|
1
|
Yang K, Xu C, Li X and Jiang H:
Combination of D942 with curcumin protects cardiomyocytes from
ischemic damage through promoting autophagy. J Cardiovasc Pharmacol
Therap. 18:570–581. 2013. View Article : Google Scholar
|
|
2
|
Han Z, Cao J, Song D, Tian L, Chen K, Wang
Y, Gao L, Yin Z, Fan Y and Wang C: Autophagy is involved in the
cardioprotection effect of remote limb ischemic postconditioning on
myocardial ischemia/reperfusion injury in normal mice, but not
diabetic mice. PLoS One. 9:e868382014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Murphy E and Steenbergen C: Mechanisms
underlying acute protection from cardiac ischemia-reperfusion
injury. Physiol Rev. 88:581–609. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Das DK and Maulik N: Preconditioning
potentiates redox signaling and converts death signal into survival
signal. Arch Biochem Biophys. 420:305–311. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Aoyagi T, Kusakari Y, Xiao CY, Inouye BT,
Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K and Matsui T:
Cardiac mTOR protects the heart against ischemia-reperfusion
injury. Am J Physiol Heart Circ Physiol. 303:H75–H85. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Li Y, Xiang Y, Zhang S, Wang Y, Yang J,
Liu W and Xue F: Intramyocardial injection of thioredoxin
2-expressing lentivirus alleviates myocardial ischemia-reperfusion
injury in rats. Am J Transl Res. 9:4428–4439. 2017.PubMed/NCBI
|
|
7
|
Sasaki Y, Ikeda Y, Iwabayashi M, Akasaki Y
and Ohishi M: The impact of autophagy on cardiovascular senescence
and diseases. Int Heart J. 58:666–673. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yang L, Wang H, Shen Q, Feng L and Jin H:
Long non-coding RNAs involved in autophagy regulation. Cell Death
Dis. 8:e30732017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Green DR, Galluzzi L and Kroemer G:
Mitochondria and the autophagy-inflammation-cell death axis in
organismal aging. Science. 333:1109–1112. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sica V, Galluzzi L, Pedro Bravo-San JM,
Izzo V, Maiuri MC and Kroemer G: Organelle-specific initiation of
autophagy. Mol Cell. 59:522–539. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mowers EE, Sharifi MN and MacLeod KF:
Functions of autophagy in the tumor microenvironment and cancer
metastasis. FEBS J. 2018.doi: 10.1111/febs.14388. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pellacani C and Costa LG: Role of
autophagy in environmental neurotoxicity. Environ Pollut.
235:791–805. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yang X, Cohen MV and Downey JM: Mechanism
of cardioprotection by early ischemic preconditioning. Cardiovasc
Drugs Ther. 24:225–234. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Levine B and Klionsky DJ: Development by
self-digestion: Molecular mechanisms and biological functions of
autophagy. Dev Cell. 6:463–477. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ma H, Guo R, Yu L, Zhang Y and Ren J:
Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial
ischaemia/reperfusion injury: Role of autophagy paradox and toxic
aldehyde. Eur Heart J. 32:1025–1038. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Huang C, Yitzhaki S, Perry CN, Liu W,
Giricz Z, Mentzer RM Jr and Gottlieb RA: Autophagy induced by
ischemic preconditioning is essential for cardioprotection. J
Cardiovasc Transl Res. 3:365–373. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shintani T and Klionsky DJ: Autophagy in
health and disease: A double-edged sword. Science. 306:990–995.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rubinsztein DC, Gestwicki JE, Murphy LO
and Klionsky DJ: Potential therapeutic applications of autophagy.
Nat Rev Drug Discov. 6:304–312. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sciarretta S, Hariharan N, Monden Y,
Zablocki D and Sadoshima J: Is autophagy in response to ischemia
and reperfusion protective or detrimental for the heart? Pediatr
Cardiol. 32:275–281. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Go AS, Mozaffarian D, Roger VL, Benjamin
EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, et al:
Executive summary: Heart disease and stroke statistics-2014 update:
A report from the American Heart Association. Circulation.
129:399–410. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bulluck H, Yellon DM and Hausenloy DJ:
Reducing myocardial infarct size: Challenges and future
opportunities. Heart. 102:341–348. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hamacher-Brady A, Brady NR, Logue SE,
Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA and Gustafsson AB:
Response to myocardial ischemia/reperfusion injury involves Bnip3
and autophagy. Cell Death Differ. 14:146–157. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Decker RS and Wildenthal K: Lysosomal
alterations in hypoxic and reoxygenated hearts. I. Ultrastructural
and cytochemical changes. Am J Pathol. 98:425–444. 1980.PubMed/NCBI
|
|
24
|
Matsui Y, Takagi H, Qu X, Abdellatif M,
Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of
autophagy in the heart during ischemia and reperfusion: Roles of
AMP-activated protein kinase and Beclin 1 in mediating autophagy.
Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kassiotis C, Ballal K, Wellnitz K, Vela D,
Gong M, Salazar R, Frazier OH and Taegtmeyer H: Markers of
autophagy are downregulated in failing human heart after mechanical
unloading. Circulation. 120 11 Suppl:S191–S197. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Jahania SM, Sengstock D, Vaitkevicius P,
Andres A, Ito BR, Gottlieb RA and Mentzer RM Jr: Activation of the
homeostatic intracellular repair response during cardiac surgery. J
Am Coll Surg. 216:719–729. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schiattarella GG and Hill JA: Therapeutic
targeting of autophagy in cardiovascular disease. J Mol Cell
Cardiol. 95:86–93. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hu Y, Sun Q, Li Z, Chen J, Shen C, Song Y
and Zhong Q: High basal level of autophagy in high-altitude
residents attenuates myocardial ischemia-reperfusion injury. J
Thorac Cardiovasc Surg. 148:1674–1680. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hamacher-Brady A, Brady NR and Gottlieb
RA: The interplay between pro-death and pro-survival signaling
pathways in myocardial ischemia/reperfusion injury: Apoptosis meets
autophagy. Cardiovasc Drugs Ther. 20:445–462. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gustafsson AB and Gottlieb RA: Eat your
heart out: Role of autophagy in myocardial ischemia/reperfusion.
Autophagy. 4:416–421. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Song X, Kusakari Y, Xiao CY, Kinsella SD,
Rosenberg MA, Scherrer-Crosbie M, Hara K, Rosenzweig A and Matsui
T: mTOR attenuates the inflammatory response in cardiomyocytes and
prevents cardiac dysfunction in pathological hypertrophy. Am J
Physiol Cell Physiol. 299:C1256–C1266. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
McCormick J, Suleman N, Scarabelli TM,
Knight RA, Latchman DS and Stephanou A: STAT1 deficiency in the
heart protects against myocardial infarction by enhancing
autophagy. J Cell Mol Med. 16:386–393. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gustafsson AB and Gottlieb RA: Autophagy
in ischemic heart disease. Circ Res. 104:150–158. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
House SL, Branch K, Newman G, Doetschman T
and Jel Schultz J: Cardioprotection induced by cardiac-specific
overexpression of fibroblast growth factor-2 is mediated by the
MAPK cascade. Am J Physiol Heart Circ Physiol. 289:H2167–H2175.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Baehrecke EH: Autophagy: Dual roles in
life and death? Nat Rev Mol Cell Biol. 6:505–510. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Qian J, Ren X, Wang X, Zhang P, Jones WK,
Molkentin JD, Fan GC and Kranias EG: Blockade of Hsp20
phosphorylation exacerbates cardiac ischemia/reperfusion injury by
suppressed autophagy and increased cell death. Circ Res.
105:1223–1231. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tsujimoto Y and Shimizu S: Another way to
die: Autophagic programmed cell death. Cell Death Differ. 12 Suppl
2:S1528–S1534. 2005. View Article : Google Scholar
|
|
38
|
Galluzzi L, Maiuri MC, Vitale I, Zischka
H, Castedo M, Zitvogel L and Kroemer G: Cell death modalities:
Classification and pathophysiological implications. Cell Death
Differ. 14:1237–1243. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huang C, Liu W, Perry CN, Yitzhaki S, Lee
Y, Yuan H, Tsukada YT, Hamacher-Brady A, Mentzer RM Jr and Gottlieb
RA: Autophagy and protein kinase C are required for
cardioprotection by sulfaphenazole. Am J Physiol Heart Circ
Physiol. 298:H570–H579. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hamacher-Brady A, Brady NR and Gottlieb
RA: Enhancing macroautophagy protects against ischemia/reperfusion
injury in cardiac myocytes. J Biol Chem. 281:29776–29787. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huber SM, Misovic M, Mayer C, Rodemann HP
and Dittmann K: EGFR-mediated stimulation of sodium/glucose
cotransport promotes survival of irradiated human A549 lung
adenocarcinoma cells. Radiother Oncol. 103:373–379. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gottlieb RA and Mentzer RM: Autophagy
during cardiac stress: Joys and frustrations of autophagy. Annu Rev
Physiol. 72:45–59. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sciarretta S, Zhai P, Shao D, Zablocki D,
Nagarajan N, Terada LS, Volpe M and Sadoshima J: Activation of
NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte
autophagy and survival during energy stress through the protein
kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic
initiation factor 2α/activating transcription factor 4 pathway.
Circ Res. 113:1253–1264. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wei L, Wu RB, Yang CM, Zheng SY and Yu XY:
Cardioprotective effect of a hemoglobin-based oxygen carrier on
cold ischemia/reperfusion injury. Cardiology. 120:73–83. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Boya P and Kroemer G: Beclin 1: A BH3-only
protein that fails to induce apoptosis. Oncogene. 28:2125–2127.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zalckvar E, Berissi H, Eisenstein M and
Kimchi A: Phosphorylation of Beclin 1 by DAP-kinase promotes
autophagy by weakening its interactions with Bcl-2 and Bcl-XL.
Autophagy. 5:720–722. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pattingre S, Tassa A, Qu X, Garuti R,
Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2
antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell.
122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Itakura E, Kishi C, Inoue K and Mizushima
N: Beclin 1 forms two distinct phosphatidylinositol 3-kinase
complexes with mammalian Atg14 and UVRAG. Mol Biol Cell.
19:5360–5372. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Martinet W, Knaapen MW, Kockx MM and De
Meyer GR: Autophagy in cardiovascular disease. Trends Mol Med.
13:482–491. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Furuya N, Yu J, Byfield M, Pattingre S and
Levine B: The evolutionarily conserved domain of Beclin 1 is
required for Vps34 binding, autophagy and tumor suppressor
function. Autophagy. 1:46–52. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Valentim L, Laurence KM, Townsend PA,
Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS and
Stephanou A: Urocortin inhibits Beclin1-mediated autophagic cell
death in cardiac myocytes exposed to ischaemia/reperfusion injury.
J Mol Cell Cardiol. 40:846–852. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xie H, Liu Q, Qiao S, Jiang X and Wang C:
Delayed cardioprotection by sevoflurane preconditioning: A novel
mechanism via inhibiting Beclin 1-mediated autophagic cell death in
cardiac myocytes exposed to hypoxia/reoxygenation injury. Int J
Clin Exp Pathol. 8:217–226. 2015.PubMed/NCBI
|
|
53
|
Peng W, Liu Y, Xu WJ and Xia QH: Role of
Beclin 1-dependent autophagy in cardioprotection of ischemic
preconditioning. J Huazhong Univ Sci Technolog Med Sci. 33:51–56.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Levine B, Sinha S and Kroemer G: Bcl-2
family members: Dual regulators of apoptosis and autophagy.
Autophagy. 4:600–606. 2008. View Article : Google Scholar :
|
|
55
|
Shimizu S, Kanaseki T, Mizushima N, Mizuta
T, Arakawa-Kobayashi S, Thompson CB and Tsujimoto Y: Role of Bcl-2
family proteins in a non-apoptotic programmed cell death dependent
on autophagy genes. Nat Cell Biol. 6:1221–1228. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Brocheriou V, Hagege AA, Oubenaissa A,
Lambert M, Mallet VO, Duriez M, Wassef M, Kahn A, Menasché P and
Gilgenkrantz H: Cardiac functional improvement by a human Bcl-2
transgene in a mouse model of ischemia/reperfusion injury. J Gene
Med. 2:326–333. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Imahashi K, Schneider MD, Steenbergen C
and Murphy E: Transgenic expression of Bcl-2 modulates energy
metabolism, prevents cytosolic acidification during ischemia and
reduces ischemia/reperfusion injury. Circ Res. 95:734–741. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liang XH, Kleeman LK, Jiang HH, Gordon G,
Goldman JE, Berry G, Herman B and Levine B: Protection against
fatal Sindbis virus encephalitis by beclin, a novel
Bcl-2-interacting protein. J Virol. 72:8586–8596. 1998.PubMed/NCBI
|
|
59
|
Ke J, Yao B, Li T, Cui S and Ding H: A2
Adenosine receptor-mediated cardioprotection against reperfusion
injury in rat hearts is associated with autophagy downregulation. J
Cardiovasc Pharmacol. 66:25–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Maiuri MC, Le Toumelin G, Criollo A, Rain
JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K,
Tavernarakis N, et al: Functional and physical interaction between
Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26:2527–2539.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Weston CR and Davis RJ: The JNK signal
transduction pathway. Curr Opin Cell Biol. 19:142–149. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhao Y and Herdegen T: Cerebral ischemia
provokes a profound exchange of activated JNK isoforms in brain
mitochondria. Mol Cell Neurosci. 41:186–195. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xu J, Qin X, Cai X, Yang L, Xing Y, Li J,
Zhang L, Tang Y, Liu J, Zhang X and Gao F: Mitochondrial JNK
activation triggers autophagy and apoptosis and aggravates
myocardial injury following ischemia/reperfusion. Biochim Biophys
Acta. 1852:262–270. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Madesh M, Antonsson B, Srinivasula SM,
Alnemri ES and Hajnoczky G: Rapid kinetics of tBid-induced
cytochrome c and Smac/DIABLO release and mitochondrial
depolarization. J Biol Chem. 277:5651–5659. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yang J, Liu X, Bhalla K, Kim CN, Ibrado
AM, Cai J, Peng TI, Jones DP and Wang X: Prevention of apoptosis by
Bcl-2: Release of cytochrome c from mitochondria blocked. Science.
275:1129–1132. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chu G, Egnaczyk GF, Zhao W, Jo SH, Fan GC,
Maggio JE, Xiao RP and Kranias EG: Phosphoproteome analysis of
cardiomyocytes subjected to beta-adrenergic stimulation:
Identification and characterization of a cardiac heat shock protein
p20. Circ Res. 94:184–193. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gurusamy N, Lekli I, Gorbunov NV,
Gherghiceanu M, Popescu LM and Das DK: Cardioprotection by
adaptation to ischaemia augments autophagy in association with
BAG-1 protein. J Cell Mol Med. 13:373–387. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Overbye A, Fengsrud M and Seglen PO:
Proteomic analysis of membrane-associated proteins from rat liver
autophagosomes. Autophagy. 3:300–322. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Townsend PA, Stephanou A, Packham G and
Latchman DS: BAG-1: A multi-functional pro-survival molecule. Int J
Biochem Cell Biol. 37:251–259. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Petiot A, Ogier-Denis E, Blommaart EF,
Meijer AJ and Codogno P: Distinct classes of phosphatidylinositol
3′-kinases are involved in signaling pathways that control
macroautophagy in HT-29 cells. J Biol Chem. 275:992–998. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gutierrez MG, Master SS, Singh SB, Taylor
GA, Colombo MI and Deretic V: Autophagy is a defense mechanism
inhibiting BCG and Mycobacterium tuberculosis survival in infected
macrophages. Cell. 119:753–766. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zheng Y, Gu S, Li X, Tan J, Liu S, Jiang
Y, Zhang C, Gao L and Yang HT: Berbamine postconditioning protects
the heart from ischemia/reperfusion injury through modulation of
autophagy. Cell Death Dis. 8:e25772017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Herzig S and Shaw RJ: AMPK: Guardian of
metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol.
19:121–135. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hardie DG and Sakamoto K: AMPK: A key
sensor of fuel and energy status in skeletal muscle. Physiology
(Bethesda). 21:48–60. 2006.PubMed/NCBI
|
|
75
|
Meley D, Bauvy C, Houben-Weerts JH,
Dubbelhuis PF, Helmond MT, Codogno P and Meijer AJ: AMP-activated
protein kinase and the regulation of autophagic proteolysis. J Biol
Chem. 281:34870–34879. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Samari HR and Seglen PO: Inhibition of
hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide
riboside and N6-mercaptopurine riboside. Evidence for involvement
of amp-activated protein kinase. J Biol Chem. 273:23758–23763.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Rohailla S, Clarizia N, Sourour M, Sourour
W, Gelber N, Wei C, Li J and Redington AN: Acute, delayed and
chronic remote ischemic conditioning is associated with
downregulation of mTOR and enhanced autophagy signaling. PLoS One.
9:e1112912014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kandadi MR, Hu N and Ren J: ULK1 plays a
critical role in AMPK-mediated myocardial autophagy and contractile
dysfunction following acute alcohol challenge. Curr Pharm Des.
19:4874–4887. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Park CW, Hong SM, Kim ES, Kwon JH, Kim KT,
Nam HG and Choi KY: BNIP3 is degraded by ULK1-dependent autophagy
via MTORC1 and AMPK. Autophagy. 9:345–360. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Przyklenk K, Undyala VV, Wider J,
Sala-Mercado JA, Gottlieb RA and Mentzer RM Jr: Acute induction of
autophagy as a novel strategy for cardioprotection: Getting to the
heart of the matter. Autophagy. 7:432–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dunlop EA, Hunt DK, Acosta-Jaquez HA,
Fingar DC and Tee AR: ULK1 inhibits mTORC1 signaling, promotes
multisite Raptor phosphorylation and hinders substrate binding.
Autophagy. 7:737–747. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Fiordaliso F, Li B, Latini R, Sonnenblick
EH, Anversa P, Leri A and Kajstura J: Myocyte death in
streptozotocin-induced diabetes in rats in angiotensin
II-dependent. Lab Invest. 80:513–527. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Lekli I, Ray D, Mukherjee S, Gurusamy N,
Ahsan MK, Juhasz B, Bak I, Tosaki A, Gherghiceanu M, Popescu LM and
Das DK: Co-ordinated autophagy with resveratrol and
gamma-tocotrienol confers synergetic cardioprotection. J Cell Mol
Med. 14:2506–2518. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Li Y, Wang Y, Kim E, Beemiller P, Wang CY,
Swanson J, You M and Guan KL: Bnip3 mediates the hypoxia-induced
inhibition on mammalian target of rapamycin by interacting with
Rheb. J Biol Chem. 282:35803–35813. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hamacher-Brady A, Brady NR, Gottlieb RA
and Gustafsson AB: Autophagy as a protective response to
Bnip3-mediated apoptotic signaling in the heart. Autophagy.
2:307–309. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Xu W, Jiang H, Hu X and Fu W: Effects of
high-mobility group box 1 on the expression of Beclin-1 and LC3
proteins following hypoxia and reoxygenation injury in rat
cardiomyocytes. Int J Clin Exp Med. 7:5353–5357. 2014.PubMed/NCBI
|
|
88
|
Ouyang F, Huang H, Zhang M, Chen M, Huang
F and Zhou S: HMGB1 induces apoptosis and EMT in association with
increased autophagy following H/R injury in cardiomyocytes. Int J
Mol Med. 37:679–689. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sciarretta S, Zhai P, Shao D, Maejima Y,
Robbins J, Volpe M, Condorelli G and Sadoshima J: Rheb is a
critical regulator of autophagy during myocardial ischemia:
Pathophysiological implications in obesity and metabolic syndrome.
Circulation. 125:1134–1146. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Shi WY, Xiao D, Wang L, Dong LH, Yan ZX,
Shen ZX, Chen SJ, Chen Y and Zhao WL: Therapeutic metformin/AMPK
activation blocked lymphoma cell growth via inhibition of mTOR
pathway and induction of autophagy. Cell Death Dis. 3:e2752012.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Gurusamy N, Lekli I, Mukherjee S, Ray D,
Ahsan MK, Gherghiceanu M, Popescu LM and Das DK: Cardioprotection
by resveratrol: A novel mechanism via autophagy involving the
mTORC2 pathway. Cardiovasc Res. 86:103–112. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhao M, Sun L, Yu XJ, Miao Y, Liu JJ, Wang
H, Ren J and Zang WJ: Acetylcholine mediates AMPK-dependent
autophagic cytoprotection in H9c2 cells during
hypoxia/reoxygenation injury. Cell Physiol Biochem. 32:601–613.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xie H, Xu Q, Jia J, Ao G, Sun Y, Hu L,
Alkayed NJ, Wang C and Cheng J: Hydrogen sulfide protects against
myocardial ischemia and reperfusion injury by activating
AMP-activated protein kinase to restore autophagic flux. Biochem
Biophys Res Commun. 458:632–638. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Takagi H, Matsui Y, Hirotani S, Sakoda H,
Asano T and Sadoshima J: AMPK mediates autophagy during myocardial
ischemia in vivo. Autophagy. 3:405–407. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yang Y, Wang H, Wang S, Xu M, Liu M, Liao
M, Frank JA, Adhikari S, Bower KA, Shi X, et al: GSK3β signaling is
involved in ultraviolet B-induced activation of autophagy in
epidermal cells. Int J Oncol. 41:1782–1788. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Onishi A, Miyamae M, Kaneda K, Kotani J
and Figueredo VM: Direct evidence for inhibition of mitochondrial
permeability transition pore opening by sevoflurane preconditioning
in cardiomyocytes: Comparison with cyclosporine A. Eur J Pharmacol.
675:40–46. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Shiomi M, Miyamae M, Takemura G, Kaneda K,
Inamura Y, Onishi A, Koshinuma S, Momota Y, Minami T and Figueredo
VM: Sevoflurane induces cardioprotection through reactive oxygen
species-mediated upregulation of autophagy in isolated guinea pig
hearts. J Anesth. 28:593–600. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hariharan N, Zhai P and Sadoshima J:
Oxidative stress stimulates autophagic flux during
ischemia/reperfusion. Antioxid Redox Signal. 14:2179–2190. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhong Y, Zhong P, He S, Zhang Y, Tang L,
Ling Y, Fu S, Tang Y, Yang P, Luo T, et al: Trimetazidine protects
cardiomyocytes against hypoxia/reoxygenation injury by promoting
AMP-activated protein kinase-dependent autophagic flux. J
Cardiovasc Pharmacol. 69:389–397. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li YY, Xiang Y, Zhang S, Wang Y, Yang J,
Liu W and Xue FT: Thioredoxin-2 protects against oxygen-glucose
deprivation/reperfusion injury by inhibiting autophagy and
apoptosis in H9c2 cardiomyocytes. Am J Transl Res. 9:1471–1482.
2017.PubMed/NCBI
|
|
101
|
Shiomi M, Miyamae M, Takemura G, Kaneda K,
Inamura Y, Onishi A, Koshinuma S, Momota Y, Minami T and Figueredo
VM: Induction of autophagy restores the loss of sevoflurane cardiac
preconditioning seen with prolonged ischemic insult. Eur J
Pharmacol. 724:58–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
He C and Klionsky DJ: Regulation
mechanisms and signaling pathways of autophagy. Annu Rev Genet.
43:67–93. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang LQ, Cheng XS, Huang CH, Huang B and
Liang Q: Rapamycin protects cardiomyocytes against
anoxia/reoxygenation injury by inducing autophagy through the
PI3k/Akt pathway. J Huazhong Univ Sci Technolog Med Sci. 35:10–15.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhai P, Sciarretta S, Galeotti J, Volpe M
and Sadoshima J: Differential roles of GSK-3β during myocardial
ischemia and ischemia/reperfusion. Circ Res. 109:502–511. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Horn HF and Vousden KH: Coping with
stress: Multiple ways to activate p53. Oncogene. 26:1306–1316.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hoshino A, Matoba S, Iwai-Kanai E,
Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M,
Mita Y, et al: p53-TIGAR axis attenuates mitophagy to exacerbate
cardiac damage after ischemia. J Mol Cell Cardiol. 52:175–184.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Townsend PA, Scarabelli TM, Davidson SM,
Knight RA, Latchman DS and Stephanou A: STAT-1 interacts with p53
to enhance DNA damage-induced apoptosis. J Biol Chem.
279:5811–5820. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Halestrap AP, Clarke SJ and Javadov SA:
Mitochondrial permeability transition pore opening during
myocardial reperfusion-a target for cardioprotection. Cardiovasc
Res. 61:372–385. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hausenloy D, Wynne A, Duchen M and Yellon
D: Transient mitochondrial permeability transition pore opening
mediates preconditioning-induced protection. Circulation.
109:1714–1717. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Saotome M, Katoh H, Yaguchi Y, Tanaka T,
Urushida T, Satoh H and Hayashi H: Transient opening of
mitochondrial permeability transition pore by reactive oxygen
species protects myocardium from ischemia-reperfusion injury. Am J
Physiol Heart Circ Physiol. 296:H1125–H1132. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Nanda A, Gukovskaya A, Tseng J and
Grinstein S: Activation of vacuolar-type proton pumps by protein
kinase C. Role in neutrophil pH regulation. J Biol Chem.
267:22740–22746. 1992.PubMed/NCBI
|
|
112
|
Nordstrom T, Grinstein S, Brisseau GF,
Manolson MF and Rotstein OD: Protein kinase C activation
accelerates proton extrusion by vacuolar-type H(+)-ATPases in
murine peritoneal macrophages. FEBS Lett. 350:82–86. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Voss M, Vitavska O, Walz B, Wieczorek H
and Baumann O: Stimulus-induced phosphorylation of vacuolar H
(+)-ATPase by protein kinase A. J Biol Chem. 282:33735–33742. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Shen YT, Depre C, Yan L, Park JY, Tian B,
Jain K, Chen L, Zhang Y, Kudej RK, Zhao X, et al: Repetitive
ischemia by coronary stenosis induces a novel window of ischemic
preconditioning. Circulation. 118:1961–1969. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Depre C, Park JY, Shen YT, Zhao X, Qiu H,
Yan L, Tian B, Vatner SF and Vatner DE: Molecular mechanisms
mediating preconditioning following chronic ischemia differ from
those in classical second window. Am J Physiol Heart Circ Physiol.
299:H752–H762. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Khan S, Salloum F, Das A, Xi L, Vetrovec
GW and Kukreja RC: Rapamycin confers preconditioning-like
protection against ischemia-reperfusion injury in isolated mouse
heart and cardiomyocytes. J Mol Cell Cardiol. 41:256–264. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Marzetti E, Wohlgemuth SE, Anton SD,
Bernabei R, Carter CS and Leeuwenburgh C: Cellular mechanisms of
cardioprotection by calorie restriction: State of the science and
future perspectives. Clin Geriatr Med. 25:715–732. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kavazis AN, Alvarez S, Talbert E, Lee Y
and Powers SK: Exercise training induces a cardioprotective
phenotype and alterations in cardiac subsarcolemmal and
intermyofibrillar mitochondrial proteins. Am J Physiol Heart Circ
Physiol. 297:H144–H152. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Jones SP and Bolli R: The ubiquitous role
of nitric oxide in cardioprotection. J Mol Cell Cardiol. 40:16–23.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ha T, Hua F, Liu X, Ma J, McMullen JR,
Shioi T, Izumo S, Kelley J, Gao X, Browder W, et al:
Lipopolysaccharide-induced myocardial protection against
ischaemia/reperfusion injury is mediated through a
PI3K/Akt-dependent mechanism. Cardiovasc Res. 78:546–553. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sala-Mercado JA, Wider J, Undyala VV,
Jahania S, Yoo W, Mentzer RM Jr, Gottlieb RA and Przyklenk K:
Profound cardioprotection with chloramphenicol succinate in the
swine model of myocardial ischemia-reperfusion injury. Circulation.
122:S179–S184. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Shirakabe A, Ikeda Y, Sciarretta S,
Zablocki DK and Sadoshima J: Aging and autophagy in the heart. Circ
Res. 118:1563–1576. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Gottlieb RA and Mentzer RM Jr:
Cardioprotection through autophagy: Ready for clinical trial?
Autophagy. 7:434–435. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Kanamori H, Takemura G, Goto K, Maruyama
R, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T,
Fujiwara T, et al: The role of autophagy emerging in postinfarction
cardiac remodelling. Cardiovasc Res. 91:330–339. 2011. View Article : Google Scholar : PubMed/NCBI
|