Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2018 Volume 17 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2018 Volume 17 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation

  • Authors:
    • Xu Yan
    • Hao Wang
    • Yufei Li
    • Yuxin Jiang
    • Qingdong Shao
    • Weidong Xu
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, 455th Hospital of PLA, Shanghai 200052, P.R. China, Teaching Center of Experiment Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China, Department of Plastic Surgery, 455th Hospital of PLA, Shanghai 200052, P.R. China, School of Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
  • Pages: 7821-7826
    |
    Published online on: March 29, 2018
       https://doi.org/10.3892/mmr.2018.8829
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Bone mesenchymal stem cells (BMSCs) are an important source of stem cells for tissue repair and regeneration; therefore, understanding the mechanisms that regulate stem cell differentiation in a specific lineage is critical. Runt‑related transcription factor 2 (Runx2) is a bone‑specific transcription factor that serves an important role in promoting osteogenic differentiation. However, Runx2 protein levels are regulated by the ubiquitin‑proteasome pathway. Previous research has identified that Smad6 can interact with Runx2 and enhance Smurf1‑induced Runx2 degradation in a ubiquitin‑proteasome‑dependent manner. Bioinformatics analysis demonstrated that miR‑92a can target Smad6. To characterize the regulatory effect of miR‑92a on osteogenic differentiation of BMSCs and assess the interactive association between Smad6 and miR‑92a, BMSCs were obtained from mice and miR‑92a or Smad6 overexpression vectors were constructed. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blots were used to analyze the expression of miR‑92a and Smad6, and the luciferase reporter assay was used to examine the interaction between miR‑92a and Smad6. BMSCs were induced in osteogenic differentiation media for 21 days. The alkaline phosphatase activity was assessed and Alizarin Red histochemical staining was also performed. The results suggested that the expression of miR‑92a suppressed Smad6‑mediated Runx2 degradation by direct integration with the 3'‑UTR of Smad6 mRNA, which was confirmed by a luciferase reporter assay. In addition, the expression of miR‑92a promoted the osteogenic differentiation of BMSCs. However, the regulatory effect of miR‑92a was inhibited by overexpression of Smad6. Taken together, the results suggest that miR‑92a expression inhibits the osteogenic differentiation of BMSCs by targeting Smad6.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Zheng YH, Xiong W, Su K, Kuang SJ and Zhang ZG: Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo. Exp Ther Med. 5:1576–1580. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, Yu L, Meng S, Zheng L, Valverde P, et al: Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res. 32:2466–2475. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Kim MJ, Park JS, Kim S, Moon SH, Yang HN, Park KH and Chung HM: Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration. Stem Cells Dev. 20:1349–1358. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Kidwai F, Edwards J, Zou L and Kaufman DS: Fibrinogen induces RUNX2 activity and osteogenic development from human pluripotent stem cells. Stem Cells. 34:2079–2089. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Wang C, Liu D, Zhang C, Sun J, Feng W, Liang XJ, Wang S and Zhang J: Defect-related luminescent hydroxyapatite-enhanced osteogenic differentiation of bone mesenchymal stem cells via an ATP-induced cAMP/PKA pathway. ACS Appl Mater Interfaces. 8:11262–11271. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, et al: Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn. 214:279–290. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Kim IS, Otto F, Zabel B and Mundlos S: Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 80:159–170. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T and Komori T: Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem. 275:8695–8702. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Takeda S, Bonnamy JP, Owen MJ, Ducy P and Karsenty G: Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 15:467–481. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Ueta C, Iwamoto M, Kanatani N, Yoshida C, Liu Y, Enomoto-Iwamoto M, Ohmori T, Enomoto H, Nakata K, Takada K, et al: Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol. 153:87–100. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Stricker S, Fundele R, Vortkamp A and Mundlos S: Role of Runx genes in chondrocyte differentiation. Dev Biol. 245:95–108. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Shen R, Chen M, Wang YJ, Kaneki H, Xing L, O'keefe RJ and Chen D: Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. J Biol Chem. 281:3569–3576. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Fan QM, Yue B, Bian ZY, Xu WT, Tu B, Dai KR, Li G and Tang TT: The CREB-Smad6-Runx2 axis contributes to the impaired osteogenesis potential of bone marrow stromal cells in fibrous dysplasia of bone. J Pathol. 228:45–55. 2012.PubMed/NCBI

14 

Zhang L, Chen P, Chen L, Weng T, Zhang S, Zhou X, Zhang B and Liu L: Inhibited Wnt signaling causes age-dependent abnormalities in the bone matrix mineralization in the Apert syndrome FGFR2(S252W/+) mice. PLoS One. 10:e1127162015. View Article : Google Scholar : PubMed/NCBI

15 

Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I and MacDougall M: Runx2, osx, and dspp in tooth development. J Dent Res. 88:904–909. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Du J, Wang Q, Yang P and Wang X: FHL2 mediates tooth development and human dental pulp cell differentiation into odontoblasts, partially by interacting with Runx2. J Mol Histol. 47:195–202. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Lee YS, Park JS, Kim JH, Jung SM, Lee JY, Kim SJ and Park SH: Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling. Nat Commun. 2:4602011. View Article : Google Scholar : PubMed/NCBI

18 

Ducy P, Zhang R, Geoffroy V, Ridall AL and Karsenty G: Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell. 89:747–754. 1997. View Article : Google Scholar : PubMed/NCBI

19 

Komori T: Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem. 87:1–8. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Li Y, Kong D, Ahmad A, Bao B and Sarkar FH: Targeting bone remodeling by isoflavone and 3,3′-diindolylmethane in the context of prostate cancer bone metastasis. PLoS One. 7:e330112012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yan X, Wang H, Li Y, Jiang Y, Shao Q and Xu W: MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation. Mol Med Rep 17: 7821-7826, 2018.
APA
Yan, X., Wang, H., Li, Y., Jiang, Y., Shao, Q., & Xu, W. (2018). MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation. Molecular Medicine Reports, 17, 7821-7826. https://doi.org/10.3892/mmr.2018.8829
MLA
Yan, X., Wang, H., Li, Y., Jiang, Y., Shao, Q., Xu, W."MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation". Molecular Medicine Reports 17.6 (2018): 7821-7826.
Chicago
Yan, X., Wang, H., Li, Y., Jiang, Y., Shao, Q., Xu, W."MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation". Molecular Medicine Reports 17, no. 6 (2018): 7821-7826. https://doi.org/10.3892/mmr.2018.8829
Copy and paste a formatted citation
x
Spandidos Publications style
Yan X, Wang H, Li Y, Jiang Y, Shao Q and Xu W: MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation. Mol Med Rep 17: 7821-7826, 2018.
APA
Yan, X., Wang, H., Li, Y., Jiang, Y., Shao, Q., & Xu, W. (2018). MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation. Molecular Medicine Reports, 17, 7821-7826. https://doi.org/10.3892/mmr.2018.8829
MLA
Yan, X., Wang, H., Li, Y., Jiang, Y., Shao, Q., Xu, W."MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation". Molecular Medicine Reports 17.6 (2018): 7821-7826.
Chicago
Yan, X., Wang, H., Li, Y., Jiang, Y., Shao, Q., Xu, W."MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation". Molecular Medicine Reports 17, no. 6 (2018): 7821-7826. https://doi.org/10.3892/mmr.2018.8829
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team