Open Access

Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus

  • Authors:
    • Zhi Cao
    • Minping Zheng
    • Huifang Lv
    • Kangkang Guo
    • Yanming Zhang
  • View Affiliations

  • Published online on: March 14, 2018     https://doi.org/10.3892/mmr.2018.8734
  • Pages: 7122-7130
  • Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The Toll-like receptors (TLRs) of the innate immune system provide the host with the ability to detect and respond to viral infections. The present study aimed to investigate the mRNA and protein expression levels of TLR2, 3, 4 and 7 in porcine tissues upon infection with the highly virulent Shimen strain of classical swine fever virus (CSFV). Reverse transcription‑quantitative polymerase chain reaction was used to detect the mRNA expression levels of CSFV and TLR, whereas western blotting was used to detect the expression levels of TLR proteins. In addition, tissues underwent histological examination and immunohistochemistry to reveal the histopathological alterations associated with highly virulent CSFV infection and to detect TLR antigens. Furthermore, porcine monocyte‑derived macrophages (pMDMs) were prestimulated with peptidoglycan from Staphylococcus aureus (PGN‑SA), polyinosinic‑polycytidylic acid [poly (I:C)], lipopolysaccharide from Escherichia coli 055:B5 (LPS‑B5) or imiquimod (R837) in order to analyze the association between TLR expression and CSFV replication. Following stimulation for 12 h (with TLR‑specific ligands), cells were infected with CSFV Shimen strain. The results revealed that the expression levels of TLR2 and TLR4 were increased in the lung and kidney, but were decreased in the spleen and lymph nodes in response to CSFV. TLR3 was strongly expressed in the heart and slightly upregulated in the spleen in response to CSFV Shimen strain infection, and TLR7 was increased in all examined tissues in the presence of CSFV. Furthermore, R837 and LPS‑B5 exerted inhibitory effects on CSFV replication in pMDMs, whereas PGN‑SA and poly(I:C) had no significant effect. These findings highlight the potential role of TLR expression in the context of CSFV infection.

References

1 

Edwards S, Fukusho A, Lefèvre PC, Lipowski A, Pejsak Z, Roehe P and Westergaard J: Classical swine fever: The global situation. Vet Microbiol. 73:103–119. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Luo Y, Li S, Sun Y and Qiu HJ: Classical swine fever in China: A minireview. Vet Microbiol. 172:1–6. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Paton DJ and Greiser-Wilke I: Classical swine fever-an update. Res Vet Sci. 75:169–178. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Jamin A, Gorin S, Cariolet R, Le Potier MF and Kuntz-Simon G: Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs. Vet Res. 39:72008. View Article : Google Scholar : PubMed/NCBI

5 

Kawai T and Akira S: The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol. 11:373–384. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Moresco EM, LaVine D and Beutler B: Toll-like receptors. Curr Biol. 21:R488–R493. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Lester SN and Li K: Toll-like receptors in antiviral innate immunity. J Mol Biol. 426:1246–1264. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H and Bauer S: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 303:1526–1529. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M and Si-Tahar M: Involvement of toll-like receptor 3 in the immune response of lung evithelial cells to double-stranded RNA and influenza A virus. J Biol Chem. 280:5571–5580. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Cao Z, Guo K, Zheng M, Ning P, Li H, Kang K, Lin Z, Zhang C, Liang W and Zhang Y: A comparison of the impact of Shimen and C strains of classical swine fever virus on Toll-like receptor expression. J Gen Virol. 96:1732–1745. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Ning P, Zhang Y, Guo K, Chen R, Liang W, Lin Z and Li H: Discovering up-regulated VEGF-C expression in swine umbilical vein endothelial cells by classical swine fever virus Shimen. Vet Res. 45:482014. View Article : Google Scholar : PubMed/NCBI

12 

Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, Dong X, Liu W, Luo Y, Liao M and Chen J: Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 10:93–110. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Fischer AH, Jacobson KA, Rose J and Zeller R: Hematoxylin and eosin staining of tissue and cell sections. CSH protocols. 2008:pdb prot4986. 2008.

15 

Xiao SY, Zhang H, Guzman H and Tesh RB: Experimental yellow fever virus infection in the golden hamster (Mesocricetus auratus). II. pathology. J Infect Dis. 183:1437–1444. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Benias PC, Gopal K, Bodenheimer H Jr and Theise ND: Hepatic expression of toll-like receptors 3, 4 and 9 in primary biliary cirrhosis and chronic hepatitis C. Clin Res Hepatol Gastroenterol. 36:448–454. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Kawai T and Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 34:637–650. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Akira S, Uematsu S and Takeuchi O: Pathogen recognition and innate immunity. Cell. 124:783–801. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Jiang D, Liang J, Li Y and Noble P: The role of Toll-like receptors in non-infectious lung injury. Cell Res. 16:693–701. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A and Flavell RA: Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA. 101:pp. 5598–5603. 2004; View Article : Google Scholar : PubMed/NCBI

21 

Alexopoulou L, Holt AC, Medzhitov R and Flavell RA: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413:732–738. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA and Billiar TR: The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 201:1135–1143. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, et al: CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 11:155–161. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Kanzler H, Barrat FJ, Hessel EM and Coffman RL: Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med. 13:552–559. 2007. View Article : Google Scholar : PubMed/NCBI

25 

O'Neill LA, Bryant CE and Doyle SL: Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 61:177–197. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2018
Volume 17 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cao, Z., Zheng, M., Lv, H., Guo, K., & Zhang, Y. (2018). Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus. Molecular Medicine Reports, 17, 7122-7130. https://doi.org/10.3892/mmr.2018.8734
MLA
Cao, Z., Zheng, M., Lv, H., Guo, K., Zhang, Y."Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus". Molecular Medicine Reports 17.5 (2018): 7122-7130.
Chicago
Cao, Z., Zheng, M., Lv, H., Guo, K., Zhang, Y."Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus". Molecular Medicine Reports 17, no. 5 (2018): 7122-7130. https://doi.org/10.3892/mmr.2018.8734