Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review)

  • Authors:
    • Mubashir Hassan
    • Qamar Abbas
    • Sung‑Yum Seo
    • Saba Shahzadi
    • Hany Al Ashwal
    • Nazar Zaki
    • Zeeshan Iqbal
    • Ahmed A. Moustafa
  • View Affiliations / Copyright

    Affiliations: Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea, Department of Physiology, University of Sindh, Jamshoro 76080, Pakistan, Institute of Molecular Science and Bioinformatics, Dyal Singh Trust Library, Lahore 54000, Pakistan, College of Information Technology, United Arab Emirates University, Al‑Ain 15551, United Arab Emirates, School of Social Sciences and Psychology, Western Sydney University, Sydney, NSW 2751, Australia
  • Pages: 639-655
    |
    Published online on: May 22, 2018
       https://doi.org/10.3892/mmr.2018.9044
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Alzheimer's disease (AD) is a complex and multifactorial disease. In order to understand the genetic influence in the progression of AD, and to identify novel pharmaceutical agents and their associated targets, the present study discusses computational modeling and biomarker evaluation approaches. Based on mechanistic signaling pathway approaches, various computational models, including biochemical and morphological models, are discussed to explore the strategies that may be used to target AD treatment. Different biomarkers are interpreted on the basis of morphological and functional features of amyloid β plaques and unstable microtubule‑associated tau protein, which is involved in neurodegeneration. Furthermore, imaging and cerebrospinal fluids are also considered to be key methods in the identification of novel markers for AD. In conclusion, the present study reviews various biochemical and morphological computational models and biomarkers to interpret novel targets and agonists for the treatment of AD. This review also highlights several therapeutic targets and their associated signaling pathways in AD, which may have potential to be used in the development of novel pharmacological agents for the treatment of patients with AD. Computational modeling approaches may aid the quest for the development of AD treatments with enhanced therapeutic efficacy and reduced toxicity.
View Figures

Figure 1

Figure 2

View References

1 

Hedden T and Gabrieli JD: Insights into the ageing mind: A view from cognitive neuroscience. Nat Rev Neurosci. 5:87–96. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Ganguli M: Depression, cognitive impairment and dementia: Why should clinicians care about the web of causation? Indian J Psychiatry. 51 Suppl 1:S29–S34. 2009.PubMed/NCBI

3 

Tarawneh R and Holtzman DM: The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2:a0061482012. View Article : Google Scholar : PubMed/NCBI

4 

Burns A and Iliffe S: Alzheimer's disease. BMJ. 338:b1582009. View Article : Google Scholar : PubMed/NCBI

5 

Mendez MF: Early-onset alzheimer's disease: Nonamnestic subtypes and type 2 AD. Arch Med Res. 43:677–685. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Amaducci LA, Fratiglioni L, Rocca WA, Fieschi C, Livrea P, Pedone D, Bracco L, Lippi A, Gandolfo C, Bino G, et al: Risk factors for clinically diagnosed Alzheimer's disease: A case-control study of an Italian population. Neurology. 36:922–931. 1986. View Article : Google Scholar : PubMed/NCBI

7 

Mayeux R: Understanding Alzheimer's disease: Expect more genes and other things. Ann Neurol. 39:689–690. 1996. View Article : Google Scholar : PubMed/NCBI

8 

Blennow K, de Leon MJ and Zetterberg H: Alzheimer's disease. Lancet. 368:387–403. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Waring SC and Osenberg RN: Genome-wide association studies in Alzheimer disease. Arch Neurol. 65:329–334. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Selkoe DJ: Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 399 6738 Suppl:S23–S31. 2008. View Article : Google Scholar

11 

Mahley RW, Weisgraber KH and Huang Y: Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci USA. 103:5644–5651. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS and Roses AD: Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA. 90:1977–1981. 1993. View Article : Google Scholar : PubMed/NCBI

13 

Bertram L and Tanzi ER: Genome-wide association studies in Alzheimer's disease. Hum Mol Genet. 18:R137–R145. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Killin LO, Starr JM, Shiue IJ and Russ TC: Environmental risk factors for dementia: A systematic review. BMC Geriatr. 16:1752016. View Article : Google Scholar : PubMed/NCBI

15 

Dosunmu R, Wu J, Basha MR and Zawia NH: Environmental and dietary risk factors in Alzheimer's disease. Expert Rev Neurother. 7:887–900. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Wenk GL: Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry. 64 Suppl 9:S7–S10. 2003.

17 

Tiraboschi P, Sabbagh MN, Hansen LA, Salmon DP, Merdes A, Gamst A, Masliah E, Alford M, Thal LJ and Corey-Bloom J: Alzheimer disease without neocortical neurofibrillary tangles: ‘A second look’. Neurology. 62:1141–1147. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA and Herms J: Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci. 26:7212–7221. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Turner PR, O'Connor K, Tate WP and Abraham WC: Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol. 70:1–32. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Hooper NM: Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem Soc Trans. 33:335–338. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Ohnishi S and Takano K: Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci. 61:511–524. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Jope RS and Johnson GV: The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 29:95–102. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Hooper C, Killick R and Lovestone S: The GSK3 hypothesis of Alzheimer's disease. J Neurochem. 104:1433–1439. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Jope RS, Yuskaitis CJ and Beurel E: Glycogen synthase kinase-3 (GSK3): Inflammation, diseases and therapeutics. Neurochem Res. 32:577–595. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Paterson D and Nordberg A: Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 61:75–111. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Clader JW and Wang Y: Muscarinic receptor agonists and antagonists in the treatment of Alzheimer's disease. Curr Pharm Des. 11:3353–3361. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Jiang S, Li Y, Zhang C, Zhao Y, Bu G, Xu H and Zhang YW: M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neurosci Bull. 30:295–307. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Tsang SW, Lai MK, Kirvell S, Francis PT, Esiri MM, Hope T, Chen CP and Wong PT: Impaired coupling of muscarinic M1 receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer's disease. Neurobiol Aging. 27:1216–1223. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR, et al: Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci. 28:10422–10433. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Poulin B, Butcher A, McWilliams P, Bourgognon JM, Pawlak R, Kong KC, Bottrill A, Mistry S, Wess J, Rosethorne EM, et al: The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci USA. 107:9440–9445. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Wevers A and Schröder H: Nicotinic acetylcholine receptors in Alzheimer's disease. J Alzheimers Dis. 1:207–219. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Rinne JO, Myllykylä T, Lönnberg P and Marjamäki P: A Postmortem study of brain nicotinic receptors in Parkinson's and Alzheimer's disease. Brain Res. 547:167–170. 1991. View Article : Google Scholar : PubMed/NCBI

33 

Young JW, Meves JM, Tarantino IS, Caldwell S and Geyer MA: Delayed procedural learning in α7-nicotinic acetylcholine receptor knockout mice. Genes Brain Behav. 10:720–733. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Dziewczapolski G, Glogowski CM, Masliah E and Heinemann SF: Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease. J Neurosci. 29:8805–8815. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Chen L, Wang H, Zhang Z, Li Z, He D, Sokabe M and Chen L: DMXB (GTS-21) ameliorates the cognitive deficits in beta amyloid (25–35(−)) injected mice through preventing the dysfunction of alpha7 nicotinic receptor. J Neurosci Res. 88:1784–1794. 2010.PubMed/NCBI

36 

Faghih R, Gfesser GA and Gopalakrishnan M: Advances in the discovery of novel positive allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Recent Pat CNS Drug Discov. 2:99–106. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Roncarati R, Scali C, Comery TA, Grauer SM, Aschmi S, Bothmann H, Jow B, Kowal D, Gianfriddo M, Kelley C, et al: Procognitive and neuroprotective activity of a novel alpha7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J Pharmacol Exp Ther. 329:459–468. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Gubbins EJ, Gopalakrishnan M and Li J: Alpha7 nAChR-mediated activation of MAP kinase pathways in PC12 cells. Brain Res. 1328:1–11. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Miwa JM, Stevens TR, King SL, Caldarone BJ, Ibanez-Tallon I, Xiao C, Fitzsimonds RM, Pavlides C, Lester HA, Picciotto MR and Heintz N: The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron. 51:587–600. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Turner TJ: Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles. J Neurosci. 24:11328–11336. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Shen JX and Yakel JL: Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin. 30:673–680. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, et al: Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci. 27:10578–10587. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Chang KT and Berg DK: Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron. 32:855–865. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Hu M, Liu QS, Chang KT and Berg DK: Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and nonglutamatergic pathways. Mol Cell Neurosci. 21:616–625. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Ji D, Lape R and Dani JA: Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 31:131–141. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Auld DS, Kornecook TJ, Bastianetto S and Quirion R: Alzheimer's disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 68:209–245. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Lilja AM, Porras O, Storelli E, Nordberg A and Marutle A: Functional interactions of fibrillar and oligomeric amyloid-β with alpha7 nicotinic receptors in Alzheimer's disease. J Alzheimers Dis. 23:335–347. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Claeysen S, Bockaert J and Giannoni P: Serotonin: A new hope in alzheimer's disease? ACS Chem Neurosci. 6:940–943. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Geldenhuys WJ and Van der Schyf CJ: Role of serotonin in Alzheimer's disease: A new therapeutic target? CNS Drugs. 25:765–781. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y and Wang Q: Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Prog Neurobiol. 97:1–13. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Li Y, Huang XF, Deng C, Meyer B, Wu A, Yu Y, Ying W, Yang GY, Yenari MA and Wang Q: Alterations in 5-HT2A receptor binding in various brain regions among 6-hydroxydopamine-induced Parkinsonian rats. Synapse. 3:224–230. 2010. View Article : Google Scholar

52 

Polter AM and Li X: 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 22:1406–1412. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A and Meltzer HY: Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: A randomized, double-blind, placebo-controlled study. Schizophr Res. 95:158–168. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Lai MK, Tsang SW, Francis PT, Keene J, Hope T, Esiri MM, Spence I and Chen CP: Postmortem serotoninergic correlates of cognitive decline in Alzheimer's disease. Neuroreport. 13:1175–1178. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Garcia-Alloza M, Hirst WD, Chen CP, Lasheras B, Francis PT and Ramírez MJ: Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer's disease. Neuropsychopharmacology. 29:410–416. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Blin J, Baron JC, Dubois B, Crouzel C, Fiorelli M, Attar-Lévy D, Pillon B, Fournier D, Vidailhet M and Agid Y: Loss of brain 5-HT2 receptors in Alzheimer's disease. In vivo assessment with positron emission tomography and [18F]setoperone. Brain. 116:497–510. 1993. View Article : Google Scholar : PubMed/NCBI

57 

Hasselbalch SG, Madsen K, Svarer C, Pinborg LH, Holm S, Paulson OB, Waldemar G and Knudsen GM: Reduced 5-HT2A receptor binding in patients with mild cognitive impairment. Neurobiol Aging. 29:1830–1838. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Lai MK, Tsang SW, Alder JT, Keene J, Hope T, Esiri MM, Francis PT and Chen CP: Loss of serotonin 5HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer's disease. Psychopharmacology (Berl). 179:673–677. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Ramírez MJ: 5-HT6 receptors and Alzheimer's disease. Alzheimers Res Ther. 5:152013.PubMed/NCBI

60 

Ruat M, Traiffort E, Arrang JM, Tardivel-Lacombe J, Diaz J, Leurs R and Schwartz JC: A novel rat serotonin (5-HT6) receptor: Molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun. 193:268–276. 1993. View Article : Google Scholar : PubMed/NCBI

61 

Mitchell ES and Neumaier JF: 5-HT6 receptors: A novel target for cognitive enhancement. Pharmacol Ther. 108:320–333. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Perez-García G and Meneses A: Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task. Phar Biochem Behav. 81:673–682. 2005. View Article : Google Scholar

63 

Da Silva Costa V, Duchatelle P, Boulouard M and Dauphin F: Selective 5-HT6 receptor blockade improves spatial recognition memory and reverses age-related deficits in spatial recognition memory in the mouse. Neuropsychopharmacology. 34:488–500. 2009. View Article : Google Scholar : PubMed/NCBI

64 

West PJ, Marcy VR, Marino MJ and Schaffhauser H: Activation of the 5-HT(6) receptor attenuates longterm potentiation and facilitates GABAergic neurotransmission in rat hippocampus. Neuroscience. 164:692–701. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Zhang G and Stackman RW Jr: The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 6:2252015. View Article : Google Scholar : PubMed/NCBI

66 

Yun HM and Rhim H: The serotonin-6 receptor as a novel therapeutic target. Exp Neurobiol. 20:159–168. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Nichols DE and Nichols CD: Serotonin receptors. Chem Rev. 108:1614–1641. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Hirst WD, Stean TO, Rogers DC, Sunter D, Pugh P, Moss SF, Bromidge SM, Riley G, Smith DR, Bartlett S, et al: SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol. 553:109–119. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Schechter LE, Lin Q, Smith DL, Zhang G, Shan Q, Platt B, Brandt MR, Dawson LA, Cole D, Bernotas R, et al: Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology. 33:1323–1335. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y and De Keyser J: Astrocytic beta(2)-adrenergic receptors: From physiology to pathology. Prog Neurobiol. 91:189–199. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Shimohama S, Taniguchi T, Fujiwara M and Kameyama M: Biochemical characterization of alphaadrenergic receptors in human brain and changes in Alzheimer-type dementia. J Neurochem. 47:1295–1301. 1986.PubMed/NCBI

72 

Kalaria RN and Harik SI: Increased alpha 2- and beta 2-adrenergic receptors in cerebral microvessels in Alzheimer disease. Neurosci Lett. 106:233–238. 1989. View Article : Google Scholar : PubMed/NCBI

73 

Russo-Neustadt A and Cotman CW: Adrenergic receptors in Alzheimer's disease brain: Selective increases in the cerebella of aggressive patients. J Neurosci. 17:5573–5580. 1997. View Article : Google Scholar : PubMed/NCBI

74 

Contreras F, Fouillioux C, Bolívar A, Simonovis N, Hernández-Hernández R, Armas-Hernandez MJ and Velasco M: Dopamine, hypertension and obesity. J Hum Hypertens. 16 Suppl 1:S13–S17. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Nilsson A, Eriksson M, Muly EC, Akesson E, Samuelsson EB, Bogdanovic N, Benedikz E and Sundström E: Analysis of NR3A receptor subunits in human native NMDA receptors. Brain Res. 1186:102–112. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Janssen WG, Vissavajjhala P, Andrews G, Moran T, Hof PR and Morrison JH: Cellular and synaptic distribution of NR2A and NR2B in macaque monkey and rat hippocampus as visualized with subunit-specific monoclonal antibodies. Exp Neurol. 191 Suppl 1:S28–S44. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Proctor DT, Coulson EJ and Dodd PR: Post-synaptic scaffolding protein interactions with glutamate receptors in synaptic dysfunction and Alzheimer's disease. Prog Neurobiol. 93:509–521. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Sun H, Zhang J, Zhang L, Liu H, Zhu H and Yang Y: Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res. 7:268–280. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Amadoro G, Ciotti MT, Costanzi M, Cestari V, Calissano P and Canu N: NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci USA. 103:2892–2897. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Fortin DA, Davare MA, Srivastava T, Brady JD, Nygaard S, Derkach VA and Soderling TR: Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-permeable AMPA receptors recruited by CaM-kinase I. J Neurosci. 30:11565–11575. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Guetg N, Aziz Abdel S, Holbro N, Turecek R, Rose T, Seddik R, Gassmann M, Moes S, Jenoe P, Oertner TG, et al: NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc Natl Acad Sci USA. 107:13924–13929. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Silva T, Reis J, Teixeira J and Borges F: Alzheimer's disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res Rev. 15:116–145. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM and Vasić VM: Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr Neuropharmacol. 11:315–335. 2013. View Article : Google Scholar : PubMed/NCBI

84 

de Almeida JP and Saldanha C: Nonneuronal cholinergic system in human erythrocytes: Biological role and clinical relevance. J Membr Biol. 234:227–234. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Massoulié J, Pezzementi L, Bon S, Krejci E and Vallette FM: Molecular and cellular biology of cholinesterases. Prog Neurobiol. 41:31–91. 1993. View Article : Google Scholar : PubMed/NCBI

86 

Schliebs R and Arendt T: The significance of the cholinergic system in the brain during aging and in Alzheimer's disease. J Neural Transm (Vienna). 113:1625–1644. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Schliebs R and Arendt T: The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 221:555–563. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Greig NH, Lahiri DK and Sambamurti K: Butyrylcholinesterase: An important new target in Alzheimer's disease therapy. Int Psychogeriatr. 14 Suppl 1:S77–S91. 2002. View Article : Google Scholar

89 

Lane RM, Kivipelto M and Greig NH: Acetylcholinesterase and its inhibition in Alzheimer disease. Clin Neuropharmacol. 27:141–149. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Lane RM, Potkin SG and Enz A: Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 9:101–124. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Grossberg GT: Cholinesterase Inhibitors for the treatment of alzheimer's disease: Getting on and staying on. Curr Ther Res Clin Exp. 64:216–235. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Francis PT, Palmer AM, Snape M and Wilcock GK: The cholinergic hypothesis of Alzheimer's disease: A review of progress. J Neurol Neurosurg Psychiatry. 66:137–147. 1999. View Article : Google Scholar : PubMed/NCBI

93 

Prakash A, Kalra J, Mani V, Ramasamy K and Majeed AB: Pharmacological approaches for Alzheimer's disease: Neurotransmitter as drug targets. Expert Rev Neurother. 15:53–71. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Akasofu S, Kimura M, Kosasa T, Sawada K and Ogura H: Study of neuroprotection of donepezil, a therapy for Alzheimer's disease. Chem Biol Interact. 175:222–226. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Takada Y, Yonezawa A, Kume T, Katsuki H, Kaneko S, Sugimoto H and Akaike A: Nicotinic acetycholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther. 306:772–777. 2003. View Article : Google Scholar : PubMed/NCBI

96 

Farlow M, Veloso F, Moline M, Yardley J, Brand-Schieber E, Bibbiani F, Zou H, Hsu T and Satlin A: Safety and tolerability of donepezil 23 mg in moderate to severe Alzheimer's disease. BMC Neurol. 11:572011. View Article : Google Scholar : PubMed/NCBI

97 

Barar FSK: Essentials of Pharmacotherapeutics, Antiparkinsonian drugs. 4th edition. S. Chand and Company Ltd.; New Delhi: pp. 1692007

98 

Bai DL, Tang XC and He XC: Huperzine A, a potential therapeutic agent for treatment of Alzheimer's disease. Curr Med Chem. 7:355–374. 2000. View Article : Google Scholar : PubMed/NCBI

99 

Yan J, Sun L, Wu G, Yi P, Yang F, Zhou L, Zhang X, Li Z, Yang X, Luo H and Qiu M: Rational design and synthesis of highly potent antiacetylcholinesterase activity huperzine A derivatives. Bioorg Med Chem. 17:6937–6941. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Li J, Wu HM, Zhou RL, Liu GJ and Dong BR: Huperzine A for Alzheimer's disease. Cochrane Database Syst Rev. 16:CD0055922008.

101 

Camps PE, El Achab R, Morral J, Muñoz-Torrero D, Badia A, Baños JE, Vivas NM, Barril X, Orozco M and Luque FJ: New tacrine-huperzine A hybrids (huprines): Highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer's disease. J Med Chem. 43:4657–4666. 2000. View Article : Google Scholar : PubMed/NCBI

102 

Mehta M, Adem A and Sabbagh M: New Acetylcholinesterase Inhibitors for Alzheimer's Disease. Int J Alzheimers Dis. 2012:7289832012.PubMed/NCBI

103 

Feng S, Wang Z, He X, Zheng S, Xia Y, Jiang H, Tang X and Bai D: Bis-huperzine B: Highly potent and selective acetylcholinesterase inhibitors. J Med Chem. 48:655–657. 2005. View Article : Google Scholar : PubMed/NCBI

104 

Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS and Choi JS: Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull. 32:1433–1438. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Kulkarni SK and Dhir A: Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res. 24:317–324. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Turner AJ, Fisk L and Nalivaeva NN: Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration. Ann N Y Acad Sci. 1035:1–20. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Ghosh AK, Gemma S and Tang J: Beta-Secretase as a therapeutic target for Alzheimer's disease. Neurotherapeutics. 5:399–408. 2008. View Article : Google Scholar : PubMed/NCBI

108 

Sathya M, Premkumar P, Karthick C, Moorthi P, Jayachandran KS and Anusuyadevi M: BACE1 in Alzheimer's disease. Clin Chim Acta. 414:171–178. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Asai M, Hattori C, Iwata N, Saido TC, Sasagawa N, Szabó B, Hashimoto Y, Maruyama K, Tanuma S, Kiso Y and Ishiura S: The novel beta-secretase inhibitor KMI-429 reduces amyloid beta peptide production in amyloid precursor protein transgenic and wild-type mice. J Neurochem. 96:533–540. 2006. View Article : Google Scholar : PubMed/NCBI

110 

Luo X and Yan R: Inhibition of BACE1 for therapeutic use in Alzheimer's disease. Int J Clin Exp Pathol. 3:618–628. 2010.PubMed/NCBI

111 

Hussain I, Hawkins J, Harrison D, Hille C, Wayne G, Cutler L, Buck T, Walter D, Demont E, Howes C, et al: Oral administration of a potent and selective non peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid precursor protein and amyloid-beta production in vivo. J Neurochem. 100:802–809. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Iserloh U, Pan J, Stamford AW, Kennedy ME, Zhang Q, Zhang L, Parker EM, McHugh NA, Favreau L, Strickland C and Voigt J: Discovery of an orally efficaceous 4-phenoxypyrrolidine-based BACE-1 inhibitor. Bioorg Med Chem Lett. 18:418–422. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Chang WP, Huang X, Downs D, Cirrito JR, Koelsch G, Holtzman DM, Ghosh AK and Tang J: Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J. 25:775–784. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Mangialasche F, Solomon A, Winblad B, Mecocci P and Kivipelto M: Alzheimer's disease: Clinical trials and drug development. Lancet Neurol. 9:702–716. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, et al: Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem. 76:173–181. 2001. View Article : Google Scholar : PubMed/NCBI

116 

Wolfe MS: Inhibition and modulation of gamma-secretase for Alzheimer's disease. Neurotherapeutics. 5:391–398. 2008. View Article : Google Scholar : PubMed/NCBI

117 

Lanz TA, Himes CS, Pallante G, Adams L, Yamazaki S, Amore B and Merchant KM: The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther. 305:864–871. 2003. View Article : Google Scholar : PubMed/NCBI

118 

Imbimbo BP: Alzheimer's disease: γ-secretase inhibitors. Drug Discov Today. 5:169–175. 2008.

119 

De Strooper B, Vassar R and Golde T: The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 6:99–107. 2010. View Article : Google Scholar : PubMed/NCBI

120 

Panza F, Frisardi V, Imbimbo BP, Capurso C, Logroscino G, Sancarlo D, Seripa D, Vendemiale G, Pilotto A and Solfrizzi V: REVIEW: γ -Secretase inhibitors for the treatment of alzheimer's disease: The current state. CNS Neurosci Ther. 16:272–284. 2010. View Article : Google Scholar : PubMed/NCBI

121 

Martone RL, Zho H, Atchison K, Comery T, Xu JZ, Huang X, Gong X, Jin M, Kreft A, Harrison B, et al: Begacestat (GSI-953): A novel, selective thiophene sulphonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer's disease. J Pharmacol Exp Ther. 331:598–608. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Hopkins CR: ACS chemical neuroscience molecule spotlight on begacestat (GSI-953). ACS Chem Neurosci. 3:3–4. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Han SH and Mook-Jung I: Diverse molecular targets for terapeutic strategies in alzheimer's disease. J Korean Med Sci. 29:893–902. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Desire L, Marcade M, Peillon H, Drouin D, Sol O and Pando M: Clinical trials of EHT 0202, a neuroprotective and procognitive alpha-secretase stimulator for Alzheimer's disease. Alzheimers Dement. 5:P255–P256. 2009. View Article : Google Scholar

125 

Snow AD, Cummings J, Lake T, Hu Q, Esposito L, Cam J, Hudson M, Smith E and Runnels S: Exebryl-1: A novel small molecule currently in human clinical trials as a disease-modifying drug for the treatment of Alzheimer's disease. Alzheimer's Dement. 5:P4182009. View Article : Google Scholar

126 

Hu S, Begum AN, Jones MR, Oh MS, Beech WK, Beech BH, Yang F, Chen P, Ubeda OJ, Kim PC, et al: GSK3 inhibitors show benefits in an Alzheimer's disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol Dis. 33:193–206. 2009. View Article : Google Scholar : PubMed/NCBI

127 

Serrano-Pozo A, Frosch MP, Masliah E and Hyman BT: Neuropathological alterations in alzheimer disease. Cold Spring Harb Perspect Med. 1:a0061892011. View Article : Google Scholar : PubMed/NCBI

128 

Harper JD and Lansbury PT Jr: Models of amyloid seeding in Alzheimer's disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 66:385–407. 1997. View Article : Google Scholar : PubMed/NCBI

129 

Inouye H and Kirschner DA: A beta fibrillogenesis: Kinetic parameters for fibril formation from congo red binding. J Struct Biol. 130:123–129. 2000. View Article : Google Scholar : PubMed/NCBI

130 

Jarrett JT, Berger EP and Lansbury PT: The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry. 32:4693–4697. 1993. View Article : Google Scholar : PubMed/NCBI

131 

Kim JR, Lee Muresan KY and Murphy RM: Urea modulation of beta-amyloid fibril growth: Experimental studies and kinetic models. Protein Sci. 13:2888–2898. 2004. View Article : Google Scholar : PubMed/NCBI

132 

Lomakin A, Chung DS, Benedek GB, Kirschner DA and Teplow DB: On the nucleation and growth of amyloid beta-protein fibrils: Detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA. 93:1125–1129. 1996. View Article : Google Scholar : PubMed/NCBI

133 

Lomakin A, Teplow DB, Kirschner DA and Benedek GB: Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci USA. 94:7942–7947. 1997. View Article : Google Scholar : PubMed/NCBI

134 

McLaurin J, Franklin T, Zhang X, Deng J and Fraser PE: Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem. 266:1101–1110. 1999. View Article : Google Scholar : PubMed/NCBI

135 

Murphy RM and Pallitto MM: Probing the kinetics of beta-amyloid self-association. J Struct Biol. 130:109–122. 2000. View Article : Google Scholar : PubMed/NCBI

136 

Naiki H and Nakakuki K: First-order kinetic model of Alzheimer's beta-amyloid fibril extension in vitro. Lab Invest. 74:374–383. 1996.PubMed/NCBI

137 

Tomski SJ and Murphy RM: Kinetics of aggregation of synthetic beta-amyloid peptide. Arch Biochem Biophys. 294:630–638. 1992. View Article : Google Scholar : PubMed/NCBI

138 

Walsh DM, Lomakin A, Benedek GB, Condron MM and Teplow DB: Amyloid beta-protein fibrillogenesis: Detection of a protofibrillar intermediate. J Biol Chem. 272:22364–22372. 1997. View Article : Google Scholar : PubMed/NCBI

139 

Harper JD, Wong SS, Lieber CM and Lansbury PT Jr: Assembly of A beta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer's disease. Biochemistry. 38:8972–8980. 1999. View Article : Google Scholar : PubMed/NCBI

140 

Pallitto MM and Murphy RM: A mathematical model of the kinetics of beta-amyloid fibril growth from the denaturated state. Biophys J. 81:1805–1822. 2001. View Article : Google Scholar : PubMed/NCBI

141 

Barrow CJ, Yasuda A, Kenny PT and Zagorski MG: Solution conformations and aggregational properties of synthetic amyloid beta peptides of Alzheimer's disease. analysis of circular dichroism spectra. J Mol Biol. 225:1075–1093. 1992. View Article : Google Scholar : PubMed/NCBI

142 

Cruz L, Urbanc B, Buldyrev SV, Christie R, Gómez-Isla T, Havlin S, McNamara M, Stanley HE and Hyman BT: Aggregation and disaggregation of senile plaques in Alzheimer disease. Proc Natl Acad Sci USA. 94:7612–7616. 1997. View Article : Google Scholar : PubMed/NCBI

143 

Urbanc B, Cruz L, Buldyrev SV, Havlin S, Hyman BT and Stanley HE: Dynamic feedback in an aggregation-disaggregation model. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 60:2120–2126. 1999.PubMed/NCBI

144 

De Caluwé J and Dupont G: The progression towards Alzheimer's disease described as a bistable switch arising from the positive loop between amyloids and Ca(2+). J Theor Biol. 331:12–18. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Ortega F, Stott J, Visser S and Bendtsen C: Interplay between α-, β-, and γ-secretases determines biphasic amyloid-β protein level in the presence of γ-secretases inhibitor. J Biol Chem. 288:785–792. 2013. View Article : Google Scholar : PubMed/NCBI

146 

Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J, et al: Quantative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease. EMBO J. 31:187–200. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Guardia-Laguarta C, Pera M and Lleó A: Gamma-Secretase as a therapeutic target in Alzheimer's disease. Curr Drug Targets. 11:506–517. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Anastasio TJ: Data driven modelling of Alzheimer's disease pathogenesis. J Theor Biol. 290:60–72. 2011. View Article : Google Scholar : PubMed/NCBI

149 

Anastasio TJ: Exploring the contribution of estrogen to amyloid-beta regulation: A novel multifactorial computational modelling approach. Front Pharmacol. 4:162013. View Article : Google Scholar : PubMed/NCBI

150 

Anastasio TJ: Computational identification of potential multitarget treatments for ameliorating the adverse effects of amyloid-β on synaptic plasticity. Front Pharmacol. 5:852014. View Article : Google Scholar : PubMed/NCBI

151 

Craft DL, Wein LM and Selkoe DJ: A mathematical model of the impact of novel treatments on the A beta burden in the Alzheimer's brain, CSF and plasma. Bull Math Biol. 64:1011–1031. 2002. View Article : Google Scholar : PubMed/NCBI

152 

Proctor CJ and Gray DA: GSK3 and p53-is there a link in Alzheimer's disease? Mol Neurodegener. 5:72010. View Article : Google Scholar : PubMed/NCBI

153 

Diem AK, Tan M, Bressloff NW, Hawkes C, Morris AW, Weller RO and Carare RO: A simulation model of periarterial clearance of amyloid-β from the brain. Front Aging Neurosci. 8:182016. View Article : Google Scholar : PubMed/NCBI

154 

Proctor CJ, Boche D, Gray DA and Nicoll JA: Investigating interventions in alzheimer's disease with computer simulation models. PLoS ONE. 8:e736312013. View Article : Google Scholar : PubMed/NCBI

155 

Kyrtsos CR and Baras JS: Studying the role of ApoE in Alzheimer's disease pathogenesis using a systems biology model. J Bioinform Comput Biol. 11:13420032013. View Article : Google Scholar : PubMed/NCBI

156 

Chen C: beta-Amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons. Biochem Biophys Res Commun. 338:1913–1919. 2005. View Article : Google Scholar : PubMed/NCBI

157 

Good TA and Murphy RM: Effect of beta-amyloid block of the fast-inactivating K+ channel on intracellular Ca2+ and excitability in a modeled neuron. Proc Natl Acad Sci USA. 93:15130–15135. 1996. View Article : Google Scholar : PubMed/NCBI

158 

Hoffman DA, Magee JC, Colbert CM and Johnston D: K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 387:869–875. 1997. View Article : Google Scholar : PubMed/NCBI

159 

Culmone V and Migliore M: Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: A model study suggesting possible treatments. Front Comp Neurosci. 6:522012.

160 

Wilson RS, Boyle PA, Yu L, Barnes LL, Schneider JA and Bennett DA: Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology. 81:314–321. 2013. View Article : Google Scholar : PubMed/NCBI

161 

Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E and Slutsky I: Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci. 12:1567–1576. 2009. View Article : Google Scholar : PubMed/NCBI

162 

Parodi J, Sepulveda FJ, Roa J, Opazo C, Inestrosa NC and Aguayo LG: Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem. 285:2506–2514. 2010. View Article : Google Scholar : PubMed/NCBI

163 

Romani A, Marchetti C, Bianchi D, Leinekugel X, Poirazi P, Migliore M and Marie H: Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses. Front Comp Neurosci. 7:12013.

164 

Hasselmo ME and Wyble BP: Free recall and recognition in a network model of the hippocampus: Simulating effects of scopolamine on human memory function. Behav Brain Res. 89:1–34. 1997. View Article : Google Scholar : PubMed/NCBI

165 

Menschik ED and Finkel LH: Neuromodulatory control hippocampal function: Towards a model of Alzheimer's disease. Artif Intell Med. 13:99–121. 1998. View Article : Google Scholar : PubMed/NCBI

166 

Buzsáki G: Two-stage model of memory trace formation: A role for noisy brain states. Neuroscience. 31:551–570. 1989. View Article : Google Scholar : PubMed/NCBI

167 

Buzsáki G and Chrobak JJ: Temporal structure in spatially organized neuronal ensembles: A role for interneuronal networks. Curr Opin Neurobiol. 5:504–510. 1995. View Article : Google Scholar : PubMed/NCBI

168 

Lisman JE and Idiart MA: Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. 267:1512–1515. 1995. View Article : Google Scholar : PubMed/NCBI

169 

Lisman J: The theta/gamma discrete phase code occurring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus. 15:913–922. 2005. View Article : Google Scholar : PubMed/NCBI

170 

Roberts PD, Spiros A and Geerts H: Simulations of symptomatic treatments for Alzheimer's disease: Computational analysis of pathology and mechanisms of drug action. Alzheimers Res Ther. 4:502012. View Article : Google Scholar : PubMed/NCBI

171 

Bianchi D, De Michele P, Marchetti C, Tirozzi B, Cuomo S, Marie H and Migliore M: Effects of increasing CREB-dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit. Hippocampus. 24:165–177. 2014. View Article : Google Scholar : PubMed/NCBI

172 

Cutsuridis V, Cobb S and Graham BP: Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus. 20:423–446. 2010.PubMed/NCBI

173 

Horn D, Ruppin E, Usher M and Hermann M: Neural network modeling of memory deterioration in Alzheimer's disease. Neural Comput. 5:736–749. 1993. View Article : Google Scholar

174 

Ruppin E and Reggia JA: A neural model of memory impairment in diffuse cerebral atrophy. Br J Psychiatry. 166:19–28. 1995. View Article : Google Scholar : PubMed/NCBI

175 

Hasselmo ME: Runaway synaptic modification in models of cortex: Implications for Alzheimer's disease. Neural Netw. 7:13–40. 1994. View Article : Google Scholar

176 

Hasselmo ME: A computational model of the progression of Alzheimer's disease. MD Comput. 14:181–191. 1997.PubMed/NCBI

177 

Siegle GJ and Hasselmo ME: Using connectionist models to guide assessment of psychological disorder. Psychol Assess. 14:263–278. 2002. View Article : Google Scholar : PubMed/NCBI

178 

Bhattacharya BS, Coyle D and Maguire LP: A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer's Disease. Neural Netw. 24:631–645. 2011. View Article : Google Scholar : PubMed/NCBI

179 

Gluck MA, Myers CE, Nicolle MM and Johnson S: Computational models of the hippocampal region: Implications for prediction of risk for Alzheimer's disease in non-demented elderly. Curr Alzheimer Res. 3:247–257. 2006. View Article : Google Scholar : PubMed/NCBI

180 

Moustafa AA, Keri S, Herzallah MM, Myers CE and Gluck MA: A neural model of hippocampal-striatal interactions in associative learning and transfer generalization in various neurological and psychiatric patients. Brain Cogn. 74:132–144. 2010. View Article : Google Scholar : PubMed/NCBI

181 

McAuley MT, Kenny RA, Kirkwood TB, Wilkinson DJ, Jones JJ and Miller VM: A mathematical model of aging-related and cortisol induced hippocampal dysfunction. BMC Neurosci. 10:262009. View Article : Google Scholar : PubMed/NCBI

182 

Jack CR Jr and Holtzman DM: Biomarker modeling of Alzheimer's disease. Neuron. 80:1347–1358. 2013. View Article : Google Scholar : PubMed/NCBI

183 

Mayeux R: Biomarkers: Potential uses and limitations. NeuroRx. 1:182–188. 2004. View Article : Google Scholar : PubMed/NCBI

184 

Blennow K, Hampel H and Zetterberg H: Biomarkers in amyloid-β immunotherapy trials in Alzheimer's disease. Neuropsychopharmacology. 39:189–201. 2014. View Article : Google Scholar : PubMed/NCBI

185 

Blennow K, Zetterberg H and Fagan AM: Fluid biomarkers in alzheimer disease. Cold Spring Harb Perspect Med. 2:a0062212012. View Article : Google Scholar : PubMed/NCBI

186 

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, et al: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement. 7:270–279. 2011. View Article : Google Scholar : PubMed/NCBI

187 

Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, et al: Revising the definition of Alzheimer's disease: A new lexicon. Lancet Neurol. 9:1118–1127. 2010. View Article : Google Scholar : PubMed/NCBI

188 

Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B and Phelps CH: Introduction to the recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement. 7:257–262. 2011. View Article : Google Scholar : PubMed/NCBI

189 

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al: The diagnosis of dementia due to Alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement. 7:263–269. 2011. View Article : Google Scholar : PubMed/NCBI

190 

Castro-Chavira SA, Fernandez T, Nicolini H, Diaz-Cintra S and Prado-Alcala RA: Genetic markers in biological fluids for aging-related major neurocognitive disorder. Curr Alzheimer Res. 12:200–209. 2015. View Article : Google Scholar : PubMed/NCBI

191 

Sonnen JA, Montine KS, Quinn JF, Kaye JA, Breitner JCS and Montine TJ: Biomarkers for cognitive impairment and dementia in elderly people. Lancet Neurol. 7:704–714. 2008. View Article : Google Scholar : PubMed/NCBI

192 

Dekkers MP, Nikoletopoulou V and Barde YA: Cell biology in neuroscience: Death of developing neurons: New insights and implications for connectivity. J Cell Biol. 203:385–393. 2013. View Article : Google Scholar : PubMed/NCBI

193 

Terry RD: Basis of structural Alzheimer disease and some pathogenic conceptsAlzheimer's disease: From molecular biology to therapy. Becker P and Giacobini F: Birkhäuser Publishing Ltd.; Cambridge, MA: pp. 19–23. 1996

194 

Burggren A and Brown J: Imaging markers of structural and functional brain changes that precede cognitive symptoms in risk for Alzheimer's disease. Brain Imaging Behav. 8:251–261. 2014. View Article : Google Scholar : PubMed/NCBI

195 

Zlokovic BV: Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci. 12:723–738. 2011. View Article : Google Scholar : PubMed/NCBI

196 

Desikan RS, Cabral HJ, Hess CP, Dillon WP, Glastonbury CM, Weiner MW, Schmansky NJ, Greve DN, Salat DH, Buckner RL, et al: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain. 132:2048–2057. 2009. View Article : Google Scholar : PubMed/NCBI

197 

Dickerson BC and Wolk DA: Alzheimer's Disease Neuroimaging Initiative: MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults. Neurology. 78:84–90. 2012. View Article : Google Scholar : PubMed/NCBI

198 

Hua X, Leow AD, Lee S, Klunder AD, Toga AW, Lepore N, Chou YY, Brun C, Chiang MC, Barysheva M, et al: 3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry. Neuroimage. 41:19–34. 2008. View Article : Google Scholar : PubMed/NCBI

199 

Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, Parikshak N, Hua X, Toga AW, Jack CR Jr, et al: Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls. Neuroimage. 43:59–68. 2008. View Article : Google Scholar : PubMed/NCBI

200 

Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, Parikshak N, Toga AW, Jack CR Jr, Schuff N, et al: Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment and elderly controls. Neuroimage. 45 1 Suppl:S3–S15. 2009. View Article : Google Scholar : PubMed/NCBI

201 

Mirra SS and Markesbery WR: The Neuropathology of Alzheimer's DiseaseAlzheimer's Disease: Cause (s), Diagnosis, Treatment and Care. Khachaturian ZS and Radebaugh TS: CRC press; New York, NY: pp. 111–123. 1996

202 

Price DL: Aging of the brain and dementia of the Alzheimer typePrinciples of Neural Sciences. Kandel ER and Jessel TM: McGraw-Hill; New York, NY: pp. 1149–1168. 2000

203 

Teipel SJ, Bayer W, Alexander GE, Bokde AL, Zebuhr Y, Teichberg D, Müller-Spahn F, Schapiro MB, Möller HJ, Rapoport SI and Hampel H: Regional pattern of hippocampus and corpus callosum atrophy in Alzheimer's disease in relation to dementia severity: Evidence for early neocortical degeneration. Neurobiol Aging. 24:85–94. 2003. View Article : Google Scholar : PubMed/NCBI

204 

Xanthakos S, Krishnan KR, Kim DM and Charles HC: Magnetic resonance imaging of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 20:597–626. 1996. View Article : Google Scholar : PubMed/NCBI

205 

Moon WJ, Park JY, Yun WS, Jeon JY, Moon YS, Kim H, Kwak KC, Lee JM and Han SH: A comparison of substantia nigra T1 hyperintensity in parkinson's disease dementia, alzheimer's disease and age-matched controls: Volumetric analysis of neuromelanin imaging. Korean J Radiol. 17:633–640. 2016. View Article : Google Scholar : PubMed/NCBI

206 

Serrano-Pozo A, Frosch MP, Masliah E and Hyman BT: Neuropathological alterations in alzheimer disease. Cold Spring Harb Perspect Med. 1:a0061892011. View Article : Google Scholar : PubMed/NCBI

207 

Avila J, Lim F, Moreno F, Belmonte C and Cuello AC: Tau function and dysfunction in neurons: Its role in neurodegenerative disorders. Mol Neurobiol. 25:213–231. 2002. View Article : Google Scholar : PubMed/NCBI

208 

Cole SL and Vassar R: The Alzheimer's disease beta-secretase enzyme, BACE1. Mol Neurodegener. 2:222007. View Article : Google Scholar : PubMed/NCBI

209 

Zetterberg H, Andreasson U, Hansson O, Wu G, Sankaranarayanan S, Andersson ME, Buchhave P, Londos E, Umek RM, Minthon L, et al: Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol. 65:1102–1107. 2008. View Article : Google Scholar : PubMed/NCBI

210 

Selkoe DJ: Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol. 6:1054–1061. 2004. View Article : Google Scholar : PubMed/NCBI

211 

Cairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM, Shah AR, Reinwald LT, Carter D, Felton A, Holtzman DM, et al: Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: A case report. Arch Neurol. 66:1557–1562. 2009. View Article : Google Scholar : PubMed/NCBI

212 

Selkoe DJ: Alzheimer's disease: A central role for amyloid. J Neuropathol Exp Neurol. 53:438–447. 1994. View Article : Google Scholar : PubMed/NCBI

213 

de Courten-Myers GM: Cerebral amyloid angiopathy and Alzheimer's disease. Neurobiol Ageing. 25:603–604. 2004. View Article : Google Scholar

214 

Haglund M, Sjöbeck M and Englund E: Severe cerebral amyloid angiopathy characterizes an underestimated variant of vascular dementia. Dement Geriatr Cogn Disord. 18:132–137. 2004. View Article : Google Scholar : PubMed/NCBI

215 

Tian J, Shi J, Bailey K and Mann DM: Negative association between amyloid plaques and cerebral amyloid angiopathy in Alzheimer's disease. Neurosci Lett. 352:137–140. 2003. View Article : Google Scholar : PubMed/NCBI

216 

Hassan M, Sehgel SA and Sajid R: Regulatory cascade of neuronal loss and glucose metabolism. CNS Neurol Disord Drug Targets. 13:1232–1245. 2014. View Article : Google Scholar : PubMed/NCBI

217 

Budinger TF: Neuroimaging Applications for the Study of Alzheimer's DiseaseAlzheimer's Disease: Cause (s), Diagnosis, Treatment and Care. Khachaturian ZS and Radebaugh TS: CRC press; New York, NY: pp. 146–169. 1996

218 

Hoyer S: Oxidative metabolism deficiencies in brains of patients with Alzheimer's disease. Acta Neurol Scand. 94:18–24. 1996. View Article : Google Scholar

219 

Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y and Takashima A: Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: Implications for alzheimer's disease. J Neurosci. 24:2401–2411. 2004. View Article : Google Scholar : PubMed/NCBI

220 

Evans PH: Free radicals in brain metabolism and pathology. Br Med Bull. 49:577–587. 1993. View Article : Google Scholar : PubMed/NCBI

221 

Eckert A, Keil U, Kressmann S, Schindowski K, Leutner S, Leutz S and Müller WE: Effects of EGb 761 Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry. 1 Suppl 1:S15–S23. 2003.

222 

Baloyannis SJ, Costa V and Michmizos D: Mitochondrial alterations in Alzheimer's disease. Am J Alzheimers Dis Other Demen. 19:89–93. 2004. View Article : Google Scholar : PubMed/NCBI

223 

Choi JK, Carreras I, Aytan N, Jenkins-Sahlin E, Dedeoglu A and Jenkins BG: The effects of aging, housing and ibuprofen treatment on brain neurochemistry in a triple transgene Alzheimer's disease mouse model using magnetic resonance spectroscopy and imaging. Brain Res. 1590:85–96. 2014. View Article : Google Scholar : PubMed/NCBI

224 

Braak H and Braak E: Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 18:351–357. 1997. View Article : Google Scholar : PubMed/NCBI

225 

Haroutunian V, Purohit DP, Perl DP, Marin D, Khan K, Lantz M, Davis KL and Mohs RC: Neurofibrillary tangles in nondemented elderly subjects and mild Alzheimer disease. Arch Neurol. 56:713–718. 1999. View Article : Google Scholar : PubMed/NCBI

226 

Price JL and Morris JC: Tangles and plaques in nondemented aging and ‘preclinical’ Alzheimer's disease. Ann Neurol. 45:358–368. 1999. View Article : Google Scholar : PubMed/NCBI

227 

Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cha RH, O'Brien PC, Edland SD, Smith GE, Boeve BF, Tangalos EG, et al: Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology. 58:750–757. 2002. View Article : Google Scholar : PubMed/NCBI

228 

Senjem ML, Gunter JL, Shiung MM, Petersen RC and Jack CR Jr: Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease. Neuroimage. 26:600–608. 2005. View Article : Google Scholar : PubMed/NCBI

229 

Tarawneh R, D'Angelo G, Macy E, Xiong C, Carter D, Cairns NJ, Fagan AM, Head D, Mintun MA, Ladenson JH, et al: Visinin like protein-1: Diagnostic and prognostic biomarker in Alzheimer disease. Ann Neurol. 70:274–285. 2011. View Article : Google Scholar : PubMed/NCBI

230 

Struyfs H, Van Hecke W, Veraart J, Sijbers J, Slaets S, De Belder M, Wuyts L, Peters B, Sleegers K, Robberecht C, et al: Diffusion kurtosis imaging: A possible MRI biomarker for AD diagnosis? J Alzheimers Dis. 48:937–948. 2015. View Article : Google Scholar : PubMed/NCBI

231 

James OG, Doraiswamy PM and Borges-Neto S: PET Imaging of tau pathology in alzheimer's disease and tauopathies. Front Neurol. 6:382015. View Article : Google Scholar : PubMed/NCBI

232 

Baird AL, Westwood S and Lovestone S: Blood-based proteomic biomarkers of alzheimer's disease pathology. Front Neurol. 6:2362015. View Article : Google Scholar : PubMed/NCBI

233 

Anderso NL and Anderson NG: The human plasma proteome: History, character, and diagnostic prospects. Mol Cell Proteomics. 1:845–867. 2002. View Article : Google Scholar : PubMed/NCBI

234 

Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, et al: Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 85:296–302. 2015. View Article : Google Scholar : PubMed/NCBI

235 

Lewczuk P, Esselmann H, Bibl M, Paul S, Svitek J, Miertschischk J, Meyrer R, Smirnov A, Maler JM, Klein C, et al: Electrophoretic separation of amyloid beta peptides in plasma. Electrophoresis. 25:3336–3343. 2004. View Article : Google Scholar : PubMed/NCBI

236 

Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L and Koller M: AN1792(QS-21)-201 Study: Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 64:1563–1572. 2005. View Article : Google Scholar : PubMed/NCBI

237 

Frisoni GB and Delacourte A: Neuroimaging outcomes in clinical trials in Alzheimer's disease. J Nutr Health Aging. 13:209–212. 2009. View Article : Google Scholar : PubMed/NCBI

238 

Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, Mathis CA, Blennow K, Barakos J, Okello AA, et al: 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9:363–372. 2010. View Article : Google Scholar : PubMed/NCBI

239 

Sperling RA, Jack CR Jr and Aisen PS: Testing the right target and right drug at the right stage. Sci Transl Med. 3:111cm332011. View Article : Google Scholar : PubMed/NCBI

240 

Geerts H, Dacks PA, Devanarayan V, Haas M, Khachaturian ZS, Gordon MF, Maudsley S, Romero K and Stephenson D: Brain Health Modeling Initiative (BHMI): Big data to smart data in Alzheimer's disease: The brain health modeling initiative to foster actionable knowledge. Alzheimers Dement. 12:1014–1021. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hassan M, Abbas Q, Seo SY, Shahzadi S, Al Ashwal H, Zaki N, Iqbal Z and Moustafa AA: Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review). Mol Med Rep 18: 639-655, 2018.
APA
Hassan, M., Abbas, Q., Seo, S., Shahzadi, S., Al Ashwal, H., Zaki, N. ... Moustafa, A.A. (2018). Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review). Molecular Medicine Reports, 18, 639-655. https://doi.org/10.3892/mmr.2018.9044
MLA
Hassan, M., Abbas, Q., Seo, S., Shahzadi, S., Al Ashwal, H., Zaki, N., Iqbal, Z., Moustafa, A. A."Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review)". Molecular Medicine Reports 18.1 (2018): 639-655.
Chicago
Hassan, M., Abbas, Q., Seo, S., Shahzadi, S., Al Ashwal, H., Zaki, N., Iqbal, Z., Moustafa, A. A."Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review)". Molecular Medicine Reports 18, no. 1 (2018): 639-655. https://doi.org/10.3892/mmr.2018.9044
Copy and paste a formatted citation
x
Spandidos Publications style
Hassan M, Abbas Q, Seo SY, Shahzadi S, Al Ashwal H, Zaki N, Iqbal Z and Moustafa AA: Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review). Mol Med Rep 18: 639-655, 2018.
APA
Hassan, M., Abbas, Q., Seo, S., Shahzadi, S., Al Ashwal, H., Zaki, N. ... Moustafa, A.A. (2018). Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review). Molecular Medicine Reports, 18, 639-655. https://doi.org/10.3892/mmr.2018.9044
MLA
Hassan, M., Abbas, Q., Seo, S., Shahzadi, S., Al Ashwal, H., Zaki, N., Iqbal, Z., Moustafa, A. A."Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review)". Molecular Medicine Reports 18.1 (2018): 639-655.
Chicago
Hassan, M., Abbas, Q., Seo, S., Shahzadi, S., Al Ashwal, H., Zaki, N., Iqbal, Z., Moustafa, A. A."Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review)". Molecular Medicine Reports 18, no. 1 (2018): 639-655. https://doi.org/10.3892/mmr.2018.9044
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team