lett. 242:37–40. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Heneka MT, Nadrigny F, Regen T,
Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D,
Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK and Kummer
MP: Locus ceruleus controls Alzheimer's disease pathology by
modulating microglial functions through norepinephrine. Proc Natl
Acad Sci USA. 107:pp. 6058–6063. 2010; View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kong Y, Ruan L, Qian L, Liu X and Le Y:
Norepinephrine promotes microglia to uptake and degrade amyloid
beta peptide through upregulation of mouse formyl peptide receptor
2 and induction of insulin-degrading enzyme. J Neurosci.
30:11848–11857. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Campbell A: Inflammation,
neurodegenerative diseases, and environmental exposures. Ann N Y
Acad Sci. 1035:117–132. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zafra F, Lindholm D, Castrén E, Hartikka J
and Thoenen H: Regulation of brain-derived neurotrophic factor and
nerve growth factor mRNA in primary cultures of hippocampal neurons
and astrocytes. J Neurosci. 12:4793–4799. 1992.PubMed/NCBI
|
|
22
|
Remy S, Naveilhan P, Brachet P and Neveu
I: Differential regulation of GDNF, neurturin, and their receptors
in primary cultures of rat glial cells. J Neurosci Res. 64:242–251.
2001. View
Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kajitani N, Hisaoka-Nakashima K, Morioka
N, Okada-Tsuchioka M, Kaneko M, Kasai M, Shibasaki C, Nakata Y and
Takebayashi M: Antidepressant acts on astrocytes leading to an
increase in the expression of neurotrophic/growth factors:
Differential regulation of FGF-2 by noradrenaline. PLoS One.
7:e511972012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ghiani CA, Eisen AM, Yuan X, DePinho RA,
McBain CJ and Gallo V: Neurotransmitter receptor activation
triggers p27 (Kip1) and p21 (CIP1) accumulation and G1 cell cycle
arrest in oligodendrocyte progenitors. Development. 126:1077–1090.
1999.PubMed/NCBI
|
|
25
|
Kaneko YS, Mori K, Nakashima A, Sawada M,
Nagatsu I and Ota A: Peripheral injection of lipopolysaccharide
enhances expression of inflammatory cytokines in murine locus
coeruleus: Possible role of increased norepinephrine turnover. J
Neurochem. 94:393–404. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kalinin S, Polak PE, Madrigal JL,
Gavrilyuk V, Sharp A, Chauhan N, Marien M, Colpaert F and Feinstein
DL: Beta-amyloid-dependent expression of NOS2 in neurons:
Prevention by an alpha2-adrenergic antagonist. Antioxid Redox
Signal. 8:873–883. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
O'Sullivan JB, Ryan KM, Curtin NM, Harkin
A and Connor TJ: Noradrenaline reuptake inhibitors limit
neuroinflammation in rat cortex following a systemic inflammatory
challenge: Implications for depression and neurodegeneration. Int J
Neuropsychopharmacol. 12:687–699. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
O'Sullivan JB, Ryan KM, Harkin A and
Connor TJ: Noradrenaline reuptake inhibitors inhibit expression of
chemokines IP-10 and RANTES and cell adhesion molecules VCAM-1 and
ICAM-1 in the CNS following a systemic inflammatory challenge. J
Neuroimmunol. 220:34–42. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Benarroch EE: The locus ceruleus
norepinephrine system: Functional organization and potential
clinical significance. Neurology. 73:1699–1704. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Szabadi E: Functional neuroanatomy of the
central noradrenergic system. J Psychopharmacol. 27:659–693. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Iversen LL, Rossor MN, Reynolds GP, Hills
R, Roth M, Mountjoy CQ, Foote SL, Morrison JH and Bloom FE: Loss of
pigmented dopamine-beta-hydroxylase positive cells from locus
coeruleus in senile dementia of Alzheimer's type. Neurosci Lett.
39:95–100. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Berridge CW and Waterhouse BD: The locus
coeruleus-noradrenergic system: Modulation of behavioral state and
state-dependent cognitive processes. Brain Res Brain Res Rev.
42:33–84. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li DQ, Bao YM, Li Y, Wang CF, Liu Y and An
LJ: Catalpol modulates the expressions of Bcl-2 and Bax and
attenuates apoptosis in gerbils after ischemic injury. Brain Res.
1115:179–185. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tian YY, Jiang B, An LJ and Bao YM:
Neuroprotective effect of catalpol against MPP(+)-induced oxidative
stress in mesencephalic neurons. Eur J Pharmacol. 568:142–148.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Jiang B, Du J, Liu JH, Bao YM and An LJ:
Catalpol attenuates the neurotoxicity induced by beta-amyloid
(1–42) in cortical neuron-glia cultures. Brain Res. 1188:139–147.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liang JH, Du J, Xu LD, Jiang T, Hao S, Bi
J and Jiang B: Catalpol protects primary cultured cortical neurons
induced by Abeta(1–42) through a mitochondrial-dependent caspase
pathway. Neurochem Int. 55:741–746. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Liu J, He QJ, Zou W, Wang HX, Bao YM, Liu
YX and An LJ: Catalpol increases hippocampal neuroplasticity and
up-regulates PKC and BDNF in the aged rats. Brain Res. 1123:68–79.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang XL, An LJ, Bao YM, Wang JY and Jiang
B: d-galactose administration induces memory loss and energy
metabolism disturbance in mice: Protective effects of catalpol.
Food Chem Toxicol. 46:2888–2894. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xia Z, Zhang R, Wu P, Xia Z and Hu Y:
Memory defect induced by β-amyloid plus glutamate receptor agonist
is alleviated by catalpol and donepezil through different
mechanisms. Brain Res. 1441:27–37. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Feinstein DL, Galea E, Gavrilyuk V,
Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE,
Pershadsingh HA, Weinberg G and Heneka MT: Peroxisome
proliferator-activated receptor-gamma agonists prevent experimental
autoimmune encephalomyelitis. Ann Neurol. 51:694–702. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Heneka MT, Galea E, Gavriluyk V,
Dumitrescu-Ozimek L, Daeschner J, O'Banion MK, Weinberg G,
Klockgether T and Feinstein DL: Noradrenergic depletion potentiates
beta-amyloid-induced cortical inflammation: Implications for
Alzheimer's disease. J Neurosci. 22:2434–2442. 2002.PubMed/NCBI
|
|
42
|
Giuliani F, Metz LM, Wilson T, Fan Y,
Bar-Or A and Yong VW: Additive effect of the combination of
glatiramer acetate and minocycline in a model of MS. J
Neuroimmunol. 158:213–221. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Weaver A, Goncalves da Silva A, Nuttall
RK, Edwards DR, Shapiro SD, Rivest S and Yong VW: An elevated
matrix metalloproteinase (MMP) in an animal model of multiple
sclerosis is protective by affecting Th1/Th2 polarization. FASEB J.
19:1668–1670. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jiang B, Zhang H, Bi J and Zhang XL:
Neuroprotective activities of catalpol on MPP+/MPTP-induced
neurotoxicity. Neurol Res. 30:639–644. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Holm PC, Rodriguez FJ, Kresse A, Canals
JM, Silos-Santiago I and Arenas E: Crucial role of TrkB ligands in
the survival and phenotypic differentiation of developing locus
coeruleus noradrenergic neurons. Development. 130:3535–3545. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Flueraru M, So R, Willmore WG, Poulter MO,
Durst T, Charron M and Wright JS: Cytotoxicity and cytoprotective
activity of naphthalenediols in rat cortical neurons. Chem Res
Toxicol. 19:1221–1217. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jonsson G, Hallman H, Ponzio F and Ross S:
DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine)-a useful
denervation tool for central and peripheral noradrenaline neurons.
Eur J Pharmacol. 72:173–188. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hallman H and Jonsson G: Pharmacological
modifications of the neurotoxic action of the noradrenaline
neurotoxin DSP4 on central noradrenaline neurons. Eur J Pharmacol.
103:269–278. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Landa ME, Rubio MC and Jaim-Etcheverry G:
The neurotoxic compound
N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4)
depletes endogenous norepinephrine and enhances release of
[3H]norepinephrine from rat cortical slices. J Pharmacol Exp Ther.
231:131–136. 1984.PubMed/NCBI
|
|
50
|
Cassano T, Gaetani S, Morgese MG, Macheda
T, Laconca L, Dipasquale P, Taltavull J, Shippenberg TS, Cuomo V
and Gobbi G: Monoaminergic changes in locus coeruleus and dorsal
raphe nucleus following noradrenaline depletion. Neurochem Res.
34:1417–1426. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dowdell KC, Gienapp IE, Stuckman S,
Wardrop RM and Whitacre CC: Neuroendocrine modulation of chronic
relapsing experimental autoimmune encephalomyelitis: A critical
role for the hypothalamic-pituitary-adrenal axis. J Neuroimmunol.
100:243–251. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cosentino M, Zaffaroni M, Marino F,
Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A and Frigo G:
Catecholamine production and tyrosine hydroxylase expression in
peripheral blood mononuclear cells from multiple sclerosis
patients: Effect of cell stimulation and possible relevance for
activation-induced apoptosis. J Neuroimmunol. 133:233–240. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rajda C, Bencsik K, Vécsei LL and
Bergquist J: Catecholamine levels in peripheral blood lymphocytes
from multiple sclerosis patients. J Neuroimmunol. 124:93–100. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Helkamaa T, Reenilä I, Tuominen RK,
Soinila S, Väänänen A, Tilgmann C and Rauhala P: Increased
catechol-O-methyltransferase activity and protein expression in
OX-42-positive cells in the substantia nigra after
lipopolysaccharide microinfusion. Neurochem Int. 51:412–423. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Samantaray S, Knaryan VH, Butler JT, Ray
SK and Banik NL: Spinal cord degeneration in C57BL/6N mice
following induction of experimental parkinsonism with MPTP. J
Neurochem. 104:1309–1320. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Martel J, Chopin P, Colpaert F and Marien
M: Neuroprotective effects of the alpha2-adrenoceptor antagonists,
(+)-efaroxan and (+/-)-idazoxan, against quinolinic acid-induced
lesions of the rat striatum. Exp Neurol. 154:595–601. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Veyrac A, Didier A, Colpaert F, Jourdan F
and Marien M: Activation of noradrenergic transmission by
alpha2-adrenoceptor antagonists counteracts deafferentation-induced
neuronal death and cell proliferation in the adult mouse olfactory
bulb. Exp Neurol. 194:444–456. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hashioka S, Klegeris A, Monji A, Kato T,
Sawada M, McGeer PL and Kanba S: Antidepressants inhibit
interferon-gamma-induced microglial production of IL-6 and nitric
oxide. Exp Neurol. 206:33–42. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Russo-Neustadt A, Beard RC and Cotman CW:
Exercise, antidepressant medications, and enhanced brain derived
neurotrophic factor expression. Neuropsychopharmacology.
21:679–682. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Goldstein DS: L-Dihydroxyphenylserine
(L-DOPS): A norepinephrine prodrug. Cardiovasc Drug Rev.
24:189–203. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Puri BK, Bydder GM, Chaudhuri KR, Al
Saffar BY, Curati WL, White SJ, Mitchell L, Hajnal JV and Horrobin
DF: MRI changes in multiple sclerosis following treatment with
lofepramine and L-phenylalanine. Neuroreport. 12:1821–1824. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Loder C, Allawi J and Horrobin DF:
Treatment of multiple sclerosis with lofepramine, L-phenylalanine
and vitamin B (12): Mechanism of action and clinical importance:
Roles of the locus coeruleus and central noradrenergic systems. Med
Hypotheses. 59:594–602. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Stjarne L, Lishajko F and Roth RH:
Regulation of noradrenaline biosynthesis in nerve tissue. Nature.
215:770–772. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bardou I, Kaercher RM, Brothers HM, Hopp
SC, Royer S and Wenk GL: Age and duration of inflammatory
environment differentially affect the neuroimmune response and
catecholaminergic neurons in the midbrain and brainstem. Neurobiol
Aging. 35:1065–1073. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Grudzien A, Shaw P, Weintraub S, Bigio E,
Mash DC and Mesulam MM: Locus coeruleus neurofibrillary
degeneration in aging, mild cognitive impairment and early
Alzheimer's disease. Neurobiol Aging. 28:327–335. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Polak PE, Kalinin S, Braun D, Sharp A, Lin
SX and Feinstein DL: The vincamine derivative vindeburnol provides
benefit in a mouse model of multiple sclerosis: Effects on the
Locus coeruleus. J Neurochem. 121:206–216. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Weissmann D, Labatut R, Gillon J, Richard
F and Pujol J: Measurement of brain tyrosine hydroxylase
concentrations by quantitative autoradiography after transfer of
soluble proteins to nitro-cellulose. C R Acad Sci III. 306:457–460.
1988.(In French). PubMed/NCBI
|
|
68
|
He Y, Zhu H, Li W, Chen G, Li Z and Xu X:
HPLC determination of catalpol in cerebrospinal fluid of rats.
Zhong Guo Zhong Yao Za Zhi. 34:1717–1719. 2009.(In Chinese).
|
|
69
|
Wan D, Zhu HF, Luo Y, Xie P and Xu XY:
Study of catalpol promoting axonal growth for cultured cortical
neurons from rats. Zhongguo Zhong Yao Za Zhi. 32:1771–1774.
2007.(In Chinese). PubMed/NCBI
|
|
70
|
Tian YY, An LJ, Jiang L, Duan YL, Chen J
and Jiang B: Catalpol protects dopaminergic neurons from
LPS-induced neurotoxicity in mesencephalic neuron-glia cultures.
Life Sci. 80:193–199. 2006. View Article : Google Scholar : PubMed/NCBI
|