Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection

  • Authors:
    • Lei Huang
    • Jianning Deng
    • Wen Xu
    • Hongbo Wang
    • Lei Shi
    • Fengyao Wu
    • Dan Wu
    • Weimin Nei
    • Min Zhao
    • Panyong Mao
    • Xianzhi Zhou
  • View Affiliations / Copyright

    Affiliations: Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing 100039, P.R. China, Guangxi AIDS Clinical Treatment Center, The Fourth People's Hospital of Nanning, Nanning, Guangxi 530023, P.R. China, The Second Center of Hepatobiliary Surgery Department, 302 Military Hospital of China, Beijing 100039, P.R. China, Research Clinical Center for Translational Medicine, 302 Military Hospital of China, Beijing 100039, P.R. China, The Fourth Military Medical University, Xian, Shaanxi 710032, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 77-86
    |
    Published online on: May 3, 2018
       https://doi.org/10.3892/mmr.2018.8964
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Lymph node (LN) fibrosis resulting in cluster of differentiation (CD) 4+ T cell reduction following human immunodeficiency virus (HIV) infection is an important step in the pathogenesis of acquired immunodeficiency syndrome. The mechanisms mediating LN fibrosis following HIV infection have not been completely elucidated. In order to investigate the mechanism of LN fibrosis, the expression of transforming growth factor (TGF)‑β1 was determined in the LNs of HIV‑infected individuals by immunohistochemistry and fluorescence‑based flow cytometry. The effect of stimulated CD8+ T cells on collagen secretion by fibroblasts was detected using immunofluorescence staining and western blot analysis. The results demonstrated that the LNs of HIV‑infected individuals exhibited a significantly increased proportion of CD8+ T cells with high TGF‑β1 expression. These CD8+ T cells demonstrated increased CD38 and programmed cell death protein 1 expression and decreased CD127 expression compared with the controls. CD8+ T cells from the LNs of non‑HIV infected individuals expressed a high TGF‑β1 level following stimulation with phorbol‑12‑myristate 13‑acetate. These CD8+T cells subsequently induced the secretion of a large amount of type I collagen in human lymphatic fibroblasts. The results of the present study indicated that CD8+ T cells with high TGF‑β1 expression served an important role in LN fibrosis following HIV infection.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Gandhi RT, Chen BK, Straus SE, Dale JK, Lenardo MJ and Baltimore D: HIV-1 directly kills CD4+ T cells by a Fas-independent mechanism. J Exp Med. 187:1113–1122. 1998. View Article : Google Scholar : PubMed/NCBI

2 

Zinkernagel RM: Are HIV-specific CTL responses salutary or pathogenic? Curr Opin Immunol. 7:462–470. 1995. View Article : Google Scholar : PubMed/NCBI

3 

McCune JM: The dynamics of CD4+ T-cell depletion in HIV disease. Nature. 410:974–979. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Dion ML, Poulin JF, Bordi R, Sylvestre M, Corsini R, Kettaf N, Dalloul A, Boulassel MR, Debré P, Routy JP, et al: HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity. 21:757–768. 2004. View Article : Google Scholar : PubMed/NCBI

5 

McCune JM, Loftus R, Schmidt DK, Carroll P, Webster D, Swor-Yim LB, Francis IR, Gross BH and Grant RM: High prevalence of thymic tissue in adults with human immunodeficiency virus-1 infection. J Clin Invest. 101:2301–2308. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Brenchley JM, Price DA and Douek DC: HIV disease: Fallout from a mucosal catastrophe? Nat Immunol. 7:235–239. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Grossman Z, Meier-Schellersheim M, Paul WE and Picker LJ: Pathogenesis of HIV infection: What the virus spares is as important as what it destroys. Nat Med. 12:289–295. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Derdeyn CA and Silvestri G: Viral and host factors in the pathogenesis of HIV infection. Curr Opin Immunol. 17:366–373. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Drayton DL, Liao S, Mounzer RH and Ruddle NH: Lymphoid organ development: From ontogeny to neogenesis. Nat Immunol. 7:344–353. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Angeli V, Ginhoux F, Llodrà J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M and Randolph GJ: B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity. 24:203–215. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Bajénoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N and Germain RN: Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 25:989–1001. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y, Lew AM, Shortman K, Heath WR and Carbone FR: Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 25:153–162. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG and Luther SA: Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol. 8:1255–1265. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Urban ML, Manenti L and Vaglio A: Fibrosis-a common pathway to organ injury and failure. N Engl J Med. 373:95–96. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Denton CP and Abraham DJ: Transforming growth factor-beta and connective tissue growth factor: Key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol. 13:505–511. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Li MO, Wan YY, Sanjabi S, Robertson AK and Flavell RA: Transforming growth factor-beta regulation of immune responses. Ann Rev Immunol. 24:99–146. 2006. View Article : Google Scholar

17 

Kehrl JH, Roberts AB, Wakefield LM, Jakowlew S, Sporn MB and Fauci AS: Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol. 137:3855–3860. 1986.PubMed/NCBI

18 

Esplugues E, Sancho D, Vega-Ramos J, Martínez C, Syrbe U, Hamann A, Engel P, Sánchez-Madrid F and Lauzurica P: Enhanced antitumor immunity in mice deficient in CD69. J Exp Med. 197:1093–1106. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Gray JD, Hirokawa M, Ohtsuka K and Horwitz DA: Generation of an inhibitory circuit involving CD8+ T cells, IL-2, and NK cell-derived TGF-beta: Contrasting effects of anti-CD2 and anti-CD3. J Immunol. 160:2248–2254. 1998.PubMed/NCBI

20 

Zhang W, He T, Wang Q, Li X, Wei J, Hou X, Zhang B, Huang L and Wang L: Interleukin-1 receptor-associated kinase-2 genetic variant rs708035 increases NF-κB activity through promoting TRAF6 ubiquitination. J Biol Chem. 289:12507–12519. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Estes JD, Wietgrefe S, Schacker T, Southern P, Beilman G, Reilly C, Milush JM, Lifson JD, Sodora DL, Carlis JV and Haase AT: Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor beta 1-positive regulatory T cells and begins in early infection. J Infect Dis. 195:551–561. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Schacker TW, Nguyen PL, Beilman GJ, Wolinsky S, Larson M, Reilly C and Haase AT: Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J Clin Invest. 110:1133–1139. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Diaz A, Alós L, León A, Mozos A, Caballero M, Martinez A, Plana M, Gallart T, Gil C, Leal M, et al: Factors associated with collagen deposition in lymphoid tissue in long-term treated HIV-infected patients. AIDS. 24:2029–2039. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Diaz A, García F, Mozos A, Caballero M, León A, Martinez A, Gil C, Plana M, Gallart T, Gatell JM and Alós L: Lymphoid tissue collagen deposition in HIV-infected patients correlates with the imbalance between matrix metalloproteinases and their inhibitors. J Infect Dis. 203:810–813. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Estes JD: Role of collagen deposition in lymphatic tissues and immune reconstruction during HIV-1 and SIV infections. Current HIV/AIDS Rep. 6:29–35. 2009. View Article : Google Scholar

26 

Schacker TW, Brenchley JM, Beilman GJ, Reilly C, Pambuccian SE, Taylor J, Skarda D, Larson M, Douek DC and Haase AT: Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin Vaccine Immunol. 13:556–560. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Nies-Kraske E, Schacker TW, Condoluci D, Orenstein J, Brenchley J, Fox C, Daucher M, Dewar R, Urban E, Hill B, et al: Evaluation of the pathogenesis of decreasing CD4(+) T cell counts in human immunodeficiency virus type 1-infected patients receiving successfully suppressive antiretroviral therapy. J Infect Dis. 199:1648–1656. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, Estes JD, Burton GF, Silvestri G, Lifson JD, et al: Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest. 121:998–1008. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Zeng M, Southern PJ, Reilly CS, Beilman GJ, Chipman JG, Schacker TW and Haase AT: Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 8:e10024372012. View Article : Google Scholar : PubMed/NCBI

30 

Estes JD, Haase AT and Schacker TW: The role of collagen deposition in depleting CD4+ T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche. Semin Immunol. 20:181–186. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, et al: Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 359:693–699. 1992. View Article : Google Scholar : PubMed/NCBI

32 

Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM and Karlsson S: Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 90:770–774. 1993. View Article : Google Scholar : PubMed/NCBI

33 

Furuya Y, Furuya AK, Roberts S, Sanfilippo AM, Salmon SL and Metzger DW: Prevention of influenza virus-induced immunopathology by TGF-β produced during allergic asthma. PLoS Pathog. 11:e10051802015. View Article : Google Scholar : PubMed/NCBI

34 

Tang B, Böttinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, Letterio JJ and Wakefield LM: Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med. 4:802–807. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Ziv E, Cauley J, Morin PA, Saiz R and Browner WS: Association between the T29->C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: The Study of Osteoporotic Fractures. JAMA. 285:2859–2863. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Kushiyama Y, Fukuda R, Suetsugu H, Kazumori H, Ishihara S, Adachi K and Kinoshita Y: Site-dependent production of transforming growth factor beta1 in colonic mucosa: Its possible role in tumorigenesis of the colon. J Lab Clin Med. 136:201–208. 2000. View Article : Google Scholar : PubMed/NCBI

37 

Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S and Li E: Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA. 97:2626–2631. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Estes JD: Pathobiology of HIV/SIV-associated changes in secondary lymphoid tissues. Immunol Rev. 254:65–77. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Lang KS, Recher M, Navarini AA, Harris NL, Löhning M, Junt T, Probst HC, Hengartner H and Zinkernagel RM: Inverse correlation between IL-7 receptor expression and CD8 T cell exhaustion during persistent antigen stimulation. Eur J Immunol. 35:738–745. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H and Honjo T: Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 8:765–772. 1996. View Article : Google Scholar : PubMed/NCBI

41 

Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, Vanderford TH, Chennareddi L, Silvestri G, Freeman GJ, et al: Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 458:206–210. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Kim HJ, Verbinnen B, Tang X, Lu L and Cantor H: Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self tolerance. Nature. 467:328–332. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Kim HJ, Barnitz RA, Kreslavsky T, Brown FD, Moffett H, Lemieux ME, Kaygusuz Y, Meissner T, Holderried TA, Chan S, et al: Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science. 350:334–339. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Kim HJ and Cantor H: Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells. Semin Immunol. 23:446–452. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Lu L, Kim HJ, Werneck MB and Cantor H: Regulation of CD8+ regulatory T cells: Interruption of the NKG2A-Qa-1 interaction allows robust suppressive activity and resolution of autoimmune disease. Proc Natl Acad Sci USA. 105:19420–19425. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Jiang H, Canfield SM, Gallagher MP, Jiang HH, Jiang Y, Zheng Z and Chess L: HLA-E-restricted regulatory CD8(+) T cells are involved in development and control of human autoimmune type 1 diabetes. J Clin Invest. 120:3641–3650. 2010. View Article : Google Scholar : PubMed/NCBI

47 

He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, et al: Follicular CXCR5-expressing CD8(+) T cells curtail chronic viral infection. Nature. 537:412–428. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Mylvaganam GH, Rios D, Abdelaal HM, Iyer S, Tharp G, Mavigner M, Hicks S, Chahroudi A, Ahmed R, Bosinger SE, et al: Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci USA. 114:1976–1981. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Fuschiotti P, Larregina AT, Ho J, Feghali-Bostwick C and Medsger TA Jr: Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum. 65:236–246. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang L, Deng J, Xu W, Wang H, Shi L, Wu F, Wu D, Nei W, Zhao M, Mao P, Mao P, et al: CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection. Mol Med Rep 18: 77-86, 2018.
APA
Huang, L., Deng, J., Xu, W., Wang, H., Shi, L., Wu, F. ... Zhou, X. (2018). CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection. Molecular Medicine Reports, 18, 77-86. https://doi.org/10.3892/mmr.2018.8964
MLA
Huang, L., Deng, J., Xu, W., Wang, H., Shi, L., Wu, F., Wu, D., Nei, W., Zhao, M., Mao, P., Zhou, X."CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection". Molecular Medicine Reports 18.1 (2018): 77-86.
Chicago
Huang, L., Deng, J., Xu, W., Wang, H., Shi, L., Wu, F., Wu, D., Nei, W., Zhao, M., Mao, P., Zhou, X."CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection". Molecular Medicine Reports 18, no. 1 (2018): 77-86. https://doi.org/10.3892/mmr.2018.8964
Copy and paste a formatted citation
x
Spandidos Publications style
Huang L, Deng J, Xu W, Wang H, Shi L, Wu F, Wu D, Nei W, Zhao M, Mao P, Mao P, et al: CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection. Mol Med Rep 18: 77-86, 2018.
APA
Huang, L., Deng, J., Xu, W., Wang, H., Shi, L., Wu, F. ... Zhou, X. (2018). CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection. Molecular Medicine Reports, 18, 77-86. https://doi.org/10.3892/mmr.2018.8964
MLA
Huang, L., Deng, J., Xu, W., Wang, H., Shi, L., Wu, F., Wu, D., Nei, W., Zhao, M., Mao, P., Zhou, X."CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection". Molecular Medicine Reports 18.1 (2018): 77-86.
Chicago
Huang, L., Deng, J., Xu, W., Wang, H., Shi, L., Wu, F., Wu, D., Nei, W., Zhao, M., Mao, P., Zhou, X."CD8+ T cells with high TGF‑β1 expression cause lymph node fibrosis following HIV infection". Molecular Medicine Reports 18, no. 1 (2018): 77-86. https://doi.org/10.3892/mmr.2018.8964
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team