|
1
|
Ishmael FT: The inflammatory response in
the pathogenesis of asthma. J Am Osteopath Assoc. 111 11 Suppl
7:S11–S17. 2011.PubMed/NCBI
|
|
2
|
KleinJan A: Airway inflammation in asthma:
Key players beyond the Th2 pathway. Curr Opin Pulm Med. 22:46–52.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Papi A, Brightling C, Pedersen SE and
Reddel HK: Asthma. Lancet. 391:783–800. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tang D, Kang R, Xiao W, Wang H, Calderwood
SK and Xiao X: The anti-inflammatory effects of heat shock protein
72 involve inhibition of high-mobility-group box 1 release and
proinflammatory function in macrophages. J Immunol. 179:1236–1244.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hallstrand TS, Hackett TL, Altemeier WA,
Matute-Bello G, Hansbro PM and Knight DA: Airway epithelial
regulation of pulmonary immune homeostasis and inflammation. Clin
Immunol. 151:1–15. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Holgate ST: The sentinel role of the
airway epithelium in asthma pathogenesis. Immunol Rev. 242:205–219.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mitchell PD and O'Byrne PM:
Epithelial-derived cytokines in asthma. Chest. 151:1338–1344. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gao W, Li L, Wang Y, Zhang S, Adcock IM,
Barnes PJ, Huang M and Yao X: Bronchial epithelial cells: The key
effector cells in the pathogenesis of chronic obstructive pulmonary
disease? Respirology. 20:722–729. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Erle DJ and Sheppard D: The cell biology
of asthma. J Cell Biol. 205:621–631. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mitchell PD and O'Byrne PM: Biologics and
the lung: TSLP and other epithelial cell-derived cytokines in
asthma. Pharmacol Ther. 169:104–112. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Smit JJ and Lukacs NW: A closer look at
chemokines and their role in asthmatic responses. Eur J Pharmacol.
533:277–288. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Castan L, Magnan A and Bouchaud G:
Chemokine receptors in allergic diseases. Allergy. 72:682–690.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Guerreiro R, Santos-Costa Q and
Azevedo-Pereira JM: The chemokines and their receptors:
Characteristics and physiological functions. Acta Medica
Portuguesa. 24 Suppl 4:S967–S976. 2011.
|
|
14
|
Fall N, Bove KE, Stringer K, Lovell DJ,
Brunner HI, Weiss J, Higgins GC, Bowyer SL, Graham TB, Thornton S
and Grom AA: Association between lack of angiogenic response in
muscle tissue and high expression of angiostatic ELR-negative CXC
chemokines in patients with juvenile dermatomyositis: possible link
to vasculopathy. Arthritis Rheum. 52:3175–3180. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Osei-Kumah A, Wark PA, Smith R and Clifton
VL: Asthma during pregnancy alters immune cell profile and airway
epithelial chemokine release. Inflamm Res. 59:349–358. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Iosifidis T, Garratt LW, Coombe DR, Knight
DA, Stick SM and Kicic A: Airway epithelial repair in health and
disease: Orchestrator or simply a player? Respirology. 21:438–448.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fuke S, Betsuyaku T, Nasuhara Y, Morikawa
T, Katoh H and Nishimura M: Chemokines in bronchiolar epithelium in
the development of chronic obstructive pulmonary disease. Am J
Respir Cell Mol Biol. 31:405–412. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Post S, Rozeveld D, Jonker MR, Bischoff R,
van Oosterhout AJ and Heijink IH: ADAM10 mediates the house dust
mite-induced release of chemokine ligand CCL20 by airway
epithelium. Allergy. 70:1545–1552. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Julkunen I, Melen K, Nyqvist M, Pirhonen
J, Sareneva T and Matikainen S: Inflammatory responses in influenza
A virus infection. Vaccine. 19 Suppl 1:S32–S37. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
van de Veerdonk FL, Netea MG, Dinarello CA
and Joosten LA: Inflammasome activation and IL-1beta and IL-18
processing during infection. Trends Immunol. 32:110–116. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang Z, Bryan JL, DeLassus E, Chang LW,
Liao W and Sandell LJ: CCAAT/enhancer-binding protein beta and
NF-κB mediate high level expression of chemokine genes CCL3 and
CCL4 by human chondrocytes in response to IL-1β. J Biol Chem.
285:33092–33103. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hu WT, Li MQ, Liu W, Jin LP, Li DJ and Zhu
XY: IL-33 enhances proliferation and invasiveness of decidual
stromal cells by up-regulation of CCL2/CCR2 via NF-κB and ERK1/2
signaling. Mol Hum Reprod. 20:358–372. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Faffe DS, Whitehead T, Moore PE, Baraldo
S, Flynt L, Bourgeois K, Panettieri RA and Shore SA: IL-13 and IL-4
promote TARC release in human airway smooth muscle cells: Role of
IL-4 receptor genotype. Am J Physiol Lung Cell Mol Physiol.
285:L907–L914. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hijnen D, De Bruin-Weller M, Oosting B,
Lebre C, De Jong E, Bruijnzeel-Koomen C and Knol E: Serum thymus
and activation-regulated chemokine (TARC) and cutaneous T
cell-attracting chemokine (CTACK) levels in allergic diseases: TARC
and CTACK are disease-specific markers for atopic dermatitis. J
Allergy Clin Immunol. 113:334–340. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhou X, Hu H, Balzar S, Trudeau JB and
Wenzel SE: MAPK regulation of IL-4/IL-13 receptors contributes to
the synergistic increase in CCL11/eotaxin-1 in response to TGF-β1
and IL-13 in human airway fibroblasts. J Immunol. 188:6046–6054.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hong GH, Kwon HS, Moon KA, Park SY, Park
S, Lee KY, Ha EH, Kim TB, Moon HB, Lee HK and Cho YS: Clusterin
modulates allergic airway inflammation by attenuating
CCL20-mediated dendritic cell recruitment. J Immunol.
196:2021–2030. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
He M, Song G, Yu Y, Jin Q and Bian Z:
LPS-miR-34a-CCL22 axis contributes to regulatory T cell recruitment
in periapical lesions. Biochem Biophys Res Commun. 460:733–740.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kimura S, Tanimoto A, Wang KY, Shimajiri
S, Guo X, Tasaki T, Yamada S and Sasaguri Y: Expression of
macrophage-derived chemokine (CCL22) in atherosclerosis and
regulation by histamine via the H2 receptor. Pathol Int.
62:675–683. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Abrial C, Grassin-Delyle S, Salvator H,
Brollo M, Naline E and Devillier P: 15-Lipoxygenases regulate the
production of chemokines in human lung macrophages. Br J Pharmacol.
172:4319–4330. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schneider D, Hong JY, Bowman ER, Chung Y,
Nagarkar DR, McHenry CL, Goldsmith AM, Bentley JK, Lewis TC and
Hershenson MB: Macrophage/epithelial cell CCL2 contributes to
rhinovirus-induced hyperresponsiveness and inflammation in a mouse
model of allergic airways disease. Am J Physiol Lung Cell Mol
Physiol. 304:L162–L169. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Renois F, Jacques J, Talmud D, Deslée G,
Lévêque N and Andréoletti L: Respiratory echovirus 30 and
coxsackievirus B5 can induce production of RANTES, MCP-1 and IL-8
by human bronchial epithelial cells. Virus Res. 152:41–49. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Heijink IH, Marcel Kies P, van Oosterhout
AJ, Postma DS, Kauffman HF and Vellenga E: Der p, IL-4 and TGF-beta
cooperatively induce EGFR-dependent TARC expression in airway
epithelium. Am J Respir Cell Mol Biol. 36:351–359. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Herjan T, Yao P, Qian W, Li X, Liu C,
Bulek K, Sun D, Yang WP, Zhu J, He A, et al: HuR is required for
IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J
Immunol. 191:640–649. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Katanov C, Lerrer S, Liubomirski Y,
Leider-Trejo L, Meshel T, Bar J, Feniger-Barish R, Kamer I,
Soria-Artzi G, Kahani H, et al: Regulation of the inflammatory
profile of stromal cells in human breast cancer: Prominent roles
for TNF-α and the NF-κB pathway. Stem Cell Res Therapy. 6:872015.
View Article : Google Scholar
|
|
35
|
Song Y, Lin Q, Zheng J, Zhu X and Yang S:
PPAR-γ agonist inhibits the expressions of chemokines induced by
IFN-γ and TNF-α in renal tubular epithelial cells. Xi Bao Yu Fen Zi
Mian Yi Xue Za Zhi. 30:673–676. 2014.(In Chinese). PubMed/NCBI
|
|
36
|
Fenwick PS, Macedo P, Kilty IC, Barnes PJ
and Donnelly LE: Effect of JAK Inhibitors on Release of CXCL9,
CXCL10 and CXCL11 from human airway epithelial cells. PLoS One.
10:e01287572015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chien JW, Chu YT, Yang SN, Kuo CH, Wang
WL, Kuo PL, Jong YJ and Hung CH: Long-acting beta 2 agonists
suppress IP-10 expression in human bronchial epithelial cells. J
Investig Med. 60:1048–1053. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Takahashi N, Sugaya M, Suga H, Oka T,
Kawaguchi M, Miyagaki T, Fujita H and Sato S: Thymic stromal
chemokine TSLP acts through Th2 cytokine production to induce
cutaneous T-cell lymphoma. Cancer Res. 76:6241–6252. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Prefontaine D, Nadigel J, Chouiali F,
Audusseau S, Semlali A, Chakir J, Martin JG and Hamid Q: Increased
IL-33 expression by epithelial cells in bronchial asthma. J Allergy
Clin Immunol. 125:752–754. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sei H, Oshima T, Shan J, Wu L, Yamasaki T,
Okugawa T, Kondo T, Tomita T, Fukui H, Watari J and Miwa H:
Esophageal epithelial-derived IL-33 Is upregulated in patients with
heartburn. PLoS One. 11:e01542342016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Park IH, Park JH, Shin JM and Lee HM:
Tumor necrosis factor-α regulates interleukin-33 expression through
extracellular signal-regulated kinase, p38 and nuclear factor-κB
pathways in airway epithelial cells. Int Forum Allergy Rhinol.
6:973–980. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nygaard U, Hvid M, Johansen C, Buchner M,
Fölster-Holst R, Deleuran M and Vestergaard C: TSLP, IL-31, IL-33
and sST2 are new biomarkers in endophenotypic profiling of adult
and childhood atopic dermatitis. J Eur Acad Dermatol Venereol.
30:1930–1938. 2016.PubMed/NCBI
|
|
43
|
Golebski K, van Tongeren J, van Egmond D,
de Groot EJ, Fokkens WJ and van Drunen CM: Specific Induction of
TSLP by the Viral RNA Analogue Poly (I:C) in primary epithelial
cells derived from nasal polyps. PLoS One. 11:e01528082016.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Amin K: The Role of the T lymphocytes and
remodeling in asthma. Inflammation. 39:1475–1482. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Froidure A, Vandenplas O, D'Alpaos V,
Evrard G and Pilette C: Persistence of asthma following allergen
avoidance is associated with proTh2 myeloid dendritic cell
activation. Thorax. 70:967–973. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lin CL, Hsiao G, Wang CC and Lee YL:
Corrigendum to ‘Imperatorin exerts antiallergic effects in
Th2-mediated allergic asthma via induction of IL-10-producing
regulatory T cells by modulating the function of dendritic cells’
[Pharmacol. Res. (2016) 111–121]. Pharmacological Res. 124:1572017.
View Article : Google Scholar
|
|
47
|
Purandare AV, Wan H, Somerville JE, Burke
C, Vaccaro W, Yang X, McIntyre KW and Poss MA: Core exploration in
optimization of chemokine receptor CCR4 antagonists. Bioorg Med
Chem Lett. 17:679–682. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Penaloza-MacMaster P, Kamphorst AO,
Wieland A, Araki K, Iyer SS, West EE, O'Mara L, Yang S, Konieczny
BT, Sharpe AH, et al: Interplay between regulatory T cells and PD-1
in modulating T cell exhaustion and viral control during chronic
LCMV infection. J Exp Med. 211:1905–1918. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liao J, Liang G, Xie S, Zhao H, Zuo X, Li
F, Chen J, Zhao M, Chan TM and Lu Q: CD40L demethylation in CD4(+)
T cells from women with rheumatoid arthritis. Clin Immunol.
145:13–18. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Alasandagutti ML, Ansari MS, Sagurthi SR,
Valluri V and Gaddam S: Role of IL-13 genetic variants in
signalling of asthma. Inflammation. 40:566–577. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen YL and Chiang BL: Targeting TSLP With
shRNA alleviates airway inflammation and decreases epithelial CCL17
in a murine model of asthma. Mol Ther Nucleic Acids. 5:e3162016.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wu J, Dong F, Wang RA, Wang J, Zhao J,
Yang M, Gong W, Cui R and Dong L: Central role of cellular
senescence in TSLP-induced airway remodeling in asthma. PLoS One.
8:e777952013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Walsh CJ, Zaihra T, Benedetti A, Fugère C,
Olivenstein R, Lemière C, Hamid Q and Martin JG: Exacerbation risk
in severe asthma is stratified by inflammatory phenotype using
longitudinal measures of sputum eosinophils. Clin Exp Allergy.
46:1291–1302. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Rose CE Jr, Lannigan JA, Kim P, Lee JJ, Fu
SM and Sung SS: Murine lung eosinophil activation and chemokine
production in allergic airway inflammation. Cell Mol Immunol.
7:361–374. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Asosingh K, Vasanji A, Tipton A, Queisser
K, Wanner N, Janocha A, Grandon D, Anand-Apte B, Rothenberg ME,
Dweik R and Erzurum SC: Eotaxin-rich proangiogenic hematopoietic
progenitor cells and CCR3+ endothelium in the atopic asthmatic
response. J Immunol. 196:2377–2387. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
George L and Brightling CE: Eosinophilic
airway inflammation: Role in asthma and chronic obstructive
pulmonary disease. Ther Adv Chronic Dis. 7:34–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kikuchi I, Kikuchi S, Kobayashi T,
Hagiwara K, Sakamoto Y, Kanazawa M and Nagata M: Eosinophil
trans-basement membrane migration induced by interleukin-8 and
neutrophils. Am J Respir Cell Mol Biol. 34:760–765. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Takaku Y, Nakagome K, Kobayashi T,
Hagiwara K, Kanazawa M and Nagata M: IFN-γ-inducible protein of 10
kDa upregulates the effector functions of eosinophils through beta2
integrin and CXCR3. Respir Res. 12:1382011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Henkels KM, Frondorf K, Gonzalez-Mejia ME,
Doseff AL and Gomez-Cambronero J: IL-8-induced neutrophil
chemotaxis is mediated by Janus kinase 3 (JAK3). FEBS Lett.
585:159–166. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sawant KV, Xu R, Cox R, Hawkins H, Sbrana
E, Kolli D, Garofalo RP and Rajarathnam K: Chemokine CXCL1-mediated
neutrophil trafficking in the lung: Role of CXCR2 activation. J
Innate Immu. 7:647–658. 2015. View Article : Google Scholar
|
|
61
|
Disteldorf EM, Krebs CF, Paust HJ, Turner
JE, Nouailles G, Tittel A, Meyer-Schwesinger C, Stege G, Brix S,
Velden J, et al: CXCL5 drives neutrophil recruitment in
TH17-mediated GN. J Am Soc Nephrol. 26:55–66. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mosca T, Menezes MC, Silva AV, Stirbulov R
and Forte WC: Chemotactic and phagocytic activity of blood
neutrophils in allergic asthma. Immunol Invest. 44:509–520. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Drake LY, Iijima K and Kita H: Group 2
innate lymphoid cells and CD4+ T cells cooperate to mediate type 2
immune response in mice. Allergy. 69:1300–1307. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Halim TY, Steer CA, Matha L, Gold MJ,
Martinez-Gonzalez I, McNagny KM, McKenzie AN and Takei F: Group 2
innate lymphoid cells are critical for the initiation of adaptive T
helper 2 cell-mediated allergic lung inflammation. Immunity.
40:425–435. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhu J: T helper 2 (Th2) cell
differentiation, type 2 innate lymphoid cell (ILC2) development and
regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine.
75:14–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Molofsky AB, Van Gool F, Liang HE, Van
Dyken SJ, Nussbaum JC, Lee J, Bluestone JA and Locksley RM:
Interleukin-33 and interferon-gamma counter-regulate group 2 innate
lymphoid cell activation during immune perturbation. Immunity.
43:161–174. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang J, Vodovotz Y, Fan L, Li Y, Liu Z,
Namas R, Barclay D, Zamora R, Billiar TR, Wilson MA, et al:
Injury-induced MRP8/MRP14 stimulates IP-10/CXCL10 in
monocytes/macrophages. FASEB J. 29:250–262. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Carta S, Tassi S, Delfino L, Omenetti A,
Raffa S, Torrisi MR, Martini A, Gattorno M and Rubartelli A:
Deficient production of IL-1 receptor antagonist and IL-6 coupled
to oxidative stress in cryopyrin-associated periodic syndrome
monocytes. Ann Rheum Dis. 71:1577–1581. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mellado M, Martin de Ana A, Gomez L,
Martinez C and Rodriguez-Frade JM: Chemokine receptor 2 blockade
prevents asthma in a cynomolgus monkey model. J Pharmacol Exp Ther.
324:769–775. 2008. View Article : Google Scholar : PubMed/NCBI
|