Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells

  • Authors:
    • Hua Wang
    • Yongxiang Wang
    • Jinshan He
    • Chunyu Diao
    • Junying Sun
    • Jingcheng Wang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, The First Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215006, P.R. China, Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu, Yangzhou, Jiangsu 225001, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 834-840
    |
    Published online on: May 17, 2018
       https://doi.org/10.3892/mmr.2018.9029
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to investigate the key gene network in fracture healing. The dataset GSE45156 was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified using the linear models for microarray data package of Bioconductor. Subsequently, Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for DEGs in day 2 and 6 fractured samples via the Database for Annotation, Visualization and Integrated Discovery. Furthermore, protein‑protein interactions (PPIs) of DEGs were analyzed and a PPI network was constructed. A total of 774 and 1,172 DEGs were identified in day 2 and 6 fractured samples, respectively, compared with unfractured controls. Of the DEGs in day 2 and 6 fractured samples, various upregulated DEGs, including protein kinase C α (Prkca) and B‑cell lymphoma antagonist/killer 1 were significantly enriched in GO terms associated with cell death, and certain downregulated DEGs, including fms‑related tyrosine kinase 1 (Flt1), nitric oxide synthase 3 (Nos3), bone morphogenetic protein 4 (Bmp4) and Notch1 were enriched in GO terms associated with angiogenesis. Furthermore, a series of downregulated DEGs were enriched in the Notch signaling pathway, including hes family bHLH transcription factor 1 and Notch1. Certain DEGs had a high degree and interacted with each other, including Flt1, Nos3, Bmp4 and Notch1, and Prkca and ras‑related C3 botulinum toxin substrate 3. The up and downregulated DEGs may exert critical functions by interactively regulating angiogenesis or apoptosis.
View Figures

Figure 1

Figure 2

View References

1 

Marsell R and Einhorn TA: The biology of fracture healing. Injury. 42:551–555. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT and Einhorn TA: Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 88:873–884. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Wan C, Shao J, Gilbert SR, Riddle RC, Long F, Johnson RS, Schipani E and Clemens TL: Role of HIF-1alpha in skeletal development. Ann N Y Acad Sci. 1192:322–326. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Al-Sebaei MO, Daukss DM, Belkina AC, Kakar S, Wigner NA, Cusher D, Graves D, Einhorn T, Morgan E and Gerstenfeld LC: Role of Fas and Treg cells in fracture healing as characterized in the Fas-Deficient (lpr) mouse model of lupus. J Bone Miner Res. 29:1478–1491. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, Kronenberg MS, Jiang X, Maye P, Adams DJ, et al: In vivo fate mapping identifies mesenchymal progenitor cells. Stem cells. 30:187–196. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K, Adams DJ, Aguila HL, Rowe DW and Kalajzic I: Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone. 43:501–510. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Roguljic H, Matthews B, Yang W, Cvija H, Mina M and Kalajzic I: In vivo identification of periodontal progenitor cells. J Dent Res. 92:709–715. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Matthews BG, Grcevic D, Wang L, Hagiwara Y, Roguljic H, Joshi P, Shin DG, Adams DJ and Kalajzic I: Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. J Bone Miner Res. 29:1283–1294. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y and Jiang H: Predicting protein-protein interactions based only on sequences information. Proc Natl Acad Sci USA. 104:4337–4341. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Smyth GK: Limma: linear models for microarray dataBioinformatics and computational biology solutions using R and Bioconductor. Springer; New York, NY: pp. 397–420. 2005, View Article : Google Scholar

11 

Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki RA: The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI

12 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43:D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Sawano A, Takahashi T, Yamaguchi S and Shibuya M: The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. Biochem Biophys Res Commun. 238:487–491. 1997. View Article : Google Scholar : PubMed/NCBI

15 

Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK and Rabie AB: The role of vascular endothelial growth factor in ossification. Int J Oral Sci. 4:64–68. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Chu TW, Liu YG, Wang ZG, Zhu PF and Liu LD: Vascular endothelial growth factor and its receptor expression during the process of fracture healing. Chin J Traumatol. 11:161–164. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, Lamas S and Michel T: Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett. 307:287–293. 1992. View Article : Google Scholar : PubMed/NCBI

18 

Armour KE, Armour KJ, Gallagher ME, Gödecke A, Helfrich MH, Reid DM and Ralston SH: Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology. 142:760–766. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Szczesny G, Olszewski WL and Zaleska M: Limb lymph node response to bone fracture. Lymphat Res Biol. 2:155–164. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Suganthalakshmi B, Anand R, Kim R, Mahalakshmi R, Karthikprakash S, Namperumalsamy P and Sundaresan P: Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol Vis. 12:336–341. 2006.PubMed/NCBI

21 

Shore EM, Xu M, Shah PB, Janoff HB, Hahn GV, Deardorff MA, Sovinsky L, Spinner NB, Zasloff MA, Wozney JM and Kaplan FS: The human bone morphogenetic protein 4 (BMP-4) gene: Molecular structure and transcriptional regulation. Calcif Tissue Int. 63:221–229. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Reddi A: Initiation of fracture repair by bone morphogenetic proteins. Clin Orthop Relat Res. 355 Suppl:S66–S72. 1998. View Article : Google Scholar : PubMed/NCBI

23 

Lin L, Fu X, Zhang X, Chen LX, Zhang JY, Yu CL, Ma KT and Zhou CY: Rat adipose-derived stromal cells expressing BMP4 induce ectopic bone formation in vitro and in vivo. Acta Pharmacol Sin. 27:1608–1615. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J and Hankenson KD: Systemic inhibition of canonical notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One. 8:e687262013. View Article : Google Scholar : PubMed/NCBI

25 

Wang C, Shen J, Yukata K, Inzana JA, O'Keefe RJ, Awad HA and Hilton MJ: Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone. 73:77–89. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Okamura H, Proia T, Bell A, Liu Q, Siddiquee Z, Lin J and Gyuris J: Notch1 monoclonal antibody inhibits tumor growth and modulates angiogenesis. Cancer Res. 74:2990. 2014. View Article : Google Scholar

27 

Zhu J, Liu Q, Jiang Y, Wu L, Xu G and Liu X: Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience. 290:288–299. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Nobta M, Tsukazaki T, Shibata Y, Xin C, Moriishi T, Sakano S, Shindo H and Yamaguchi A: Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J Biol Chem. 280:15842–15848. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Haataja L, Groffen J and Heisterkamp N: Characterization of RAC3, a novel member of the Rho family. J Biol Chem. 272:20384–20388. 1997. View Article : Google Scholar : PubMed/NCBI

30 

Hajdo-Milasinovic A, van der Kammen RA, Moneva Z and Collard JG: Rac3 inhibits adhesion and differentiation of neuronal cells by modifying GIT1 downstream signaling. J Cell Sci. 122:2127–2136. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Magalhaes JK, Grynpas MD, Willett TL and Glogauer M: Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model. Osteoporosis Int. 22:1481–1492. 2011. View Article : Google Scholar

32 

Li G, White G, Connolly C and Marsh D: Cell proliferation and apoptosis during fracture healing. J Bone Miner Res. 17:791–799. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Li X, Wang H, Touma E, Rousseau E, Quigg RJ and Ryaby JT: Genetic network and pathway analysis of differentially expressed proteins during critical cellular events in fracture repair. J Cell Biochem. 100:527–543. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Li X, Wang H, Touma E, Qi Y, Rousseau E, Quigg RJ and Ryaby JT: TP508 accelerates fracture repair by promoting cell growth over cell death. Biochem Biophys Res Commun. 364:187–193. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang H, Wang Y, He J, Diao C, Sun J and Wang J: Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells. Mol Med Rep 18: 834-840, 2018.
APA
Wang, H., Wang, Y., He, J., Diao, C., Sun, J., & Wang, J. (2018). Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells. Molecular Medicine Reports, 18, 834-840. https://doi.org/10.3892/mmr.2018.9029
MLA
Wang, H., Wang, Y., He, J., Diao, C., Sun, J., Wang, J."Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells". Molecular Medicine Reports 18.1 (2018): 834-840.
Chicago
Wang, H., Wang, Y., He, J., Diao, C., Sun, J., Wang, J."Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells". Molecular Medicine Reports 18, no. 1 (2018): 834-840. https://doi.org/10.3892/mmr.2018.9029
Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, Wang Y, He J, Diao C, Sun J and Wang J: Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells. Mol Med Rep 18: 834-840, 2018.
APA
Wang, H., Wang, Y., He, J., Diao, C., Sun, J., & Wang, J. (2018). Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells. Molecular Medicine Reports, 18, 834-840. https://doi.org/10.3892/mmr.2018.9029
MLA
Wang, H., Wang, Y., He, J., Diao, C., Sun, J., Wang, J."Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells". Molecular Medicine Reports 18.1 (2018): 834-840.
Chicago
Wang, H., Wang, Y., He, J., Diao, C., Sun, J., Wang, J."Identification of key gene networks associated with fracture healing using αSMA‑labeled progenitor cells". Molecular Medicine Reports 18, no. 1 (2018): 834-840. https://doi.org/10.3892/mmr.2018.9029
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team