Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review)

  • Authors:
    • Lianpu Wen
    • Jiepeng Chen
    • Lili Duan
    • Shuzhuang Li
  • View Affiliations / Copyright

    Affiliations: Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China, Sungen Bioscience Co., Ltd., Shantou, Guangdong 515000, P.R. China
    Copyright: © Wen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3-15
    |
    Published online on: April 27, 2018
       https://doi.org/10.3892/mmr.2018.8940
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In postmenopausal women and elderly men, bone density decreases with age and vascular calcification is aggravated. This condition is closely associated with vitamin K2 deficiency. A total of 17 different vitamin K‑dependent proteins have been identified to date. Vitamin K‑dependent proteins are located within the bone, heart and blood vessels. For instance, carboxylated osteocalcin is beneficial for bone and aids the deposition of calcium into the bone matrix. Carboxylated matrix Gla protein effectively protects blood vessels and may prevent calcification within the vascular wall. Furthermore, carboxylated Gla‑rich protein has been reported to act as an inhibitor in the calcification of the cardiovascular system, while growth arrest‑specific protein‑6 protects endothelial cells and vascular smooth muscle cells, resists apoptosis and inhibits the calcification of blood vessels by inhibiting the apoptosis of vascular smooth muscle cells. In addition, periostin may promote the differentiation, aggregation, adhesion and proliferation of osteoblasts. Periostin also occurs in the heart and may be associated with the reconstruction of heart function. These vitamin K‑dependent proteins may exert their functions following γ‑carboxylation with vitamin K, and different vitamin K‑dependent proteins may exhibit synergistic effects or antagonistic effects on each other. In the cardiovascular system with vitamin K antagonist supplement or vitamin K deficiency, calcification occurs in the endothelium of blood vessels and vascular smooth muscle cells are transformed into osteoblast‑like cells, a phenomenon that resembles bone growth. Both the bone and cardiovascular system are closely associated during embryonic development. Thus, the present study hypothesized that embryonic developmental position and tissue calcification may have a certain association for the bone and the cardiovascular system. This review describes and briefly discusses several important vitamin K‑dependent proteins that serve an important role in bone and the cardiovascular system. The results of the review suggest that the vascular calcification and osteogenic differentiation of vascular smooth muscle cells may be associated with the location of the bone and cardiovascular system during embryonic development.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Vermeer C: Vitamin K: The effect on health beyond coagulation-an overview. Food Nutrition Res. 56:53292012. View Article : Google Scholar

2 

Presnell SR and Stafford DW: The vitamin K-dependent carboxylase. Thromb Haemost. 87:937–946. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Flore R, Ponziani FR, Di Rienzo TA, Zocco MA, Flex A, Gerardino L, Lupascu A, Santoro L, Santoliquido A, Di Stasio E, et al: Something more to say about calcium homeostasis: The role of vitamin K2 in vascular calcification and osteoporosis. Eur Rev Med Pharmacol Sci. 17:2433–2440. 2013.PubMed/NCBI

4 

Taniyama Y, Katsuragi N, Sanada F, Azuma J, Iekushi K, Koibuchi N, Okayama K, Ikeda-Iwabu Y, Muratsu J, Otsu R, et al: Selective blockade of periostin exon 17 preserves cardiac performance in acute myocardial infarction. Hypertension. 67:356–361. 2016.PubMed/NCBI

5 

El Asmar MS, Naoum JJ and Arbid EJ: Vitamin K dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: A review. Oman Med J. 29:172–177. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Tie JK, Jin DY, Straight DL and Stafford DW: Functional study of the vitamin K cycle in mammalian cells. Blood. 117:2967–2974. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Lanham S, Cagampang FR and Oreffo ROC: Maternal high fat diet affects offspring's vitamin K-dependent proteins expression levels. PLoS One. 10:e01387302015. View Article : Google Scholar : PubMed/NCBI

8 

Fusaro M, Crepaldi G, Maggi S, Galli F, D'Angelo A, Calò L, Giannini S, Miozzo D and Gallieni M: Vitamin K, bone fractures and vascular calcifications in chronic kidney disease: An important but poorly studied relationship. J Endocrinol Invest. 34:317–323. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Mithal A, Dhingra V, Lau E, Stenmark J and Nauroy L: The Asian Audit: Epidemiology, costs and burden of osteoporosis in Asia China. International Osteoporosis Foundation Publication; 2009

10 

Dhanwal DK, Cooper C and Dennison EM: Geographic variation in osteoporotic hip fracture incidence: The growing importance of Asian influences in coming decades. J Osteoporos Aug. 2:7571022010.

11 

Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD and Reid IR: Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: Meta-analysis. BMJ. 341:c36912010. View Article : Google Scholar : PubMed/NCBI

12 

Bolland MJ, Grey A, Avenell A, Gamble GD and Reid IR: Calcium supplements with or without vitamin D and risk of cardiovascular events: Reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. BMJ. 342:d20402011. View Article : Google Scholar : PubMed/NCBI

13 

Li K, Kaaks R, Linseisen J and Rohrmann S: Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke risk and overall cardiovascular mortality in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition study (EPIC-Heidelberg). Heart. 98:920–925. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Michaëlsson K, Melhus H, Lemming Warensjö E, Wolk A and Byberg L: Long term calcium intake and rates of all cause and cardiovascular mortality: Community based prospective longitudinal cohort study. BMJ. 346:f2282013. View Article : Google Scholar : PubMed/NCBI

15 

Pentti K, Tuppurainen MT, Honkanen R, Sandini L, Kröger H, Alhava E and Saarikoski S: Use of calcium supplements and the risk of coronary heart disease in 52–62-year-old women: The Kuopio osteoporosis risk factor and prevention study. Maturitas. 63:73–78. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Xiao Q, Murphy RA, Houston DK, Harris TB, Chow WH and Park Y: Dietary and supplemental calcium intake and cardiovascular disease mortality: The national institutes of health-AARP diet and health study. JAMA Intern Med. 173:639–646. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Hoang QQ, Sicheri F, Howard AJ and Yang DS: Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature. 425:977–980. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Clark H: NCDs: a challenge to sustainable human development. Lancet. 381:510–511. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, et al: Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 70:1–25. 2017. View Article : Google Scholar : PubMed/NCBI

20 

World Health Organisation (WHO), . Cardiovascular disease. WHO; Geneva: 2013, http://www.who.int/cardiovasculardiseases/en/March 27–2015

21 

Schurgers LJ, Dissel PE, Spronk HM, Soute BA, Dhore CR, Cleutjens JP and Vermeer C: Role of vitamin K and vitamin K-dependent proteins in vascular calcification. Z Kardiol. 90 Suppl 3:S57–S63. 2001. View Article : Google Scholar

22 

Lahtinen AM, Havulinna AS, Jula A, Salomaa V and Kontula K: Prevalence and clinical correlates of familial hypercholesterolemia founder mutations in the general population. Atherosclerosis. 238:64–69. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ, Detrano RC, Dunstan CR, Shah PK and Rajavashisth TB: Calcification in atherosclerosis: Bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci USA. 100:11201–11206. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Abdulameer AH, Sulaiman SABS and Kader MBSA: An assessment of osteoporotic conditions among users and Non-users of warfarin: A case-control study. J Clin Diagn Res. 11:OC21–OC24. 2017.PubMed/NCBI

25 

Beulens JW, Bots ML, Atsma F, Bartelink ML, Prokop M, Geleijnse JM, Witteman JC, Grobbee DE and van der Schouw YT: High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis. 203:489–493. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MH, van der Meer IM, Hofman A and Witteman JC: Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam study. J Nutr. 134:3100–3105. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Shea MK and Booth SL: Role of vitamin K in the regulation of calcification. Int Congr Ser. 1297:165–178. 2007. View Article : Google Scholar

28 

Shea MK, O'Donnell CJ, Hoffmann U, Dallal GE, Dawson-Hughes B, Ordovas JM, Price PA, Williamson MK and Booth SL: Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am J Clin Nutr. 89:1799–1807. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Hauschka PV and Reid ML: Vitamin D dependence of a calcium-binding protein containing gamma-carboxyghtamic acid in chicken bone. J Biol Chem. 253:9063–9068. 1978.PubMed/NCBI

30 

Miyake N, Hoshi K, Sano Y, Kikuchi K, Tadano K and Koshihara Y: 1,25-Dihydroxyvitamin D3 promotes vitamin K2 metabolism in human osteoblasts. Osteoporos Int. 12:680–687. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Shiraki M: Health benefits and demerits of calcium nutrition or supplementation in older people. Nihon Rinsho. 73:1770–1776. 2015.(In Japanese). PubMed/NCBI

32 

Zoch ML, Clemens TL and Riddle RC: New insights into the biology of osteocalcin. Bone. 82:42–49. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Iwamoto J: Vitamin K2 therapy for postmenopausal. Nutrients. 6:1971–1980. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Neve A, Corrado A and Cantatore FP: Osteocalcin: Skeletal and extra-skeletal effects. J CellPhysiol. 228:1149–1153. 2013.

35 

Koshihara Y and Hoshi K: Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res. 12:431–438. 1997. View Article : Google Scholar : PubMed/NCBI

36 

Yunker LA, Undersander A, Lian JB, Stein GS, Carlson CS and Mauro LJ: The tyrosine phesphatase, OST-PTP, is expressed in mesenchymal progenitor cellsearly during skeletagenosis in the mouse. J Cell Biochem. 93:761–773. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Naito K, Watari T, Obayashi O, Katsube S, Nagaoka I and Kaneko K: Relationship between serum undercarboxylated osteocalcin and hyaluronan levels in patients with bilateral knee osteoarthritis. Int J Mol Med. 29:756–760. 2012.PubMed/NCBI

38 

Zheng W, Kang H, Shu C, Tang ML, Fang PZ, Xie J, He J and Wang M: Expression and significance of inflammatory factors and bone formation mediators in carotid atherosclerotic plaque. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 33:746–750. 2008.(In Chinese). PubMed/NCBI

39 

Orimo H, Nakamura T, Hosoi T, Iki M, Uenishi K, Endo N, Ohta H, Shiraki M, Sugimoto T, Suzuki T, et al: Japanese 2011 guidelines for prevention and treatment of osteoporosis-executive summary. Arch Osteoporos. 7:3–20. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Hunt JL, Fairman R, Mithell ME, Carpenter JP, Golden M, Khalapyan T, Wolfe M, Neschis D, Milner R, Scoll B, et al: Bone formation in carotid plaques: A clinicopathological study. Stroke. 33:1214–1219. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Inaba N, Sato T and Yamashita T: Low-dose daily intake of vitamin K2 (Menaquinone-7) improves osteocalcin γ-carboxylation: A double-blind. randomized controlled trials. J Nutr Sci Vitaminol (Tokyo). 61:471–480. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Brugè F, Bacchetti T, Principi F, Littarru GP and Tiano L: Olive oil supplemented with menaquinone-7 significantly affects osteocalcin carboxylation. Br J Nutr. 106:1058–1062. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Sato T, Schurgers LJ and Uenishi K: Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J. 11:932012. View Article : Google Scholar : PubMed/NCBI

44 

Price PA: Role of vitamin K-dependent proteins in bone metabolism. Annu Rev Nutr. 8:565–583. 1988. View Article : Google Scholar : PubMed/NCBI

45 

Booth SL, Centi A, Smith SR and Gundberg C: The role of osteocalcin in human glucose metabolism: Marker or mediator? Nat Rev Endocrinol. 9:43–55. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Veldhuis-Vlug AG, Fliers E and Bisschop PH: Bone as a regulator of glucose metabolism. Neth J Med. 71:396–400. 2013.PubMed/NCBI

47 

Kerner SA, Scott RA and Pike JW: Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci USA. 86:4455–4459. 1989. View Article : Google Scholar : PubMed/NCBI

48 

Lian J, Stewart C, Puchacz E, Mackowiak S, Shalhoub V, Collart D, Zambetti G and Stein G: Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci USA. 86:1143–1147. 1989. View Article : Google Scholar : PubMed/NCBI

49 

Cairns JR and Price PA: Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely gamma-carboxylated in humans. J Bone Miner Res. 9:1989–1997. 1994. View Article : Google Scholar : PubMed/NCBI

50 

Liabeuf S, Bourron O, Vemeer C, Theuwissen E, Magdeleyns E, Aubert CE, Brazier M, Mentaverri R, Hartemann A and Massy ZA: Vascular calcification in patients with type 2 diabetes: The involvement of matrix Gla Protein. Cardiovasc Diabetol. 3:852014. View Article : Google Scholar

51 

Wallin R, Cain D and Sane DC: Matrix Gla protein synthesis and gamma-carboxylation in the aortic vessel wall and proliferating vascular smooth muscle cells-A cell system which resembles the system in bone cells. Thromb Haemost. 82:1764–1767. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Harbuzova Viu and Ataman OV: Matrix Gla-protein and its role in vascular wall calcification. Fiziol Zh. 57:96–112. 2011.(In Ukrainian). PubMed/NCBI

53 

Schlieper G, Westenfeld R, Krüger T, Cranenburg EC, Magdeleyns EJ, Brandenburg VM, Djuric Z, Damjanovic T, Ketteler M, Vermeer C, et al: Circulating nonphosphorylated carboxylated matrix gla protein predicts survival in ESRD. J Am Soc Nephrol. 22:387–395. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Leopold JA: Vascular calcification: Mechanism of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 25:267–274. 2015. View Article : Google Scholar : PubMed/NCBI

55 

de Cavanagh EM, Inserra F, Ferder M and Ferder L: From mitochondria to disease: Role of the renin-angiotensin system. Am J Nephrol. 27:545–553. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Li X, Yang HY and Giachelli CM: Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res. 98:905–912. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL and Shanahan CM: Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: A potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol. 15:2857–2867. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Son BK, Akishita M, Iijima K, Eto M and Ouchi Y: Mechanism of pi-induced vascular calcification. J Atheroscler Thromb. 15:63–68. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Son BK, Kozaki K, Iijima K, Eto M, Nakano T, Akishita M and Ouchi Y: Gas6/Axl-PI3K/Akt pathway plays a central role in the effect of statins on inorganic phosphate-induced calcification of vascular smooth muscle cells. Eur J Pharmacol. 556:1–8. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, Schinke T, Karsenty G and Giachelli CM: Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 89:1147–1154. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Kim H, Kim HJ, Lee K, Kim JM, Kim HS, Kim JR, Ha CM, Choi YK, Lee SJ, Kim JY, et al: α-Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway. J Cell Mol Med. 16:273–286. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Otsuka F, Sakakura K, Yahagi K, Joner M and Virmani R: Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 34:724–736. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Cheng SL, Shao JS, Charlton-Kachigian N, Loewy AP and Towler DA: MSX2 promotes osteogenesis and suppresses adipogenic differentitation of multipotent mesenchymal progenitors. J Biol Chem. 278:45969–45977. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Wallin R, Cain D, Hutson SM, Sane DC and Loeser R: Modulation of the binding of matrix Gla protein (MGP) to bone morphogenetic protein-2 (BMP-2). Thromb Haemost. 84:1039–1044. 2000. View Article : Google Scholar : PubMed/NCBI

65 

Roy ME and Nishimoto SK: Matrix Gla protein binding to hydroxyapatite is dependent on the ionic environment: Calcium enhances binding affinity but phosphate and magnesium decrease affinity. Bone. 31:296–302. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Nakase T, Miyaji T, Tomita T, Kaneko M, Kuriyama K, Myoui A, Sugamoto K, Ochi T and Yoshikawa H: Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthritis Cartilage. 11:278–284. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Price PA, Williamson MK, Nguyen TM and Than TN: Serum levels of the fetuin-mineral complex correlate with artery calcification in the rat. J Biol Chem. 279:1594–1600. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Shea MK, Kritchevsky SB, Hsu FC, Nevitt M, Booth SL, Kwoh CK, McAlindon TE, Vermeer C, Drummen N, Harris TB, et al: The association between vitamin K status and knee osteoarthritis features in older adults: The Health, Aging and Body Composition Study. Osteoarthritis Cartilage. 23:370–378. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Neogi T, Booth SL, Zhang YQ, Jacques PF, Terkeltaub R, Aliabadi P and Felson DT: Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum. 54:1255–1261. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Misra D, Booth SL, Tolstykh I, Felson DT, Nevitt MC, Lewis CE, Torner J and Neogi T: Vitamin K deficiency is associated with incident knee osteoarthritis. Am J Med. 126:243–248. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Wallin R, Schurgers LJ and Loeser RF: Biosynthesis of the vitamin K-dependent matrix Gla protein (MGP) in chondrocytes: A fetuin-MGP protein complex is assembled in vesicles shed from normal but not from osteoarthritic chondrocytes. Osteoarthritis Cartilage. 18:1096–1103. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Oka H, Akune T, Muraki S, En-yo Y, Yoshida M, Saika A, Sasaki S, Nakamura K, Kawaguchi H and Yoshimura N: Association of low dietary vitamin K intake with radiographic knee osteoarthritis in the Japanese elderly population: Dietary survey in a population-based cohort of the ROAD study. J Orthop Sci. 14:687–692. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Bügel S: Vitamin K and bone health. Proc Nutr Soc. 62:839–843. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Shearer MJ, Fu X and Booth SL: Vitamin K nutrition, metabolism and requirements: Current concepts and future research. Adv Nutr. 3:182–195. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Schurgers LJ, Barreto DV, Barreto FC, Liabeuf S, Renard C, Magdeleyns EJ, Vermeer C, Choukroun G and Massy ZA: The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: A preliminary report. Clin J Am Soc Nephrol. 5:568–575. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Boxma PY, van den Berg E, Geleijnse JM, Laverman GD, Schurgers LJ, Vermeer C, Kema IP, Muskiet FA, Navis G, Bakker SJ and de Borst MH: Vitamin k intake and plasma desphospho-uncarboxylated matrix Gla-protein levels in kidney transplant recipients. PLoS One. 7:e479912012. View Article : Google Scholar : PubMed/NCBI

77 

Dalmeijer GW, van der Schouw YT, Magdeleyns EJ, Vermeer C, Verschuren WM, Boer JM and Beulens JW: Matrix Gla protein species and risk of cardiovascular events in type 2 diabetic patients. J Diabetes Care. 36:3766–3771. 2013. View Article : Google Scholar

78 

Tsugawa N: Cardiovascular diseases and fat soluable vitamins: Vitamin D and Vitamin K. J Nutr Sci Vitaminol (Tokyo). 61:S170–S172. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Delanayc P, Krzesinski JM, Warling X, Moonen M, Smelten N, Médart L, Pottel H and Cavalier E: Dephosphorglated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol. 15:1452014. View Article : Google Scholar : PubMed/NCBI

80 

Viegas CS, Simes DC, Laizé V, Williamson MK, Price PA and Cancela ML: Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J Biol Chem. 283:36655–36664. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Viegas CS, Cavaco S, Neves PL, Ferreira A, João A, Williamson MK, Price PA, Cancela ML and Simes DC: Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am J Pathol. 175:2288–2298. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Surmann-Schmitt C, Dietz U, Kireva T, Adam N, Park J, Tagariello A, Onnerfjord P, Heinegård D, Schlötzer-Schrehardt U, Deutzmann R, et al: Ucma, a novel secreted cartilage-specific protein with implications in osteogenesis. J Biol Chem. 11:7082–7893. 2008. View Article : Google Scholar

83 

Le Jeune M, Tomavo N, Tian TV, Flourens A, Marchand N, Camuzeaux B, Mallien-Gerin F and Duterque-Coquillaud M: Identification of four alternatively spliced transcripts of the Ucma/GRP gene, encoding a new Gla-containing protein. J Exp Cell Res. 316:203–215. 2010. View Article : Google Scholar

84 

Tagariello A, Luther J, Streiter M, Didt-Koziel L, Wuelling M, Surmann-Schmitt C, Stock M, Adam N, Vortkamp A and Winterpacht A: Ucma, a novel-secreted factor represents a highly specific marker for distal chondrocytes. Matrix Biol. 27:3–11. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Viegas CS, Rafael MS, Enriquez JL, Teixeira A, Vitorino R, Luis IM, Costa RM, Santos S, Cavaco S, Neves J, et al: Gla-rich protein (GRP) acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol. 35:399–408. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Rafael MS, Cavaco S, Viegas CS, Santos S, Ramos A, Willems BA, Herfs M, Theuwissen E, Vermeer C and Simes DC: Insights into the association of Gla-rich protein and osteoarthritis, novel splice variants and γ-carboxylation status. Mol Nutr Food Res. 58:1636–1646. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Cavaco S, Viegas CS, Rafael MS, Ramos A, Magalhães J, Blanco FJ, Vermeer C and Simes DC: Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol Life Sci. 73:1051–1065. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Cancela ML, Conceição N and Laizé V: Gla-rich protein, a new player in tissue calcification? Adv Nutr. 3:174–181. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Lee YJ, Park SY, Lee SJ, Boo YC, Choi JY and Kim JE: Ucma, a direct transcriptional target of Runx2 and Osterix, promotes osteoblast differentiation and nodule formation. Osteoarthritis Cartilage. 23:1421–1431. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Viegas CS, Herfs M, Rafael MS, Enriquez JL, Teixeira A, Luís IM, van't Hoofd CM, João A, Maria VL, Cavaco S, et al: Gla-rich protein is a potential new vitamin K target in cancer: Evidences for a direct GRP-mineral interaction. Biomed Res Int. 2014:3402162014. View Article : Google Scholar : PubMed/NCBI

91 

Zinn K, McAllister L and Goodman CS: Sequence analysis and neuronal expression of fasciclin I in grasshopper and Drosophila. J Cell. 53:577–587. 1988. View Article : Google Scholar

92 

Takeshita S, Kikuno R, Tezuka K and Amann E: Osteoblast-specific factor 2: Cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J. 294:271–278. 1993. View Article : Google Scholar : PubMed/NCBI

93 

Politz O, Gratchev A, McCourt PA, Schledzewski K, Guillot P, Johansson S, Svineng G, Franke P, Kannicht C, Kzhyshkowska J, et al: Stabilin-1 and-2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J. 362:155–164. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD and Purchio AF: CDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol. 11:511–522. 1992. View Article : Google Scholar : PubMed/NCBI

95 

Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF and Kudo A: Identification and characterization of a novel protein, Periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res. 14:1239–1249. 1999. View Article : Google Scholar : PubMed/NCBI

96 

Litvin J, Selim AH, Montgomery MO, Lehmann K, Rico MC, Devlin H, Bednarik DP and Safadi FF: Expression and function of periostin-isoforms in bone. J Biol Chem. 92:1044–1061. 2004.

97 

Kruzynska-Frejtag A, Machnicki M, Rogers R, Markwald RR and Conway SJ: Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mech Dev. 103:183–188. 2001. View Article : Google Scholar : PubMed/NCBI

98 

Stansfield WE, Andersen NM, Tang RH and Selzman CH: Periostin is a novel factor in cardiac remodeling after experimental and clinical unloading of the failing heart. Ann Thorac Surg. 88:1916–1921. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Pohjolainen V, Rysä J, Näpänkangas J, Kööbi P, Eräranta A, Ilves M, Serpi R, Pörsti I and Ruskoaho H: Left ventricular periostin gene expression is associated with fibrogenesis in experimental renal insufficiency. Nephrol Dial Transplant. 27:115–122. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Morita H and Komuro I: Periostin isoforms and cardiac remodeling after myocardial infarction is the dispute settled? Hypertension. 67:504–505. 2016.PubMed/NCBI

101 

Iekushi K, Taniyama Y, Azuma J, Katsuragi N, Dosaka N, Sanada F, Koibuchi N, Nagao K, Ogihara T and Morishita R: Novel mechanisms of valsartan on the treatment of acute myocardial infarction through inhibition of the antiadhesion molecule periostin. Hypertension. 49:1409–1414. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Merle B and Garnero P: The multiple facets of periostin in bone metabolism. Osteoporos Int. 23:1199–1212. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Snider P, Standley KN, Wang J, Azhar M, Doetschman T and Conway SJ: Origin of cardiac fibroblasts and the role of periostin. Circ Res. 105:934–947. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Hakuno D, Kimura N, Yoshioka M, Mukai M, Kimura T, Okada Y, Yozu R, Shukunami C, Hiraki Y, Kudo A, et al: Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. J Clin Invest. 120:2292–2306. 2010. View Article : Google Scholar : PubMed/NCBI

105 

Zhu S, Barbe MF, Liu C, Hadjiargyrou M, Popoff SN, Rani S, Safadi FF and Litvin J: Periostin-like factor in osteogenesis. J Cell Physiol. 218:584–592. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Rani S, Barbe MF, Barr AE and Litvin J: Periostin-like-factor and periostin in an animal model of work-related musculoskeletal disorder. Bone. 44:502–512. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Perrier A, Dumas V, Linossier MT, Fournier C, Jurdic P, Rattner A, Vico L and Guignandon A: Apatite content of collagen materials dose-dependently increases pre-osteoblastic cell deposition of a cement line-like matrix. Bone. 47:23–33. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Freitas F, Jeschke M, Majstorovic I, Mueller DR, Schindler P, Voshol H, Van Oostrum J and Susa M: Fluoroaluminate stimulates phosphorylation of p130 Cas and Fak and increases attachment and spreading preosteoblastic MC3T3-E1 cells. Bone. 30:99–108. 2002. View Article : Google Scholar : PubMed/NCBI

109 

Wang DJ, Oparil S, Feng JA, Li P, Perry G, Chen LB, Dai M, John SW and Chen YF: Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension J. 42:88–95. 2003. View Article : Google Scholar

110 

Litvin J, Blagg A, Mu A, Matiwala S, Montgomery M, Berretta R, Houser S and Margulies K: Periostin and periostin-like factor in the human heart: Possible therapeu tic targets. Cardiovasc Pathol. 15:24–32. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Katsuragi N, Morishita R, Nakamura N, Ochiai T, Taniyama Y, Hasegawa Y, Kawashima K, Kaneda Y, Ogihara T and Sugimura K: Periostin as a novel factor responsible for ventricular dilation. Circulation. 110:1806–1813. 2004. View Article : Google Scholar : PubMed/NCBI

112 

Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW II, Conway SJ, et al: Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res. 101:313–321. 2007. View Article : Google Scholar : PubMed/NCBI

113 

Sen K, Lindenmeyer MT, Gaspert A, Eichinger F, Neusser MA, Kretzler M, Segerer S and Cohen CD: Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis. Am J Pathol. 179:1756–1767. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Lindner V, Wang Q, Conley BA, Friesel RE and Vary CP: Vascular injury induces expression of periostin: Implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol. 25:77–83. 2005.PubMed/NCBI

115 

Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, Zheng Q, Protter AA, Schreiner GF and White RT: Altered patterns of gene expression in response to myocardial infarction. Circ Res. 86:939–945. 2000. View Article : Google Scholar : PubMed/NCBI

116 

Deng T, Zhang Y, Chen Q, Yan K and Han D: Toll-like receptor-mediated inhibition of Gas6 and ProS expression facilitates inflammatory cytokine production in mouse macrophages. Immunology J. 135:40–50. 2012. View Article : Google Scholar

117 

Bellosta P, Zhang Q, Goff SP and Basilico C: Signaling through the ARK tyrosine kinase receptor protects from apoptosis in the absence of growth stimulation. Oncogene. 15:2387–2389. 1997. View Article : Google Scholar : PubMed/NCBI

118 

Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ and Taichman RS: GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 12:116–127. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Hasanbasic I, Rajotte I and Blostein M: The role of gamma-carboxylation in the anti-apoptotic function of gas6. J Thromb Haemost. 3:2790–2797. 2005. View Article : Google Scholar : PubMed/NCBI

120 

Son BK, Kozaki K, Iijima K, Eto M, Kojima T, Ota H, Senda Y, Maemura K, Nakano T, Akishita M and Ouchi Y: Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway. Circ Res. 98:1024–1031. 2006. View Article : Google Scholar : PubMed/NCBI

121 

Zhao YF, Xu DC, Zhu GF, Zhu MY, Tang K, Li WM and Xu YW: Growth arrest-specific 6 exacerbates pressure overload-induced cardiac hypertrophy. Hypertension. 67:118–129. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Park JK, Theuer S, Kirsch T, Lindschau C, Klinge U, Heuser A, Plehm R, Todiras M, Carmeliet P, Haller H, et al: Growth arrest specific protein 6 participates in DOCA-induced target-organ damage. Hypertension. 54:359–364. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S and Torgerson DJ: Vitamin K and the prevention of fractures: Systematic review and meta-analysis of randomized controlled trials. J Arch Intern Med. 166:1256–1261. 2006. View Article : Google Scholar

124 

Pucaj K, Rasmussen H, Møller M and Preston T: Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7. Toxicol Mech Methods. 21:520–532. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Danziger J, Young RL, Shea MK, Tracy RP, Ix JH, Jenny NS and Mukamal KJ: Vitamin K-dependent protein activity and incident ischemic cardiovascular disease: The multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 36:1037–1042. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Litvina J, Blagga A, Mua A, Matiwalaa S, Montgomerya M, Berrettaa R, Housera S and Marguliesa K: Periostin and periostin-like factor in the human heart: possible therapeutic targets. Cardiovasc Pathol. 15:24–32. 2006. View Article : Google Scholar : PubMed/NCBI

127 

Severson AR, Ingram RT and Fitzpatrick LA: Matrix proteins associated with bone calcification are present in human vascular smooth muscle cells grown in vitro. In Vitro Cell Dev Biol Anim. 31:853–857. 1995. View Article : Google Scholar : PubMed/NCBI

128 

Dhore CR, Cleutjens JP, Lutgens E, Cleutjens KB, Geusens PP, Kitslaar PJ, Tordoir JH, Spronk HM, Vermeer C and Daemen MJ: Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 21:1998–2003. 2001. View Article : Google Scholar : PubMed/NCBI

129 

Trion A and van der Laarse A: Vascular smooth muscle cells and calcification in atherosclerosis. Am Heart J. 147:808–814. 2004. View Article : Google Scholar : PubMed/NCBI

130 

Dowd TL, Rosen JF, Li L and Gundberg CM: The three-dimensional structure of bovine calcium ion-bound osteocalcin using 1H NMR spectroscopy. Biochemistry. 42:7769–7779. 2003. View Article : Google Scholar : PubMed/NCBI

131 

Hauschka PV and Carr SA: Calcium-dependent alpha-helical structure in osteocalcin. Biochemistry. 21:2538–2547. 1982. View Article : Google Scholar : PubMed/NCBI

132 

Gerbaix M, Vico L, Ferrari SL and Bonnet N: Periostin expression contributes to cortical bone loss during unloading. Bone. 71:94–100. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Bonnet N, Gineyts E, Ammann P, Conway SJ, Garnero P and Ferrari S: Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One. 8:e783472013. View Article : Google Scholar : PubMed/NCBI

134 

Brent AE and Tabin CJ: Developmental regulation of somite derivatives: Muscle, cartilage and tendon. Curr Opin Genet Dev. 12:548–557. 2002. View Article : Google Scholar : PubMed/NCBI

135 

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI

136 

Minguell JJ, Erices A and Conget P: Mesenchymal stem cells. Exp Biol Med (Maywood). 226:507–520. 2001. View Article : Google Scholar : PubMed/NCBI

137 

Le Blanc K and Pittenger M: Mesenchymal stem cells: Progress toward promise. Cytotherapy. 7:36–45. 2005. View Article : Google Scholar : PubMed/NCBI

138 

Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L and La Russa VF: Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther. 5:1571–1584. 2005. View Article : Google Scholar : PubMed/NCBI

139 

Hui JH, Ouyang HW, Hutmacher DW, Goh JC and Lee EH: Mesenchymal stem cells in musculoskeletal tissue engineering: A review of recent advances in National University of Singapore. Ann Acad Med Singapore. 34:206–212. 2005.PubMed/NCBI

140 

Caplan AI: Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Eng. 11:1198–1211. 2005. View Article : Google Scholar : PubMed/NCBI

141 

Menasché P: The potential of embryonic stem cells to treat heart disease. Curr Opin Mol Ther. 7:293–299. 2005.PubMed/NCBI

142 

Laflamme MA and Murry CE: Regenerating the heart. Nat Biotechnol. 23:845–856. 2005. View Article : Google Scholar : PubMed/NCBI

143 

Ben Shoham A, Rot C, Stern T, Krief S, Akiva A, Dadosh T, Sabany H, Lu Y, Kadler KE and Zelzer E: Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development. 143:3933–3943. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wen L, Chen J, Duan L and Li S: Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep 18: 3-15, 2018.
APA
Wen, L., Chen, J., Duan, L., & Li, S. (2018). Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Molecular Medicine Reports, 18, 3-15. https://doi.org/10.3892/mmr.2018.8940
MLA
Wen, L., Chen, J., Duan, L., Li, S."Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review)". Molecular Medicine Reports 18.1 (2018): 3-15.
Chicago
Wen, L., Chen, J., Duan, L., Li, S."Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review)". Molecular Medicine Reports 18, no. 1 (2018): 3-15. https://doi.org/10.3892/mmr.2018.8940
Copy and paste a formatted citation
x
Spandidos Publications style
Wen L, Chen J, Duan L and Li S: Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep 18: 3-15, 2018.
APA
Wen, L., Chen, J., Duan, L., & Li, S. (2018). Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review). Molecular Medicine Reports, 18, 3-15. https://doi.org/10.3892/mmr.2018.8940
MLA
Wen, L., Chen, J., Duan, L., Li, S."Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review)". Molecular Medicine Reports 18.1 (2018): 3-15.
Chicago
Wen, L., Chen, J., Duan, L., Li, S."Vitamin K‑dependent proteins involved in bone and cardiovascular health (Review)". Molecular Medicine Reports 18, no. 1 (2018): 3-15. https://doi.org/10.3892/mmr.2018.8940
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team