|
1
|
Vermeer C: Vitamin K: The effect on health
beyond coagulation-an overview. Food Nutrition Res. 56:53292012.
View Article : Google Scholar
|
|
2
|
Presnell SR and Stafford DW: The vitamin
K-dependent carboxylase. Thromb Haemost. 87:937–946. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Flore R, Ponziani FR, Di Rienzo TA, Zocco
MA, Flex A, Gerardino L, Lupascu A, Santoro L, Santoliquido A, Di
Stasio E, et al: Something more to say about calcium homeostasis:
The role of vitamin K2 in vascular calcification and osteoporosis.
Eur Rev Med Pharmacol Sci. 17:2433–2440. 2013.PubMed/NCBI
|
|
4
|
Taniyama Y, Katsuragi N, Sanada F, Azuma
J, Iekushi K, Koibuchi N, Okayama K, Ikeda-Iwabu Y, Muratsu J, Otsu
R, et al: Selective blockade of periostin exon 17 preserves cardiac
performance in acute myocardial infarction. Hypertension.
67:356–361. 2016.PubMed/NCBI
|
|
5
|
El Asmar MS, Naoum JJ and Arbid EJ:
Vitamin K dependent proteins and the role of vitamin K2 in the
modulation of vascular calcification: A review. Oman Med J.
29:172–177. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tie JK, Jin DY, Straight DL and Stafford
DW: Functional study of the vitamin K cycle in mammalian cells.
Blood. 117:2967–2974. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lanham S, Cagampang FR and Oreffo ROC:
Maternal high fat diet affects offspring's vitamin K-dependent
proteins expression levels. PLoS One. 10:e01387302015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fusaro M, Crepaldi G, Maggi S, Galli F,
D'Angelo A, Calò L, Giannini S, Miozzo D and Gallieni M: Vitamin K,
bone fractures and vascular calcifications in chronic kidney
disease: An important but poorly studied relationship. J Endocrinol
Invest. 34:317–323. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mithal A, Dhingra V, Lau E, Stenmark J and
Nauroy L: The Asian Audit: Epidemiology, costs and burden of
osteoporosis in Asia China. International Osteoporosis Foundation
Publication; 2009
|
|
10
|
Dhanwal DK, Cooper C and Dennison EM:
Geographic variation in osteoporotic hip fracture incidence: The
growing importance of Asian influences in coming decades. J
Osteoporos Aug. 2:7571022010.
|
|
11
|
Bolland MJ, Avenell A, Baron JA, Grey A,
MacLennan GS, Gamble GD and Reid IR: Effect of calcium supplements
on risk of myocardial infarction and cardiovascular events:
Meta-analysis. BMJ. 341:c36912010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bolland MJ, Grey A, Avenell A, Gamble GD
and Reid IR: Calcium supplements with or without vitamin D and risk
of cardiovascular events: Reanalysis of the Women's Health
Initiative limited access dataset and meta-analysis. BMJ.
342:d20402011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li K, Kaaks R, Linseisen J and Rohrmann S:
Associations of dietary calcium intake and calcium supplementation
with myocardial infarction and stroke risk and overall
cardiovascular mortality in the Heidelberg cohort of the European
Prospective Investigation into Cancer and Nutrition study
(EPIC-Heidelberg). Heart. 98:920–925. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Michaëlsson K, Melhus H, Lemming Warensjö
E, Wolk A and Byberg L: Long term calcium intake and rates of all
cause and cardiovascular mortality: Community based prospective
longitudinal cohort study. BMJ. 346:f2282013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pentti K, Tuppurainen MT, Honkanen R,
Sandini L, Kröger H, Alhava E and Saarikoski S: Use of calcium
supplements and the risk of coronary heart disease in
52–62-year-old women: The Kuopio osteoporosis risk factor and
prevention study. Maturitas. 63:73–78. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xiao Q, Murphy RA, Houston DK, Harris TB,
Chow WH and Park Y: Dietary and supplemental calcium intake and
cardiovascular disease mortality: The national institutes of
health-AARP diet and health study. JAMA Intern Med. 173:639–646.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hoang QQ, Sicheri F, Howard AJ and Yang
DS: Bone recognition mechanism of porcine osteocalcin from crystal
structure. Nature. 425:977–980. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Clark H: NCDs: a challenge to sustainable
human development. Lancet. 381:510–511. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Roth GA, Johnson C, Abajobir A, Abd-Allah
F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, et al:
Global, Regional, and National Burden of Cardiovascular Diseases
for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 70:1–25. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
World Health Organisation (WHO), .
Cardiovascular disease. WHO; Geneva: 2013, http://www.who.int/cardiovasculardiseases/en/March
27–2015
|
|
21
|
Schurgers LJ, Dissel PE, Spronk HM, Soute
BA, Dhore CR, Cleutjens JP and Vermeer C: Role of vitamin K and
vitamin K-dependent proteins in vascular calcification. Z Kardiol.
90 Suppl 3:S57–S63. 2001. View Article : Google Scholar
|
|
22
|
Lahtinen AM, Havulinna AS, Jula A, Salomaa
V and Kontula K: Prevalence and clinical correlates of familial
hypercholesterolemia founder mutations in the general population.
Atherosclerosis. 238:64–69. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Doherty TM, Asotra K, Fitzpatrick LA, Qiao
JH, Wilkin DJ, Detrano RC, Dunstan CR, Shah PK and Rajavashisth TB:
Calcification in atherosclerosis: Bone biology and chronic
inflammation at the arterial crossroads. Proc Natl Acad Sci USA.
100:11201–11206. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Abdulameer AH, Sulaiman SABS and Kader
MBSA: An assessment of osteoporotic conditions among users and
Non-users of warfarin: A case-control study. J Clin Diagn Res.
11:OC21–OC24. 2017.PubMed/NCBI
|
|
25
|
Beulens JW, Bots ML, Atsma F, Bartelink
ML, Prokop M, Geleijnse JM, Witteman JC, Grobbee DE and van der
Schouw YT: High dietary menaquinone intake is associated with
reduced coronary calcification. Atherosclerosis. 203:489–493. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Geleijnse JM, Vermeer C, Grobbee DE,
Schurgers LJ, Knapen MH, van der Meer IM, Hofman A and Witteman JC:
Dietary intake of menaquinone is associated with a reduced risk of
coronary heart disease: The Rotterdam study. J Nutr. 134:3100–3105.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Shea MK and Booth SL: Role of vitamin K in
the regulation of calcification. Int Congr Ser. 1297:165–178. 2007.
View Article : Google Scholar
|
|
28
|
Shea MK, O'Donnell CJ, Hoffmann U, Dallal
GE, Dawson-Hughes B, Ordovas JM, Price PA, Williamson MK and Booth
SL: Vitamin K supplementation and progression of coronary artery
calcium in older men and women. Am J Clin Nutr. 89:1799–1807. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hauschka PV and Reid ML: Vitamin D
dependence of a calcium-binding protein containing
gamma-carboxyghtamic acid in chicken bone. J Biol Chem.
253:9063–9068. 1978.PubMed/NCBI
|
|
30
|
Miyake N, Hoshi K, Sano Y, Kikuchi K,
Tadano K and Koshihara Y: 1,25-Dihydroxyvitamin D3 promotes vitamin
K2 metabolism in human osteoblasts. Osteoporos Int. 12:680–687.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shiraki M: Health benefits and demerits of
calcium nutrition or supplementation in older people. Nihon Rinsho.
73:1770–1776. 2015.(In Japanese). PubMed/NCBI
|
|
32
|
Zoch ML, Clemens TL and Riddle RC: New
insights into the biology of osteocalcin. Bone. 82:42–49. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Iwamoto J: Vitamin K2 therapy
for postmenopausal. Nutrients. 6:1971–1980. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Neve A, Corrado A and Cantatore FP:
Osteocalcin: Skeletal and extra-skeletal effects. J CellPhysiol.
228:1149–1153. 2013.
|
|
35
|
Koshihara Y and Hoshi K: Vitamin K2
enhances osteocalcin accumulation in the extracellular matrix of
human osteoblasts in vitro. J Bone Miner Res. 12:431–438. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yunker LA, Undersander A, Lian JB, Stein
GS, Carlson CS and Mauro LJ: The tyrosine phesphatase, OST-PTP, is
expressed in mesenchymal progenitor cellsearly during
skeletagenosis in the mouse. J Cell Biochem. 93:761–773. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Naito K, Watari T, Obayashi O, Katsube S,
Nagaoka I and Kaneko K: Relationship between serum
undercarboxylated osteocalcin and hyaluronan levels in patients
with bilateral knee osteoarthritis. Int J Mol Med. 29:756–760.
2012.PubMed/NCBI
|
|
38
|
Zheng W, Kang H, Shu C, Tang ML, Fang PZ,
Xie J, He J and Wang M: Expression and significance of inflammatory
factors and bone formation mediators in carotid atherosclerotic
plaque. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 33:746–750. 2008.(In
Chinese). PubMed/NCBI
|
|
39
|
Orimo H, Nakamura T, Hosoi T, Iki M,
Uenishi K, Endo N, Ohta H, Shiraki M, Sugimoto T, Suzuki T, et al:
Japanese 2011 guidelines for prevention and treatment of
osteoporosis-executive summary. Arch Osteoporos. 7:3–20. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hunt JL, Fairman R, Mithell ME, Carpenter
JP, Golden M, Khalapyan T, Wolfe M, Neschis D, Milner R, Scoll B,
et al: Bone formation in carotid plaques: A clinicopathological
study. Stroke. 33:1214–1219. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Inaba N, Sato T and Yamashita T: Low-dose
daily intake of vitamin K2 (Menaquinone-7) improves osteocalcin
γ-carboxylation: A double-blind. randomized controlled trials. J
Nutr Sci Vitaminol (Tokyo). 61:471–480. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Brugè F, Bacchetti T, Principi F, Littarru
GP and Tiano L: Olive oil supplemented with menaquinone-7
significantly affects osteocalcin carboxylation. Br J Nutr.
106:1058–1062. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sato T, Schurgers LJ and Uenishi K:
Comparison of menaquinone-4 and menaquinone-7 bioavailability in
healthy women. Nutr J. 11:932012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Price PA: Role of vitamin K-dependent
proteins in bone metabolism. Annu Rev Nutr. 8:565–583. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Booth SL, Centi A, Smith SR and Gundberg
C: The role of osteocalcin in human glucose metabolism: Marker or
mediator? Nat Rev Endocrinol. 9:43–55. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Veldhuis-Vlug AG, Fliers E and Bisschop
PH: Bone as a regulator of glucose metabolism. Neth J Med.
71:396–400. 2013.PubMed/NCBI
|
|
47
|
Kerner SA, Scott RA and Pike JW: Sequence
elements in the human osteocalcin gene confer basal activation and
inducible response to hormonal vitamin D3. Proc Natl Acad Sci USA.
86:4455–4459. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lian J, Stewart C, Puchacz E, Mackowiak S,
Shalhoub V, Collart D, Zambetti G and Stein G: Structure of the rat
osteocalcin gene and regulation of vitamin D-dependent expression.
Proc Natl Acad Sci USA. 86:1143–1147. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cairns JR and Price PA: Direct
demonstration that the vitamin K-dependent bone Gla protein is
incompletely gamma-carboxylated in humans. J Bone Miner Res.
9:1989–1997. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liabeuf S, Bourron O, Vemeer C, Theuwissen
E, Magdeleyns E, Aubert CE, Brazier M, Mentaverri R, Hartemann A
and Massy ZA: Vascular calcification in patients with type 2
diabetes: The involvement of matrix Gla Protein. Cardiovasc
Diabetol. 3:852014. View Article : Google Scholar
|
|
51
|
Wallin R, Cain D and Sane DC: Matrix Gla
protein synthesis and gamma-carboxylation in the aortic vessel wall
and proliferating vascular smooth muscle cells-A cell system which
resembles the system in bone cells. Thromb Haemost. 82:1764–1767.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Harbuzova Viu and Ataman OV: Matrix
Gla-protein and its role in vascular wall calcification. Fiziol Zh.
57:96–112. 2011.(In Ukrainian). PubMed/NCBI
|
|
53
|
Schlieper G, Westenfeld R, Krüger T,
Cranenburg EC, Magdeleyns EJ, Brandenburg VM, Djuric Z, Damjanovic
T, Ketteler M, Vermeer C, et al: Circulating nonphosphorylated
carboxylated matrix gla protein predicts survival in ESRD. J Am Soc
Nephrol. 22:387–395. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Leopold JA: Vascular calcification:
Mechanism of vascular smooth muscle cell calcification. Trends
Cardiovasc Med. 25:267–274. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
de Cavanagh EM, Inserra F, Ferder M and
Ferder L: From mitochondria to disease: Role of the
renin-angiotensin system. Am J Nephrol. 27:545–553. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Li X, Yang HY and Giachelli CM: Role of
the sodium-dependent phosphate cotransporter, Pit-1, in vascular
smooth muscle cell calcification. Circ Res. 98:905–912. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Reynolds JL, Joannides AJ, Skepper JN,
McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL
and Shanahan CM: Human vascular smooth muscle cells undergo
vesicle-mediated calcification in response to changes in
extracellular calcium and phosphate concentrations: A potential
mechanism for accelerated vascular calcification in ESRD. J Am Soc
Nephrol. 15:2857–2867. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Son BK, Akishita M, Iijima K, Eto M and
Ouchi Y: Mechanism of pi-induced vascular calcification. J
Atheroscler Thromb. 15:63–68. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Son BK, Kozaki K, Iijima K, Eto M, Nakano
T, Akishita M and Ouchi Y: Gas6/Axl-PI3K/Akt pathway plays a
central role in the effect of statins on inorganic
phosphate-induced calcification of vascular smooth muscle cells.
Eur J Pharmacol. 556:1–8. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Steitz SA, Speer MY, Curinga G, Yang HY,
Haynes P, Aebersold R, Schinke T, Karsenty G and Giachelli CM:
Smooth muscle cell phenotypic transition associated with
calcification: Upregulation of Cbfa1 and downregulation of smooth
muscle lineage markers. Circ Res. 89:1147–1154. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kim H, Kim HJ, Lee K, Kim JM, Kim HS, Kim
JR, Ha CM, Choi YK, Lee SJ, Kim JY, et al: α-Lipoic acid attenuates
vascular calcification via reversal of mitochondrial function and
restoration of Gas6/Axl/Akt survival pathway. J Cell Mol Med.
16:273–286. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Otsuka F, Sakakura K, Yahagi K, Joner M
and Virmani R: Has our understanding of calcification in human
coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol.
34:724–736. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Cheng SL, Shao JS, Charlton-Kachigian N,
Loewy AP and Towler DA: MSX2 promotes osteogenesis and suppresses
adipogenic differentitation of multipotent mesenchymal progenitors.
J Biol Chem. 278:45969–45977. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wallin R, Cain D, Hutson SM, Sane DC and
Loeser R: Modulation of the binding of matrix Gla protein (MGP) to
bone morphogenetic protein-2 (BMP-2). Thromb Haemost. 84:1039–1044.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Roy ME and Nishimoto SK: Matrix Gla
protein binding to hydroxyapatite is dependent on the ionic
environment: Calcium enhances binding affinity but phosphate and
magnesium decrease affinity. Bone. 31:296–302. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nakase T, Miyaji T, Tomita T, Kaneko M,
Kuriyama K, Myoui A, Sugamoto K, Ochi T and Yoshikawa H:
Localization of bone morphogenetic protein-2 in human
osteoarthritic cartilage and osteophyte. Osteoarthritis Cartilage.
11:278–284. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Price PA, Williamson MK, Nguyen TM and
Than TN: Serum levels of the fetuin-mineral complex correlate with
artery calcification in the rat. J Biol Chem. 279:1594–1600. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Shea MK, Kritchevsky SB, Hsu FC, Nevitt M,
Booth SL, Kwoh CK, McAlindon TE, Vermeer C, Drummen N, Harris TB,
et al: The association between vitamin K status and knee
osteoarthritis features in older adults: The Health, Aging and Body
Composition Study. Osteoarthritis Cartilage. 23:370–378. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Neogi T, Booth SL, Zhang YQ, Jacques PF,
Terkeltaub R, Aliabadi P and Felson DT: Low vitamin K status is
associated with osteoarthritis in the hand and knee. Arthritis
Rheum. 54:1255–1261. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Misra D, Booth SL, Tolstykh I, Felson DT,
Nevitt MC, Lewis CE, Torner J and Neogi T: Vitamin K deficiency is
associated with incident knee osteoarthritis. Am J Med.
126:243–248. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wallin R, Schurgers LJ and Loeser RF:
Biosynthesis of the vitamin K-dependent matrix Gla protein (MGP) in
chondrocytes: A fetuin-MGP protein complex is assembled in vesicles
shed from normal but not from osteoarthritic chondrocytes.
Osteoarthritis Cartilage. 18:1096–1103. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Oka H, Akune T, Muraki S, En-yo Y, Yoshida
M, Saika A, Sasaki S, Nakamura K, Kawaguchi H and Yoshimura N:
Association of low dietary vitamin K intake with radiographic knee
osteoarthritis in the Japanese elderly population: Dietary survey
in a population-based cohort of the ROAD study. J Orthop Sci.
14:687–692. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bügel S: Vitamin K and bone health. Proc
Nutr Soc. 62:839–843. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shearer MJ, Fu X and Booth SL: Vitamin K
nutrition, metabolism and requirements: Current concepts and future
research. Adv Nutr. 3:182–195. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Schurgers LJ, Barreto DV, Barreto FC,
Liabeuf S, Renard C, Magdeleyns EJ, Vermeer C, Choukroun G and
Massy ZA: The circulating inactive form of matrix gla protein is a
surrogate marker for vascular calcification in chronic kidney
disease: A preliminary report. Clin J Am Soc Nephrol. 5:568–575.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Boxma PY, van den Berg E, Geleijnse JM,
Laverman GD, Schurgers LJ, Vermeer C, Kema IP, Muskiet FA, Navis G,
Bakker SJ and de Borst MH: Vitamin k intake and plasma
desphospho-uncarboxylated matrix Gla-protein levels in kidney
transplant recipients. PLoS One. 7:e479912012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Dalmeijer GW, van der Schouw YT,
Magdeleyns EJ, Vermeer C, Verschuren WM, Boer JM and Beulens JW:
Matrix Gla protein species and risk of cardiovascular events in
type 2 diabetic patients. J Diabetes Care. 36:3766–3771. 2013.
View Article : Google Scholar
|
|
78
|
Tsugawa N: Cardiovascular diseases and fat
soluable vitamins: Vitamin D and Vitamin K. J Nutr Sci Vitaminol
(Tokyo). 61:S170–S172. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Delanayc P, Krzesinski JM, Warling X,
Moonen M, Smelten N, Médart L, Pottel H and Cavalier E:
Dephosphorglated-uncarboxylated Matrix Gla protein concentration is
predictive of vitamin K status and is correlated with vascular
calcification in a cohort of hemodialysis patients. BMC Nephrol.
15:1452014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Viegas CS, Simes DC, Laizé V, Williamson
MK, Price PA and Cancela ML: Gla-rich protein (GRP), a new vitamin
K-dependent protein identified from sturgeon cartilage and highly
conserved in vertebrates. J Biol Chem. 283:36655–36664. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Viegas CS, Cavaco S, Neves PL, Ferreira A,
João A, Williamson MK, Price PA, Cancela ML and Simes DC: Gla-rich
protein is a novel vitamin K-dependent protein present in serum
that accumulates at sites of pathological calcifications. Am J
Pathol. 175:2288–2298. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Surmann-Schmitt C, Dietz U, Kireva T, Adam
N, Park J, Tagariello A, Onnerfjord P, Heinegård D,
Schlötzer-Schrehardt U, Deutzmann R, et al: Ucma, a novel secreted
cartilage-specific protein with implications in osteogenesis. J
Biol Chem. 11:7082–7893. 2008. View Article : Google Scholar
|
|
83
|
Le Jeune M, Tomavo N, Tian TV, Flourens A,
Marchand N, Camuzeaux B, Mallien-Gerin F and Duterque-Coquillaud M:
Identification of four alternatively spliced transcripts of the
Ucma/GRP gene, encoding a new Gla-containing protein. J Exp Cell
Res. 316:203–215. 2010. View Article : Google Scholar
|
|
84
|
Tagariello A, Luther J, Streiter M,
Didt-Koziel L, Wuelling M, Surmann-Schmitt C, Stock M, Adam N,
Vortkamp A and Winterpacht A: Ucma, a novel-secreted factor
represents a highly specific marker for distal chondrocytes. Matrix
Biol. 27:3–11. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Viegas CS, Rafael MS, Enriquez JL,
Teixeira A, Vitorino R, Luis IM, Costa RM, Santos S, Cavaco S,
Neves J, et al: Gla-rich protein (GRP) acts as a calcification
inhibitor in the human cardiovascular system. Arterioscler Thromb
Vasc Biol. 35:399–408. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Rafael MS, Cavaco S, Viegas CS, Santos S,
Ramos A, Willems BA, Herfs M, Theuwissen E, Vermeer C and Simes DC:
Insights into the association of Gla-rich protein and
osteoarthritis, novel splice variants and γ-carboxylation status.
Mol Nutr Food Res. 58:1636–1646. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cavaco S, Viegas CS, Rafael MS, Ramos A,
Magalhães J, Blanco FJ, Vermeer C and Simes DC: Gla-rich protein is
involved in the cross-talk between calcification and inflammation
in osteoarthritis. Cell Mol Life Sci. 73:1051–1065. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cancela ML, Conceição N and Laizé V:
Gla-rich protein, a new player in tissue calcification? Adv Nutr.
3:174–181. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lee YJ, Park SY, Lee SJ, Boo YC, Choi JY
and Kim JE: Ucma, a direct transcriptional target of Runx2 and
Osterix, promotes osteoblast differentiation and nodule formation.
Osteoarthritis Cartilage. 23:1421–1431. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Viegas CS, Herfs M, Rafael MS, Enriquez
JL, Teixeira A, Luís IM, van't Hoofd CM, João A, Maria VL, Cavaco
S, et al: Gla-rich protein is a potential new vitamin K target in
cancer: Evidences for a direct GRP-mineral interaction. Biomed Res
Int. 2014:3402162014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zinn K, McAllister L and Goodman CS:
Sequence analysis and neuronal expression of fasciclin I in
grasshopper and Drosophila. J Cell. 53:577–587. 1988. View Article : Google Scholar
|
|
92
|
Takeshita S, Kikuno R, Tezuka K and Amann
E: Osteoblast-specific factor 2: Cloning of a putative bone
adhesion protein with homology with the insect protein fasciclin I.
Biochem J. 294:271–278. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Politz O, Gratchev A, McCourt PA,
Schledzewski K, Guillot P, Johansson S, Svineng G, Franke P,
Kannicht C, Kzhyshkowska J, et al: Stabilin-1 and-2 constitute a
novel family of fasciclin-like hyaluronan receptor homologues.
Biochem J. 362:155–164. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Skonier J, Neubauer M, Madisen L, Bennett
K, Plowman GD and Purchio AF: CDNA cloning and sequence analysis of
beta ig-h3, a novel gene induced in a human adenocarcinoma cell
line after treatment with transforming growth factor-beta. DNA Cell
Biol. 11:511–522. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Horiuchi K, Amizuka N, Takeshita S,
Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF and Kudo A:
Identification and characterization of a novel protein, Periostin,
with restricted expression to periosteum and periodontal ligament
and increased expression by transforming growth factor beta. J Bone
Miner Res. 14:1239–1249. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Litvin J, Selim AH, Montgomery MO, Lehmann
K, Rico MC, Devlin H, Bednarik DP and Safadi FF: Expression and
function of periostin-isoforms in bone. J Biol Chem. 92:1044–1061.
2004.
|
|
97
|
Kruzynska-Frejtag A, Machnicki M, Rogers
R, Markwald RR and Conway SJ: Periostin (an osteoblast-specific
factor) is expressed within the embryonic mouse heart during valve
formation. Mech Dev. 103:183–188. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Stansfield WE, Andersen NM, Tang RH and
Selzman CH: Periostin is a novel factor in cardiac remodeling after
experimental and clinical unloading of the failing heart. Ann
Thorac Surg. 88:1916–1921. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Pohjolainen V, Rysä J, Näpänkangas J,
Kööbi P, Eräranta A, Ilves M, Serpi R, Pörsti I and Ruskoaho H:
Left ventricular periostin gene expression is associated with
fibrogenesis in experimental renal insufficiency. Nephrol Dial
Transplant. 27:115–122. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Morita H and Komuro I: Periostin isoforms
and cardiac remodeling after myocardial infarction is the dispute
settled? Hypertension. 67:504–505. 2016.PubMed/NCBI
|
|
101
|
Iekushi K, Taniyama Y, Azuma J, Katsuragi
N, Dosaka N, Sanada F, Koibuchi N, Nagao K, Ogihara T and Morishita
R: Novel mechanisms of valsartan on the treatment of acute
myocardial infarction through inhibition of the antiadhesion
molecule periostin. Hypertension. 49:1409–1414. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Merle B and Garnero P: The multiple facets
of periostin in bone metabolism. Osteoporos Int. 23:1199–1212.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Snider P, Standley KN, Wang J, Azhar M,
Doetschman T and Conway SJ: Origin of cardiac fibroblasts and the
role of periostin. Circ Res. 105:934–947. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hakuno D, Kimura N, Yoshioka M, Mukai M,
Kimura T, Okada Y, Yozu R, Shukunami C, Hiraki Y, Kudo A, et al:
Periostin advances atherosclerotic and rheumatic cardiac valve
degeneration by inducing angiogenesis and MMP production in humans
and rodents. J Clin Invest. 120:2292–2306. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhu S, Barbe MF, Liu C, Hadjiargyrou M,
Popoff SN, Rani S, Safadi FF and Litvin J: Periostin-like factor in
osteogenesis. J Cell Physiol. 218:584–592. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Rani S, Barbe MF, Barr AE and Litvin J:
Periostin-like-factor and periostin in an animal model of
work-related musculoskeletal disorder. Bone. 44:502–512. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Perrier A, Dumas V, Linossier MT, Fournier
C, Jurdic P, Rattner A, Vico L and Guignandon A: Apatite content of
collagen materials dose-dependently increases pre-osteoblastic cell
deposition of a cement line-like matrix. Bone. 47:23–33. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Freitas F, Jeschke M, Majstorovic I,
Mueller DR, Schindler P, Voshol H, Van Oostrum J and Susa M:
Fluoroaluminate stimulates phosphorylation of p130 Cas and Fak and
increases attachment and spreading preosteoblastic MC3T3-E1 cells.
Bone. 30:99–108. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang DJ, Oparil S, Feng JA, Li P, Perry G,
Chen LB, Dai M, John SW and Chen YF: Effects of pressure overload
on extracellular matrix expression in the heart of the atrial
natriuretic peptide-null mouse. Hypertension J. 42:88–95. 2003.
View Article : Google Scholar
|
|
110
|
Litvin J, Blagg A, Mu A, Matiwala S,
Montgomery M, Berretta R, Houser S and Margulies K: Periostin and
periostin-like factor in the human heart: Possible therapeu tic
targets. Cardiovasc Pathol. 15:24–32. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Katsuragi N, Morishita R, Nakamura N,
Ochiai T, Taniyama Y, Hasegawa Y, Kawashima K, Kaneda Y, Ogihara T
and Sugimura K: Periostin as a novel factor responsible for
ventricular dilation. Circulation. 110:1806–1813. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Oka T, Xu J, Kaiser RA, Melendez J,
Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW II, Conway
SJ, et al: Genetic manipulation of periostin expression reveals a
role in cardiac hypertrophy and ventricular remodeling. Circ Res.
101:313–321. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Sen K, Lindenmeyer MT, Gaspert A,
Eichinger F, Neusser MA, Kretzler M, Segerer S and Cohen CD:
Periostin is induced in glomerular injury and expressed de novo in
interstitial renal fibrosis. Am J Pathol. 179:1756–1767. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lindner V, Wang Q, Conley BA, Friesel RE
and Vary CP: Vascular injury induces expression of periostin:
Implications for vascular cell differentiation and migration.
Arterioscler Thromb Vasc Biol. 25:77–83. 2005.PubMed/NCBI
|
|
115
|
Stanton LW, Garrard LJ, Damm D, Garrick
BL, Lam A, Kapoun AM, Zheng Q, Protter AA, Schreiner GF and White
RT: Altered patterns of gene expression in response to myocardial
infarction. Circ Res. 86:939–945. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Deng T, Zhang Y, Chen Q, Yan K and Han D:
Toll-like receptor-mediated inhibition of Gas6 and ProS expression
facilitates inflammatory cytokine production in mouse macrophages.
Immunology J. 135:40–50. 2012. View Article : Google Scholar
|
|
117
|
Bellosta P, Zhang Q, Goff SP and Basilico
C: Signaling through the ARK tyrosine kinase receptor protects from
apoptosis in the absence of growth stimulation. Oncogene.
15:2387–2389. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Shiozawa Y, Pedersen EA, Patel LR, Ziegler
AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ and
Taichman RS: GAS6/AXL axis regulates prostate cancer invasion,
proliferation, and survival in the bone marrow niche. Neoplasia.
12:116–127. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Hasanbasic I, Rajotte I and Blostein M:
The role of gamma-carboxylation in the anti-apoptotic function of
gas6. J Thromb Haemost. 3:2790–2797. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Son BK, Kozaki K, Iijima K, Eto M, Kojima
T, Ota H, Senda Y, Maemura K, Nakano T, Akishita M and Ouchi Y:
Statins protect human aortic smooth muscle cells from inorganic
phosphate-induced calcification by restoring Gas6-Axl survival
pathway. Circ Res. 98:1024–1031. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhao YF, Xu DC, Zhu GF, Zhu MY, Tang K, Li
WM and Xu YW: Growth arrest-specific 6 exacerbates pressure
overload-induced cardiac hypertrophy. Hypertension. 67:118–129.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Park JK, Theuer S, Kirsch T, Lindschau C,
Klinge U, Heuser A, Plehm R, Todiras M, Carmeliet P, Haller H, et
al: Growth arrest specific protein 6 participates in DOCA-induced
target-organ damage. Hypertension. 54:359–364. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Cockayne S, Adamson J, Lanham-New S,
Shearer MJ, Gilbody S and Torgerson DJ: Vitamin K and the
prevention of fractures: Systematic review and meta-analysis of
randomized controlled trials. J Arch Intern Med. 166:1256–1261.
2006. View Article : Google Scholar
|
|
124
|
Pucaj K, Rasmussen H, Møller M and Preston
T: Safety and toxicological evaluation of a synthetic vitamin K2,
menaquinone-7. Toxicol Mech Methods. 21:520–532. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Danziger J, Young RL, Shea MK, Tracy RP,
Ix JH, Jenny NS and Mukamal KJ: Vitamin K-dependent protein
activity and incident ischemic cardiovascular disease: The
multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc
Biol. 36:1037–1042. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Litvina J, Blagga A, Mua A, Matiwalaa S,
Montgomerya M, Berrettaa R, Housera S and Marguliesa K: Periostin
and periostin-like factor in the human heart: possible therapeutic
targets. Cardiovasc Pathol. 15:24–32. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Severson AR, Ingram RT and Fitzpatrick LA:
Matrix proteins associated with bone calcification are present in
human vascular smooth muscle cells grown in vitro. In Vitro Cell
Dev Biol Anim. 31:853–857. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Dhore CR, Cleutjens JP, Lutgens E,
Cleutjens KB, Geusens PP, Kitslaar PJ, Tordoir JH, Spronk HM,
Vermeer C and Daemen MJ: Differential expression of bone matrix
regulatory proteins in human atherosclerotic plaques. Arterioscler
Thromb Vasc Biol. 21:1998–2003. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Trion A and van der Laarse A: Vascular
smooth muscle cells and calcification in atherosclerosis. Am Heart
J. 147:808–814. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Dowd TL, Rosen JF, Li L and Gundberg CM:
The three-dimensional structure of bovine calcium ion-bound
osteocalcin using 1H NMR spectroscopy. Biochemistry. 42:7769–7779.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Hauschka PV and Carr SA: Calcium-dependent
alpha-helical structure in osteocalcin. Biochemistry. 21:2538–2547.
1982. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Gerbaix M, Vico L, Ferrari SL and Bonnet
N: Periostin expression contributes to cortical bone loss during
unloading. Bone. 71:94–100. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Bonnet N, Gineyts E, Ammann P, Conway SJ,
Garnero P and Ferrari S: Periostin deficiency increases bone damage
and impairs injury response to fatigue loading in adult mice. PLoS
One. 8:e783472013. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Brent AE and Tabin CJ: Developmental
regulation of somite derivatives: Muscle, cartilage and tendon.
Curr Opin Genet Dev. 12:548–557. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Minguell JJ, Erices A and Conget P:
Mesenchymal stem cells. Exp Biol Med (Maywood). 226:507–520. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Le Blanc K and Pittenger M: Mesenchymal
stem cells: Progress toward promise. Cytotherapy. 7:36–45. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Reiser J, Zhang XY, Hemenway CS, Mondal D,
Pradhan L and La Russa VF: Potential of mesenchymal stem cells in
gene therapy approaches for inherited and acquired diseases. Expert
Opin Biol Ther. 5:1571–1584. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Hui JH, Ouyang HW, Hutmacher DW, Goh JC
and Lee EH: Mesenchymal stem cells in musculoskeletal tissue
engineering: A review of recent advances in National University of
Singapore. Ann Acad Med Singapore. 34:206–212. 2005.PubMed/NCBI
|
|
140
|
Caplan AI: Review: Mesenchymal stem cells:
Cell-based reconstructive therapy in orthopedics. Tissue Eng.
11:1198–1211. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Menasché P: The potential of embryonic
stem cells to treat heart disease. Curr Opin Mol Ther. 7:293–299.
2005.PubMed/NCBI
|
|
142
|
Laflamme MA and Murry CE: Regenerating the
heart. Nat Biotechnol. 23:845–856. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Ben Shoham A, Rot C, Stern T, Krief S,
Akiva A, Dadosh T, Sabany H, Lu Y, Kadler KE and Zelzer E:
Deposition of collagen type I onto skeletal endothelium reveals a
new role for blood vessels in regulating bone morphology.
Development. 143:3933–3943. 2016. View Article : Google Scholar : PubMed/NCBI
|