Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2018 Volume 18 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress on human genes involved in the pathogenesis of glaucoma (Review)

  • Authors:
    • Hong‑Wei Wang
    • Peng Sun
    • Yao Chen
    • Li‑Ping Jiang
    • Hui‑Ping Wu
    • Wen Zhang
    • Feng Gao
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China, Department of Ophthalmology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China, Department of Ophthalmology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161041, P.R. China, Department of The Scientific Research, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China, Department of Hospital Administration, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 656-674
    |
    Published online on: May 23, 2018
       https://doi.org/10.3892/mmr.2018.9071
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glaucoma is the leading cause of irreversible blindness globally. It is known that the incidence of glaucoma is closely associated with inheritance. A large number of studies have suggested that genetic factors are involved in the occurrence and development of glaucoma, and even affect the drug sensitivity and prognosis of glaucoma. In the present review, 22 loci of glaucoma are presented, including the relevant genes (myocilin, interleukin 20 receptor subunit B, optineurin, ankyrin repeat‑ and SOCS box‑containing protein 10, WD repeat‑containing protein 36, EGF‑containing fibulin‑like extracellular matrix protein 1, neurotrophin 4, TANK‑binding kinase 1, cytochrome P450 subfamily I polypeptide 1, latent transforming growth factor β binding protein 2 and TEK tyrosine kinase endothelial) and 74 other genes (including toll‑like receptor 4, sine oculis homeobox Drosophila homolog of 1, doublecortin‑like kinase 1, RE repeats‑encoding gene, retinitis pigmentosa GTPase regulator‑interacting protein, lysyl oxidase‑like protein 1, heat‑shock 70‑kDa protein 1A, baculoviral IAP repeat‑containing protein 6, 5,10‑methylenetetrahydrofolate reductase and nitric oxide synthase 3 and nanophthalmos 1) that are more closely associated with glaucoma. The pathogenesis of these glaucoma‑associated genes, glaucomatous genetics and genetic approaches, as well as glaucomatous risk factors, including increasing age, glaucoma family history, high myopia, diabetes, ocular trauma, smoking, intraocular pressure increase and/or fluctuation were also discussed.
View Figures

Figure 1

View References

1 

Quigley HA and Broman AT: The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmo. 190:262–267. 2006. View Article : Google Scholar

2 

Foris LA and Gossman WG: Glaucoma, open angle. StatPearls Publishing Internet; Nov 21–2018

3 

Kumar S, Malik MAKS, Sihota R and Kaur J: Genetic variants associated with primary open angle glaucoma in Indian population. Genomic. 109:27–35. 2017. View Article : Google Scholar

4 

Tham YC, Li X, Wong TY, Quigley HA, Aung T and Cheng CY: Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 121:2081–2090. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Mantravadi AV and Vadhar N: Glaucoma. Prim Care. 42:437–449. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Faiq M, Sharma R, Dada R, Mohanty K, Saluja D and Dada T: Genetic biochemical and clinical insights into primary congenital glaucoma. J Curr Glaucoma Pract. 7:66–84. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Le A, Mukesh BN, McCarty CA and Taylor HR: Risk factors associated with the incidence of open-angle glaucoma: The visual impairment project. Invest Ophthalmol Vis Sci. 44:3783–3789. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, et al: Risk factors for open-angle glaucoma in a Japanese population: The Tajimi Study. Ophthalmology. 113:1613–1617. 2006. View Article : Google Scholar : PubMed/NCBI

9 

European Glaucoma Prevention Study (EGPS) Group, . Miglior S, Pfeiffer N, Torri V, Zeyen T, Cunha-Vaz J and Adamsons I: Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma. Prevention study Ophthalmology. 114:3–9. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Dewundara SS, Wiggs JL, Sullivan DA and Pasquale LR: Is estrogen a therapeutic target for glaucoma? Semin Ophthalmol. 31:140–146. 2016. View Article : Google Scholar : PubMed/NCBI

11 

McMonnies CW: Glaucoma history and risk factors. J Optom. 10:71–78. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Cho HK and Kee C: Population-based glaucoma studies in Asians. Surv Ophthalmol. 59:434–447. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Flammer J, Pache M and Resink T: Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Ret Eye Res. 20:319–349. 2001. View Article : Google Scholar

14 

Mitchell P, Lee AJ, Wang JJ and Rochtchina E: Intraocular pressure over the clinical range of blood pressure: Blue mountains eye study findings. Am J Ophthalmol. 140:131–132. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Zhou M, Wang W, Huang W and Zhang X: Diabetes mellitus as a risk factor for open-angle glaucoma: A systematic review and meta-analysis. PLoS One. 9:e1029722014. View Article : Google Scholar : PubMed/NCBI

16 

Congdon N, Wang F and Tielsch JM: Issues in the epidemiology and population-based screening of primary angle-closure glaucoma. Surv Ophthalmol. 36:411–423. 1992. View Article : Google Scholar : PubMed/NCBI

17 

Doucette LP, Rasnitsyn A, Seifi M and Walter MA: The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol. 60:310–326. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Ma F, Dai J and Sun X: Progress in understanding the association between high myopia and primary open-angle glaucoma. Clin Exp Ophthalmol. 42:190–197. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Xu L, Fang WF, Wang YX, Chen CX and Jonas JB: Anterior chamber depth and chamber angle and their associations with ocular and general parameters: The Beijing eye study. Am J Ophthalmol. 145:929–936. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Topouzis F, Coleman AL, Harris A, Jonescu-Cuypers C, Yu F, Mavroudis L, Anastasopoulos E, Pappas T, Koskosas A and Wilson MR: Association of blood pressure status with the optic disk structure in non-glaucoma subjects: The Thessaloniki eye study. Am J Ophthalmol. 142:60–67. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Leske MC, Wu S-Y, Hennis A, Honkanen R and Nemesure B: BESs Study Group: Risk factors for incident open-angle glaucoma: The Barbados eye studies. Ophthalmology. 115:85–93. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK II, Wilson MR and Kass MA: The ocular hypertension treatment study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 120:714–720; discussion 829–830. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Racette L, Wilson MR, Zangwill LM, Weinreb RN and Sample PA: Primary open-angle glaucoma in blacks: A review. Surv Ophthalmol. 48:295–313. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Cursiefen C, Wisse M, Cursiefen S, Jünemann A, Martus P and Korth M: Migraine and tension headache in high-pressure and normal-pressure glaucoma. Am J Ophthalmol. 129:102–104. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Farrar SM, Shields MB, Miller KN and Stoup CM: Risk factors for the development and severity of glaucoma in the pigment dispersion syndrome. Am J Ophthalmol. 108:223–229. 1989. View Article : Google Scholar : PubMed/NCBI

26 

Astafurov K, Elhawy E, Ren L, Dong CQ, Igboin C, Hyman L, Griffen A, Mittag T and Danias J: Oral microbiome link to neurodegeneration in glaucoma. PLoS One. 9:e1044162014. View Article : Google Scholar : PubMed/NCBI

27 

Bailey JN, Yaspan BL, Pasquale LR, Hauser MA, Kang JH, Loomis SJ, Brilliant M, Budenz DL, Christen WG, Fingert J, et al: Hypothesis-independent pathway analysis implicates GABA and acetyl-CoA metabolism in primary open-angle glaucoma and normal-pressure glaucoma. Hum Genet. 133:1319–1330. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Konieczka K, Todorova MG, Chackathayil TN and Henrich PB: Cilioretinal artery occlusion in a young patient with flammer syndrome and increased retinal venous pressure. Klin Monbl Augenheilkd. 232:576–578. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Liao Q, Sun XY, Guo H and Li C: Exploring the potential mechanism and screening small molecule drugs for glaucoma by using bioinformatics approach. Eur Rev Med Pharmacol Sci. 18:132–140. 2014.PubMed/NCBI

30 

Kurtz S, Regenbogen M, Goldiner I, Horowitz N and Moshkowitz M: No association between Helicobacter pylori infection or CagA-bearing strains and glaucoma. J Glaucoma. 17:223–226. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Jindal V: Glaucoma: An extension of various chronic neurodegenerative disorders. Mol Neurobiol. 48:186–189. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Wang M, Lin HT, Bai YJ, Ge J and Zhuo YH: Clinical evidence in concurrence of retinitis pigmentosa and glaucoma. Chin Med J Engl. 124:1270–1274. 2011.PubMed/NCBI

33 

Lee S, Van Bergen NJ, Kong GY, Chrysostomou V, Waugh HS, O'Neill EC, Crowston JG and Trounce IA: Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res. 93:204–212. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Lin CC, Hu CC, Ho JD, Chiu HW and Lin HC: Obstructive sleep apnea and increased risk of glaucoma: A population-based matched-cohort study. Ophthalmology. 120:1559–1564. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Leske MC: The epidemiology of open-angle glaucoma: A review. Am J Epidemiol. 118:166–186. 1983. View Article : Google Scholar : PubMed/NCBI

36 

Lachkar Y and Bouassida W: Drug-induced acute angle closure glaucoma. Curr Opin Ophthalmol. 18:129–133. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Jones R III and Rhee DJ: Corticosteroid-induced ocular hypertension and glaucoma: A brief review and update of the literature. Curr Opin Ophthalmol. 17:163–167. 2006.PubMed/NCBI

38 

McMonnies CW: An examination of the hypothesis that intraocular pressure elevation episodes can have prognostic significance in glaucoma suspects. J Optom. 8:223–231. 2014. View Article : Google Scholar : PubMed/NCBI

39 

McMonnies CW: Intraocular pressure spikes in keratectasia axial myopia and glaucoma. Optom Vis Sc. 85:1018–1026. 2008. View Article : Google Scholar

40 

Li M, Wang M, Guo W, Wang J and Sun X: The effect of caffeine on intraocular pressure: A systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 249:435–442. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J and Singh K: Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 109:1090–1095. 1991. View Article : Google Scholar : PubMed/NCBI

42 

Weinreb RN, Aung T and Medeiros FA: The pathophysiology and treatment of glaucoma: A review. JAMA. 311:1901–1911. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Fingert JH: Primary open-angle glaucoma genes. Eye Lond. 25:587–595. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Teikari JM, Airaksinen PJ, Kaprio J and Koskenvuo M: Primary open-angle glaucoma in 2 monozygotic twin pairs. Acta Ophthalmol Copenh. 65:607–611. 1987. View Article : Google Scholar : PubMed/NCBI

45 

Biró I: Notes on the heredity of glaucoma. Ophthalmologica. 98:43–50. 1939. View Article : Google Scholar

46 

Ahram DF, Alward WL and Kuehn MH: The genetic mechanisms of primary angle closure glaucoma. Eye Lond. 29:1251–1259. 2015. View Article : Google Scholar : PubMed/NCBI

47 

King A, Azuara-Blanco A and Tuulonen A: Glaucoma. BMJ. 346:f35182013. View Article : Google Scholar : PubMed/NCBI

48 

Friedman DS, Wolfs RC, O'Colmain BJ, Klein BE, Taylor HR, West S, Leske MC, Mitchell P, Congdon N and Kempen J: Eye Diseases Prevalence Research Group: Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol. 122:532–538. 2004. View Article : Google Scholar : PubMed/NCBI

49 

He M, Foster PJ, Ge J, Huang W, Zheng Y, Friedman DS, Lee PS and Khaw PT: Prevalence and clinical characteristics of glaucoma in adult Chinese: A population-based study in Liwan District, Guangzhou. Invest Ophthalmol Vis Sci. 47:2782–2788. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Abu-Amero K, Kondkar AA and Chalam KV: An updated review on the genetics of primary open angle glaucoma. Int J Mol Sci. 16:28886–28911. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Friedman DS, Jampel HD, Muñoz B and West SK: The prevalence of open-angle glaucoma among blacks and whites 73 years and older: The salisbury eye evaluation glaucoma study. Arch Ophthalmol. 124:1625–1630. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Mukesh BN, McCarty CA, Rait JL and Taylor HR: Five-year incidence of open-angle glaucoma: The visual impairment project. Ophthalmology. 109:1047–1051. 2002. View Article : Google Scholar : PubMed/NCBI

53 

de Voogd S, Ikram MK, Wolfs RC, Jansonius NM, Hofman A and de Jong PT: Incidence of open-angle glaucoma in a general elderly population: The rotterdam study. Ophthalmology. 112:1487–1493. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Wang X, Harmon J, Zabrieskie N, Chen Y, Grob S, Williams B, Lee C, Kasuga D, Shaw PX, Buehler J, et al: Using the utah population database to assess familial risk of primary open angle glaucoma. Vis Res. 50:2391–2395. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Lowe RF: Primary angle-closure glaucoma. Inheritance and environment. Br J Ophthalmol. 56:13–20. 1972. View Article : Google Scholar : PubMed/NCBI

56 

Alsbirk PH: Anterior chamber depth and primary angle-closure glaucoma. II. A genetic study. Acta Ophthalmol Copenh. 53:436–449. 1975. View Article : Google Scholar : PubMed/NCBI

57 

Alsbirk PH: Anterior chamber depth and primary angle-closure glaucoma. I. An epidemiologic study in Greenland Eskimos. Acta Ophthalmol Copenh. 53:89–104. 1975. View Article : Google Scholar : PubMed/NCBI

58 

Alsbirk PH: Primary angle-closure glaucoma. Oculometry, epidemiology, and genetics in a high risk population. Acta Ophthalmol Suppl. 5–31. 1976.PubMed/NCBI

59 

Hu CN: An epidemiologic study of glaucoma in Shunyi County Beijing. Zhonghua Yan Ke Za Zhi. 25:115–119. 1989.(In Chinese). PubMed/NCBI

60 

He M, Wang D, Zheng Y, Zhang J, Yin Q, Huang W, Mackey DA and Foster PJ: Heritability of anterior chamber depth as an intermediate phenotype of angle-closure in Chinese: The Guangzhou twin eye study. Invest Ophthalmol Vis Sci. 49:81–86. 2008. View Article : Google Scholar : PubMed/NCBI

61 

van Koolwijk LM, Despriet DD, van Duijn CM, Cortes Pardo LM, Vingerling JR, Aulchenko YS, Oostra BA, Klaver CC and Lemij HG: Genetic contributions to glaucoma: Heritability of intraocular pressure, retinal nerve fiber layer thickness, and optic disc morphology. Invest Ophthalmol Vis Sci. 48:3669–3676. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Day AC, Baio G, Gazzard G, Bunce C, Azuara-Blanco A, Munoz B, Friedman DS and Foster PJ: The prevalence of primary angle closure glaucoma in European derived populations: A systematic review. Br J Ophthalmol. 96:1162–1167. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Liu Y and Allingham RR: Major review: Molecular genetics of primary open-angle glaucoma. Exp Eye Res. 160:62–84. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, et al: Identification of a gene that causes primary open angle glaucoma. Science. 275:668–670. 1997. View Article : Google Scholar : PubMed/NCBI

65 

Kumar S, Malik MA, Goswami S, Sihota R and Kaur J: Candidate genes involved in the susceptibility of primary open angle glaucoma. Gene. 577:119–131. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Sarfarazi M, Child A, Stoilova D, Brice G, Desai T, Trifan OC, Poinoosawmy D and Crick RP: Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet. 62:641–652. 1998. View Article : Google Scholar : PubMed/NCBI

67 

Miyazawa A, Fuse N, Mengkegale M, Ryu M, Seimiya M, Wada Y and Nishida K: Association between primary open-angle glaucoma and WDR36 DNA sequence variants in Japanese. Mol Vis. 13:1912–1919. 2007.PubMed/NCBI

68 

Mookherjee S, Chakraborty S, Vishal M, Banerjee D, Sen A and Ray K: WDR36 variants in East Indian primary open-angle glaucoma patients. Mol Vis. 17:2618–2627. 2011.PubMed/NCBI

69 

Jia LY, Tam PO, Chiang SW, Ding N, Chen LJ, Yam GH, Pang CP and Wang NL: Multiple gene polymorphisms analysis revealed a different profile of genetic polymorphisms of primary open-angle glaucoma in northern Chinese. Mol Vis. 15:89–98. 2009.PubMed/NCBI

70 

Pasutto F, Matsumoto T, Mardin CY, Sticht H, Brandstätter JH, Michels-Rautenstrauss K, Weisschuh N, Gramer E, Ramdas WD, van Koolwijk LM, et al: Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet. 85:447–456. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Pasutto F, Keller KE, Weisschuh N, Sticht H, Samples JR, Yang YF, Zenkel M, Schlötzer-Schrehardt U, Mardin CY, Frezzotti P, et al: Variants in ASB10 are associated with open-angle glaucoma. Hum Mol Genet. 21:1336–1349. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Fuse N: Genetic basies for glaucoma. Tohoku J Exp Med. 221:1–10. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Gemenetzi M, Yang Y and Lotery AJ: Current concepts on primary open-angle glaucoma genetics: A contribution to disease pathophysiology and future treatment. Eye (Lond). 26:355–369. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Allingham RR, Liu Y and Rhee DJ: The genetics of primary open-angle glaucoma: A review. Exp Eye Res. 88:837–844. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Davis LK, Meyer KJ, Schindler EI, Beck JS, Rudd DS, Grundstad AJ, Scheetz TE, Braun TA, Fingert JH, Alward WL, et al: Copy number variations and primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 52:7122–7133. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, et al: Global variation in copy number in the human genome. Nature. 444:444–454. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Héon E, Krupin T, Ritch R, Kreutzer D, et al: Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 295:1077–1079. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, Ritch R, Héon E, Crick RP, Child A and Sarfarazi M: Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 14:725–733. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Rangachari K, Dhivya M, Pandaranayaka Eswari PJ, Prasanthi N, Sundaresan P, Krishnadas SR and Krishnaswamy S: Glaucoma database. Bioinformation. 5:398–399. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Fingert JH, Robin AL, Stone JL, Roos BR, Davis LK, Scheetz TE, Bennett SR, Wassink TH, Kwon YH, Alward WL, et al: Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet. 20:2482–2494. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Porter LF, Urquhart JE, O'Donoghue E, Spencer AF, Wade EM, Manson FD and Black GC: Identification of a novel locus for autosomal dominant primary open angle glaucoma on 4q35.1-q35.2. Invest Ophthalmol Vis Sci. 52:7859–7865. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Ali M, McKibbin M, Booth A, Parry DA, Jain P, Riazuddin SA, Hejtmancik JF, Khan SN, Firasat S, Shires M, et al: Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet. 84:664–671. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Kaur K, Mandal AK and Chakrabarti S: Primary congenital glaucoma and the involvement of CYP1B1. Middle East Afr J Ophthalmol. 18:7–16. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Fuchshofer R and Tamm ER: The role of TGF-β in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res. 347:279–290. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Millá E, Hernan I, Gamundi MJ, Martínez-Gimeno M and Carballo M: Novel LMX1B mutation in familial nail-patella syndrome with variable expression of open angle glaucoma. Mol Vis. 13:639–648. 2007.PubMed/NCBI

86 

Vishal M, Sharma A, Kaurani L, Alfano G, Mookherjee S, Narta K, Agrawal J, Bhattacharya I, Roychoudhury S, Ray J, et al: Genetic association and stress mediated down-regulation in trabecular meshwork implicates MPP7 as a novel candidate gene in primary open angle glaucoma. BMC Med Genomics. 9:152016. View Article : Google Scholar : PubMed/NCBI

87 

Al-Dabbagh N, Al-Shahrani H, Al-Dohayan N, Mustafa M, Arfin M and Al-Asmari AK: The SPARC-related modular calcium binding protein 2 (SMOC2) gene polymorphism in primary glaucoma: A case-control study. Clin Ophthalmol. 11:549–555. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Chakrabarti S, Kaur K, Rao KN, Mandal AK, Kaur I, Parikh RS and Thomas R: The transcription factor gene FOXC1 exhibits a limited role in primary congenital glaucoma. Invest Ophthalmol Vis Sci. 50:75–83. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Moazzeni H, Akbari MT, Yazdani S and Elahi E: Expression of CXCL6 and BBS5 that may be glaucoma relevant genes is regulated by PITX2. Gene. 593:76–83. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Othman MI, Sullivan SA, Skuta GL, Cockrell DA, Stringham HM, Downs CA, Fornés A, Mick A, Boehnke M, Vollrath D and Richards JE: Autosomal dominant nanophthalmos (NNO1)with high hyperopia and angle-closure glaucomamaps to chromosome 11. Am J Hum Genet. 63:1411–8. 1998. View Article : Google Scholar : PubMed/NCBI

91 

Nongpiur ME, Khor CC, Jia H, Cornes BK, Chen LJ, Qiao C, Nair KS, Cheng CY, Xu L, George R, et al: ABCC5, a gene that influences the anterior chamber depth, is associated with primary angle closure glaucoma. PLoS Genet. 10:e10040892014. View Article : Google Scholar : PubMed/NCBI

92 

Simpson A, Avdic A, Roos BR, DeLuca A, Miller K, Schnieders MJ, Scheetz TE, Alward WL and Fingert JH: LADD syndrome with glaucoma is caused by a novel gene. Mol Vis. 23:179–184. 2017.PubMed/NCBI

93 

Wu MY, Wu Y, Zhang Y, Liu CY, Deng CY, Peng L and Zhou L: Associations between matrix metalloproteinase gene polymorphisms and glaucoma susceptibility: A meta-analysis. BMC Ophthalmol. 17:482017. View Article : Google Scholar : PubMed/NCBI

94 

Micheal S, Saksens NTM, Hogewind BF, Khan MI, Hoyng CB and den Hollander AI: Identification of TP53BP2 as a novel candidate gene for primary open angle glaucoma by whole exome sequencing in a large multiplex family. Mol Neurobiol. 55:1387–1395. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Liao RF, Zhong ZL, Ye MJ, Han LY, Ye DQ and Chen JJ: Identification of mutations in myocilin and beta-1,4-galactosyltransferase 3 genes in a Chinese family with primary open-angle glaucoma. Chin Med J (Engl). 129:2810–2815. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Vithana EN, Aung T, Khor CC, Cornes BK, Tay WT, Sim X, Lavanya R, Wu R, Zheng Y, Hibberd ML, et al: Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet. 20:649–658. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Janssen SF, Gorgels TG, van der Spek PJ, Jansonius NM and Bergen AA: In silico analysis of the molecular machinery underlying aqueous humor production: Potential implications for glaucoma. J Clin Bioinforma. 3:212013. View Article : Google Scholar : PubMed/NCBI

98 

Tezel G: TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res. 173:409–421. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Fujikawa K, Iwata T, Inoue K, Akahori M, Kadotani H, Fukaya M, Watanabe M, Chang Q, Barnett EM and Swat W: VAV2 and VAV3 as candidate disease genes for spontaneous glaucoma in mice and humans. PLoS One. 5:e90502010. View Article : Google Scholar : PubMed/NCBI

100 

Cao D, Liu X, Guo X, Cong Y, Huang J and Mao Z: Investigation of the association between CALCRL polymorphisms and primary angle closure glaucoma. Mol Vis. 15:2202–2208. 2009.PubMed/NCBI

101 

Awadalla MS, Burdon KP, Thapa SS, Hewitt AW and Craig JE: A cross-ethnicity investigation of genes previously implicated in primary angle closure glaucoma. Mol Vis. 18:2247–2254. 2012.PubMed/NCBI

102 

Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H and Tsukahara S: Association between genetic variants associated with vertical cup-to-disc ratio and phenotypic features of primary open-angle glaucoma. Ophthalmology. 119:1819–1825. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Junglas B, Kuespert S, Seleem AA, Struller T, Ullmann S, Bösl M, Bosserhoff A, Köstler J, Wagner R, Tamm ER and Fuchshofer R: Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol. 180:2386–2403. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Wang CY, Shen YC, Wei LC, Lin KH, Feng SC, Yang YY, Chiu CH and Tsai HY: Polymorphism in the TNF-α(−863) locus associated with reduced risk of primary open angle glaucoma. Mol Vis. 18:779–785. 2012.PubMed/NCBI

105 

Dursun O, Yilmaz A, Ayaz L and Tamer L: Serum levels and H/L gene polymorphism of mannose-binding lectin in primary open angle glaucoma. Curr Eye Res. 37:212–217. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Kang JH, Wiggs JL, Haines J, Abdrabou W and Pasquale LR: Reproductive factors and NOS3 variant interactions in primary open-angle glaucoma. Mol Vis. 17:2544–2551. 2011.PubMed/NCBI

107 

Awadalla MS, Thapa SS, Burdon KP, Hewitt AW and Craig JE: The association of hepatocyte growth factor (HGF) gene with primary angle closure glaucoma in the Nepalese population. Mol Vis. 17:2248–2254. 2011.PubMed/NCBI

108 

Wittström E, Ponjavic V, Bondeson ML and Andréasson S: Anterior segment abnormalities and angle-closure glaucoma in a family with a mutation in the BEST1 gene and Best vitelliform macular dystrophy. Ophthalmic Genet. 32:217–227. 2011. View Article : Google Scholar : PubMed/NCBI

109 

Fernández-Martínez L, Letteboer S, Mardin CY, Weisschuh N, Gramer E, Weber BH, Rautenstrauss B, Ferreira PA, Kruse FE, Reis A, et al: Evidence for RPGRIP1 gene as risk factor for primary open angle glaucoma. Eur J Hum Genet. 19:445–451. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Mookherjee S, Banerjee D, Chakraborty S, Banerjee A, Mukhopadhyay I, Sen A and Ray K: Association of IL1A and IL1B loci with primary open angle glaucoma. BMC Med Genet. 11:992010. View Article : Google Scholar : PubMed/NCBI

111 

Zhou T, Souzeau E, Sharma S, Siggs OM, Goldberg I, Healey PR, Graham S, Hewitt AW, Mackey DA, Casson RJ, et al: Rare variants in optic disc area gene CARD10 enriched in primary open-angle glaucoma. Mol Genet Genomic Med. 4:624–633. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Álvarez L, García M, González-Iglesias H, Escribano J, Rodríguez-Calvo PP, Fernández-Vega L and Coca-Prados M: LOXL1 gene variants and their association with pseudoexfoliation glaucoma (XFG) in Spanish patients. BMC Med Genet. 16:722015. View Article : Google Scholar : PubMed/NCBI

113 

Khawaja AP, Bailey Cooke JN, Kang JH, Allingham RR, Hauser MA, Brilliant M, Budenz DL, Christen WG, Fingert J, Gaasterland D, et al: Assessing the association of mitochondrial genetic variation with primary open-angle glaucoma using gene-set analyses. Invest Ophthalmol Vis Sci. 57:5046–5052. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, Chasman DI, Igo RP Jr, et al: Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 48:189–194. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Lascaratos G, Garway-Heath DF, Willoughby CE, Chau KY and Schapira AH: Mitochondrial dysfunction in glaucoma: Understanding genetic influences. Mitochondrion. 12:202–212. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Liu Y, Bailey JC, Helwa I, Dismuke WM, Cai J, Drewry M, Brilliant MH, Budenz DL, Christen WG, Chasman DI, et al: A common variant in MIR182 is associated with primary open-angle glaucoma in the NEIGHBORHOOD consortium. Invest Ophthalmol Vis Sci. 57:3974–3981. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Chandra A, Abbas S, Raza ST, Singh L, Rizvi S and Mahdi F: Polymorphism of CYP46A1 and PPARγ2 genes in risk prediction of primary open angle glaucoma among North Indian population. Middle East Afr J Ophthalmol. 23:172–176. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Shah MH, Tabanera N, Krishnadas SR, Pillai MR, Bovolenta P and Sundaresan P: Identification and characterization of variants and a novel 4 bp deletion in the regulatory region of SIX6, a risk factor for primary open-angle glaucoma. Mol Genet Genomic Med. 5:323–335. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Skowronska-Krawczyk D, Zhao L, Zhu J, Weinreb RN, Cao G, Luo J, Flagg K, Patel S, Wen C, Krupa M, et al: P16INK4a upregulation mediated by SIX6 defines retinal ganglion cell pathogenesis in glaucoma. Mol Cell. 59:931–940. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Shin HY, Park SW, Jung SH, Park HY, Jung KI, Chung YJ and Park CK: No evidence of association of heterozygous galactosylceramidase deletion with normal-tension glaucoma in a Korean population. J Glaucoma. 25:e504–e506. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Nowak A, Majsterek I, Przybyłowska-Sygut K, Pytel D, Szymanek K, Szaflik J and Szaflik JP: Analysis of the expression and polymorphism of APOE, HSP, BDNF, and GRIN2B genes associated with the neurodegeneration process in the pathogenesis of primary open angle glaucoma. Biomed Res Int. 2015:2582812015. View Article : Google Scholar : PubMed/NCBI

122 

Chen Y, Lin Y, Vithana EN, Jia L, Zuo X, Wong TY, Chen LJ, Zhu X, Tam PO, Gong B, et al: Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat Genet. 46:1115–1119. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Ayub H, Khan MI, Micheal S, Akhtar F, Ajmal M, Shafique S, Ali SH, den Hollander AI, Ahmed A, Qamar R, et al: Association of eNOS and HSP70 gene polymorphisms with glaucoma in Pakistani cohorts. Mol Vis. 16:18–25. 2010.PubMed/NCBI

124 

Carbone MA, Chen Y, Hughes GA, Weinreb RN, Zabriskie NA, Zhang K and Anholt RR: Genes of the unfolded protein response pathway harbor risk alleles for primary open angle glaucoma. PLoS One. 6:e206492011. View Article : Google Scholar : PubMed/NCBI

125 

Ayub H, Micheal S, Akhtar F, Khan MI, Bashir S, Waheed NK, Ali M, Schoenmaker-Koller FE, Shafique S, Qamar R and Hollander AI: Association of a polymorphism in the BIRC6 gene with pseudoexfoliative glaucoma. PLoS One. 9:e1050232014. View Article : Google Scholar : PubMed/NCBI

126 

Chen Y, Chen X, Wang L, Hughes G, Qian S and Sun X: Extended association study of PLEKHA7 and COL11A1 with primary angle closure glaucoma in a Han Chinese population. Invest Ophthalmol Vis Sci. 55:3797–3802. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Cuchra M, Szaflik JP, Przybylowska-Sygut K, Gacek M, Kaminska A, Szaflik J and Majsterek I: The role of the 148 Asp/Glu polymorphism of the APE1 gene in the development and progression of primary open angle glaucoma development in the Polish population. Pol J Pathol. 64:296–302. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Surgucheva I and Surguchov A: Expression of caveolin in trabecular meshwork cells and its possible implication in pathogenesis of primary open angle glaucoma. Mol Vis. 17:2878–2888. 2011.PubMed/NCBI

129 

Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, Sigurdsson A, Jonasdottir A, Gudjonsson SA, Magnusson KP, et al: Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 42:906–909. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Yu-Wai-Man P, Stewart JD, Hudson G, Andrews RM, Griffiths PG, Birch MK and Chinnery PF: OPA1 increases the risk of normal but not high tension glaucoma. J Med Genet. 47:120–125. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Mossböck G, Weger M, Faschinger C, Schmut O and Renner W: Plasminogen activator inhibitor-1 4G/5G gene polymorphism and primary open-angle glaucoma. Mol Vis. 14:1240–1244. 2008.PubMed/NCBI

132 

Wang WH, McNatt LG, Pang IH, Hellberg PE, Fingert JH, McCartney MD and Clark AF: Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci. 49:1916–1923. 2008. View Article : Google Scholar : PubMed/NCBI

133 

Micheal S, Hogewind BF, Khan MI, Siddiqui SN, Zafar SN, Akhtar F, Qamar R, Hoyng CB and den Hollander AI: Variants in the PRPF8 gene are associated with glaucoma. Mol Neurobiol. 55:4504–4510. 2018.PubMed/NCBI

134 

Woo SJ, Kim JY, Kim DM, Park SS, Ko HS and Yoo T: Investigation of the association between 677C>T and 1298A>C 5,10-methylenetetra-hydrofolate reductase gene polymorphisms and normal-tension glaucoma. Eye Lond. 23:17–24. 2009. View Article : Google Scholar : PubMed/NCBI

135 

Clement CI, Goldberg I, Healey PR and Graham SL: Plasma homocysteine, MTHFR gene mutation, and open-angle glaucoma. J Glaucoma. 18:73–78. 2009. View Article : Google Scholar : PubMed/NCBI

136 

Bhattacharya SK, Rockwood EJ, Smith SD, Bonilha VL, Crabb JS, Kuchtey RW, Robertson NG, Peachey NS, Morton CC and Crabb JW: Proteomics reveal Cochlin deposits associated with glaucomatous trabecular meshwork. J Biol Chem. 280:6080–6084. 2005. View Article : Google Scholar : PubMed/NCBI

137 

Bhattacharya SK, Crabb JS, Bonilha VL, Gu X, Takahara H and Crabb JW: Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Invest Ophthalmol Vis Sci. 47:2508–2514. 2006. View Article : Google Scholar : PubMed/NCBI

138 

Vishal M, Sharma A, Kaurani L, Alfano G, Mookherjee S, Narta K, Agrawal J, Bhattacharya I, Roychoudhury S, Ray JB, et al: Genetic association and stress mediated down-regulation in trabecular meshwork implicates MPP7 as a novel candidate gene in primary open angle glaucoma. MC Med Genomics. 9:152016. View Article : Google Scholar

139 

Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysi PG, Ramdas WD, et al: Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet. 45:155–163. 2013. View Article : Google Scholar : PubMed/NCBI

140 

Othman MI, Sullivan SA, Skuta GL, Cockrell DA, Stringham HM, Downs CA, Fornés A, Mick A, Boehnke M, Vollrath D and Richards JE: Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet. 63:1411–1418. 1998. View Article : Google Scholar : PubMed/NCBI

141 

Schlötzer-Schrehardt U: New pathogenetic insights into pseudoexfoliation syndrome/glaucoma. Therapeutically relevant? Ophthalmologe. 109:944–951. 2012.(In German). View Article : Google Scholar : PubMed/NCBI

142 

Fingert JH, Héon E, Liebmann JM, Yamamoto T, Craig JE, Rait J, Kawase K, Hoh ST, Buys YM, Dickinson J, et al: Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet. 8:899–905. 1999. View Article : Google Scholar : PubMed/NCBI

143 

Sheffield VC, Stone EM, Alward WL, Drack AV, Johnson AT, Streb LM and Nichols BE: Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 4:47–50. 1993. View Article : Google Scholar : PubMed/NCBI

144 

Rasnitsyn A, Doucette L, Seifi M, Footz T, Raymond V and Walter MA: FOXC1 modulates MYOC secretion through regulation of the exocytic proteins RAB3GAP1, RAB3GAP2 and SNAP25. PLoS One. 12:e01785182017. View Article : Google Scholar : PubMed/NCBI

145 

Kubota R, Kudoh J, Mashima Y, Asakawa S, Minoshima S, Hejtmancik JF, Oguchi Y and Shimizu N: Genomic organization of the human myocilin gene (MYOC) responsible for primary open angle glaucoma (GLC1A). Biochem Biophys Res Commun. 242:396–400. 1998. View Article : Google Scholar : PubMed/NCBI

146 

Michels-Rautenstrauss KG, Mardin CY, Budde WM, Liehr T, Polansky J, Nguyen T, Timmerman V, Van Broeckhoven C, Naumann GO, Pfeiffer RA and Rautenstrauss BW: Juvenile open angle glaucoma: Fine mapping of the TIGR gene to 1q24.3-q25.2 and mutation analysis. Hum Genet. 102:103–106. 1998. View Article : Google Scholar : PubMed/NCBI

147 

Nguyen TD, Chen P, Huang WD, Chen H, Johnson D and Polansky JR: Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem. 273:6341–6350. 1998. View Article : Google Scholar : PubMed/NCBI

148 

Johnson DH: Myocilin and glaucoma: A TIGR by the tail? Arch Ophthalmol. 118:974–978. 2000.PubMed/NCBI

149 

Karali A, Russell P, Stefani FH and Tamm ER: Localization of myocilin/trabecular meshwork-inducible glucocorticoid response protein in the human eye. Invest Ophthalmol Vis Sci. 41:729–740. 2000.PubMed/NCBI

150 

Abu-Amero KK, Azad TA, Spaeth GL, Myers J, Katz LJ, Moster M and Bosley TM: Unaltered myocilin expression in the blood of primary open angle glaucoma patients. Mol Vis. 18:1004–1009. 2012.PubMed/NCBI

151 

Jacobson N, Andrews M, Shepard AR, Nishimura D, Searby C, Fingert JH, Hageman G, Mullins R, Davidson BL, Kwon YH, et al: Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet. 10:117–125. 2001. View Article : Google Scholar : PubMed/NCBI

152 

Joe MK, Sohn S, Hur W, Moon Y, Choi YR and Kee C: Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. Biochem Biophys Res Commun. 312:592–600. 2003. View Article : Google Scholar : PubMed/NCBI

153 

Gobeil S, Rodrigue MA, Moisan S, Nguyen TD, Polansky JR, Morissette J and Raymond V: Intracellular sequestration of hetero-oligomers formed by wild-type and glaucoma-causing myocilin mutants. Invest Ophthalmol Vis Sci. 45:3560–3567. 2004. View Article : Google Scholar : PubMed/NCBI

154 

Liu Y and Vollrath D: Reversal of mutant myocilin non-secretion and cell killing: Implications for glaucoma. Hum Mol Genet. 13:1193–1204. 2004. View Article : Google Scholar : PubMed/NCBI

155 

Kwon YH, Fingert JH, Kuehn MH and Alward WL: Primary open-angle glaucoma. N Engl J Med. 360:1113–1124. 2009. View Article : Google Scholar : PubMed/NCBI

156 

Tamm ER: The functional role of myocilin in glaucoma ophthalmology research: Mechanisms of the glaucomas. Humana Press; Totowa: pp. 219–231. 2009

157 

Carbone MA, Ayroles JF, Yamamoto A, Morozova TV, West SA, Magwire MM, Mackay TF and Anholt RR: Overexpression of myocilin in the Drosophila eye activates the unfolded protein response: Implications for glaucoma. PLoS One. 4:e42162009. View Article : Google Scholar : PubMed/NCBI

158 

Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA and Mallucci GR: Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med. 5:206ra1382013. View Article : Google Scholar : PubMed/NCBI

159 

Wentz-Hunter K, Ueda J, Shimizu N and Yue BY: Myocilin is associated with mitochondria in human trabecular meshwork cells. J Cell Physiol. 190:46–53. 2002. View Article : Google Scholar : PubMed/NCBI

160 

Wentz-Hunter K, Shen X and Yue BY: Distribution of myocilin, a glaucoma gene product, in human corneal fibroblasts. Mol Vis. 9:308–314. 2003.PubMed/NCBI

161 

He Y, Leung KW, Zhuo YH and Ge J: Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells. Mol Vis. 15:815–825. 2009.PubMed/NCBI

162 

Kumar A, Basavaraj MG, Gupta SK, Qamar I, Ali AM, Bajaj V, Ramesh TK, Prakash DR, Shetty JS and Dorairaj SK: Role of CYP1B1, MYOC, OPTN, and OPTC genes in adult-onset primary open-angle glaucoma: predominance of CYP1B1 mutations in Indian patients. Mol Vis. 13:667–676. 2007.PubMed/NCBI

163 

Fan BJ, Wang DY, Fan DS, Tam PO, Lam DS, Tham CC, Lam CY, Lau TC and Pang CP: SNPs and interaction analyses of myocilin, optineurin, and apolipoprotein E in primary open angle glaucoma patients. Mol Vis. 11:625–631. 2005.PubMed/NCBI

164 

Forsman E, Lemmelä S, Varilo T, Kristo P, Forsius H, Sankila EM and Järvelä I: The role of TIGR and OPTN in Finnish glaucoma families: A clinical and molecular genetic study. Mol Vis. 9:217–222. 2003.PubMed/NCBI

165 

Rakhmanov VV, Nikitina NIa, Zakharova FM, Astakhov IuS, Kvasova MD, Vasil'ev VB, Golubkov VI and Mandel'shtam MIu: Mutations and polymorphisms in the genes for myocilin and optineur in as the risk factors of primary open-angle glaucoma. Genetika. 41:1567–1574. 2005.(In Russian). PubMed/NCBI

166 

Yao HY, Cheng CY, Fan BJ, Tam OS, Tham CY, Wang DY, Lam SC and Pang CP: Polymorphisms of myocilin and optineurin in primary open angle glaucoma patients. Zhonghua Yi Xue Za Zhi. 86:554–559. 2006.(In Chinese). PubMed/NCBI

167 

Park BC, Tibudan M, Samaraweera M, Shen X and Yue BY: Interaction between two glaucoma genes, optineurin and myocilin. Genes Cells. 12:969–979. 2007. View Article : Google Scholar : PubMed/NCBI

168 

Vincent AL, Billingsley G, Buys Y, Levin AV, Priston M, Trope G, Williams-Lyn D and Héon E: Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet. 70:448–460. 2002. View Article : Google Scholar : PubMed/NCBI

169 

Kaur K, Reddy AB, Mukhopadhyay A, Mandal AK, Hasnain SE, Ray K, Thomas R, Balasubramanian D and Chakrabarti S: Myocilin gene implicated in primary congenital glaucoma. Clin Genet. 67:335–340. 2005. View Article : Google Scholar : PubMed/NCBI

170 

Cai SP, Muhemaiti P, Yin Y, Cheng H, Di Ya A, Keyimu M, Cao X, Fan N, Jiang L, Yan N, et al: A novel MYOC heterozygous mutation identified in a Chinese Uygur pedigree with primary open-angle glaucoma. Mol Vis. 18:1944–1951. 2012.PubMed/NCBI

171 

Tanwar M, Kumar M, Dada T, Sihota R and Dada R: MYOC and FOXC1 gene analysis in primary congenital glaucoma. Mol Vis. 16:1996–2006. 2010.PubMed/NCBI

172 

Sirohi K and Swarup G: Defects in autophagy caused by glaucoma-associated mutations in optineurin. Exp Eye Res. 144:54–63. 2016. View Article : Google Scholar : PubMed/NCBI

173 

Lopez-Martinez F, Lopez-Garrido MP, Sanchez-Sanchez F, Campos-Mollo E, Coca-Prados M and Escribano J: Role of MYOC and OPTN sequence variations in Spanish patients with primary open-angle glaucoma. Mol Vis. 13:862–872. 2007.PubMed/NCBI

174 

Funayama T, Ishikawa K, Ohtake Y, Tanino T, Kurasaka D, Kimura I, Suzuki K, Ideta H, Nakamoto K, Yasuda N, et al: Variants in optineurin gene and their association with tumor necrosis factor-alpha polymorphisms in Japanese patients with glaucoma. Invest Ophthal Vis Sci. 45:4359–4367. 2004. View Article : Google Scholar : PubMed/NCBI

175 

Nagabhushana A, Chalasani ML, Jain N, Radha V, Rangaraj N, Balasubramanian D and Swarup G: Regulation of endocytic trafficking of transferrin receptor by optineurin and its impairment by a glaucoma-associated mutant. BMC Cell Biol. 11:42010. View Article : Google Scholar : PubMed/NCBI

176 

Sripriya S, Nirmaladevi J, George R, Hemamalini A, Baskaran M, Prema R, Ve Ramesh S, Karthiyayini T, Amali J, Job S, et al: OPTN gene: Profile of patients with glaucoma from India. Mol Vis. 12:816–820. 2006.PubMed/NCBI

177 

Mukhopadhyay A, Komatireddy S, Acharya M, Bhattacharjee A, Mandal AK, Thakur SK, Chandrasekhar G, Banerjee A, Thomas R, Chakrabarti S and Ray K: Evaluation of Optineurin as a candidate gene in Indian patients with primary open angle glaucoma. Mol Vis. 11:792–797. 2005.PubMed/NCBI

178 

Footz TK, Johnson JL, Dubois S, Boivin N, Raymond V and Walter MA: Glaucoma-associated WDR36 variants encode functional defects in a yeast model system. Hum Mol Genet. 18:1276–1287. 2009. View Article : Google Scholar : PubMed/NCBI

179 

Fingert JH, Alward WL, Kwon YH, Shankar SP, Andorf JL, Mackey DA, Sheffield VC and Stone EM: No association between variations in the WDR36 gene and primary open-angle glaucoma. Arch Ophthalmol. 125:434–436. 2007. View Article : Google Scholar : PubMed/NCBI

180 

Liu Y, Liu W, Crooks K, Schmidt S, Allingham RR and Hauser MA: No evidence of association of heterozygous NTF4 mutations in patients with primary open-angle glaucoma. Am J Hum Genet. 86:498–499. 2010. View Article : Google Scholar : PubMed/NCBI

181 

Chen LJ, Ng TK, Fan AH, Leung DY, Zhang M, Wang N, Zheng Y, Liang XY, Chiang SW, Tam PO, et al: Evaluation of NTF4 as a causative gene for primary open-angle glaucoma. Mol Vis. 18:1763–1772. 2012.PubMed/NCBI

182 

Vithana EN, Nongpiur ME, Venkataraman D, Chan SH, Mavinahalli J and Aung T: Identification of a novel mutation in the NTF4 gene that causes primary open-angle glaucoma in a Chinese population. Mol Vis. 16:1640–1645. 2010.PubMed/NCBI

183 

Murakami K, Meguro A, Ota M, Shiota T, Nomura N, Kashiwagi K, Mabuchi F, Iijima H, Kawase K, Yamamoto T, et al: Analysis of microsatellite polymorphisms within the GLC1F locus in Japanese patients with normal tension glaucoma. Mol Vis. 16:462–466. 2010.PubMed/NCBI

184 

Keller KE, Yang YF, Sun YY, Sykes R, Acott TS and Wirtz MK: Ankyrin repeat and suppressor of cytokine signaling box containing protein-10 is associated with ubiquitin-mediated degradation pathways in trabecular meshwork cells. Mol Vis. 19:1639–1655. 2013.PubMed/NCBI

185 

Mackay DS, Bennett TM and Shiels A: Exome sequencing identifies a missense variant in EFEMP1 co-segregating in a family with autosomal dominant primary open-angle glaucoma. PLoS One. 10:e01325292015. View Article : Google Scholar : PubMed/NCBI

186 

Springelkamp H, Mishra A, Hysi PG, Gharahkhani P, Höhn R, Khor CC, Bailey Cooke JN, Luo X, Ramdas WD, Vithana E, et al: Meta-analysis of genome-wide association studies identifies novel loci associated with optic disc morphology. Genet Epidemiol. 39:207–216. 2015. View Article : Google Scholar : PubMed/NCBI

187 

Junglas B, Kuespert S, Seleem AA, Struller T, Ullmann S, Bösl M, Bosserhoff A, Köstler J, Wagner R, Tamm ER and Fuchshofer R: Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol. 180:2386–2403. 2012. View Article : Google Scholar : PubMed/NCBI

188 

Fuchshofer R, Stephan DA, Russell P and Tamm ER: Gene expression profiling of TGFbeta2- and/or BMP7-treated trabecular meshwork cells: Identification of Smad7 as a critical inhibitor of TGF-beta2 signaling. Exp Eye Res. 88:1020–1032. 2009. View Article : Google Scholar : PubMed/NCBI

189 

Keller KE, Yang YF, Sun YY, Sykes R, Gaudette ND, Samples JR, Acott TS and Wirtz MK: Interleukin-20 receptor expression in the trabecular meshwork and its implication in glaucoma. J Ocul Pharmacol Ther. 30:267–276. 2014. View Article : Google Scholar : PubMed/NCBI

190 

Wirtz MK and Keller KE: The role of the IL-20 subfamily in glaucoma. Mediators Inflamm. 2016:40837352016. View Article : Google Scholar : PubMed/NCBI

191 

Howell GR, Walton DO, King BL, Libby RT and John SW: Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data. BMC Genomics. 12:4292011. View Article : Google Scholar : PubMed/NCBI

192 

Narooie-Nejad M, Paylakhi SH, Shojaee S, Fazlali Z, Kanavi Rezaei M, Nilforushan N, Yazdani S, Babrzadeh F, Suri F, Ronaghi M, et al: Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet. 18:3969–3977. 2009. View Article : Google Scholar : PubMed/NCBI

193 

Sarfarazi M: Recent advances in molecular genetics of glaucomas. Hum Mol Genet. 6:1667–1677. 1997. View Article : Google Scholar : PubMed/NCBI

194 

Choudhary D, Jansson I, Rezaul K, Han DK, Sarfarazi M and Schenkman JB: Cyp1b1 protein in the mouse eye during development: An immunohistochemical study. Drug Metab Dispos. 35:987–994. 2007. View Article : Google Scholar : PubMed/NCBI

195 

Li N, Zhou Y, Du L, Wei M and Chen X: Overview of cytochrome P450 1B1 gene mutations in patients with primary congenital glaucoma. Exp Eye Res. 93:572–579. 2011. View Article : Google Scholar : PubMed/NCBI

196 

Plásilová M, Stoilov I, Sarfarazi M, Kádasi L, Feráková E and Ferák V: Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. J Med Genet. 36:290–294. 1999.PubMed/NCBI

197 

Do T, Shei W, Chau PT, Trang DL, Yong VH, Ng XY, Chen YM, Aung T and Vithana EN: CYP1B1 and MYOC mutations in vietnamese primary congenital glaucoma patients. J Glaucoma. 25:e491–e498. 2016. View Article : Google Scholar : PubMed/NCBI

198 

Hogewind BF, Gaplovska-Kysela K, Theelen T, Cremers FP, Yam GH, Hoyng CB and Mukhopadhyay A: Identification and functional characterization of a novel MYOC mutation in two primary open angle glaucoma families from The Netherlands. Mol Vis. 13:1793–1801. 2007.PubMed/NCBI

199 

Patel HY, Richards AJ, De Karolyi B, Best SJ, Danesh-Meyer HV and Vincent AL: Screening glaucoma genes in adult glaucoma suggests a multiallelic contribution of CYP1B1 to open-angle glaucoma phenotypes. Clin Exp Ophthalmol. 40:e208–e217. 2012. View Article : Google Scholar : PubMed/NCBI

200 

López-Garrido MP, Sánchez-Sánchez F, López-Martínez F, Aroca-Aguilar JD, Blanco-Marchite C, Coca-Prados M and Escribano J: Heterozygous CYP1B1 gene mutations in Spanish patients with primary open-angle glaucoma. Mol Vis. 12:748–755. 2006.PubMed/NCBI

201 

Acharya M, Mookherjee S, Bhattacharjee A, Bandyopadhyay AK, Thakur Daulat SK, Bhaduri G, Sen A and Ray K: Primary role of CYP1B1 in Indian juvenile-onset POAG patients. Mol Vis. 12:399–404. 2006.PubMed/NCBI

202 

Zenteno JC, Hernandez-Merino E, Mejia-Lopez H, Matías-Florentino M, Michel N, Elizondo-Olascoaga C, Korder-Ortega V, Casab-Rueda H and Garcia-Ortiz JE: Contribution of CYP1B1 mutations and founder effect to primary congenital glaucoma in Mexico. J Glaucoma. 17:189–192. 2008. View Article : Google Scholar : PubMed/NCBI

203 

Faiq MA, Dada R, Qadri R and Dada T: CYP1B1-mediated pathobiology of primary congenital glaucoma. J Curr Glaucoma Pract. 9:77–80. 2015. View Article : Google Scholar : PubMed/NCBI

204 

Sarfarazi M and Stoilov I: Molecular genetics of primary congenital glaucoma. Eye Lond. 14:422–428. 2000. View Article : Google Scholar : PubMed/NCBI

205 

Kakiuchi-Matsumoto T, Isashiki Y, Ohba N, Kimura K, Sonoda S and Unoki K: Cytochrome P450 1B1 gene mutations in Japanese patients with primary congenital glaucoma(1). Am J Ophthalmol. 131:345–350. 2001. View Article : Google Scholar : PubMed/NCBI

206 

Kabra M, Zhang W, Rathi S, Mandal AK, Senthil S, Pyatla G, Ramappa M, Banerjee S, Shekhar K, Marmamula S, et al: Angiopoietin receptor TEK interacts with CYP1B1 in primary congenital glaucoma. Hum Genet. 136:941–949. 2017. View Article : Google Scholar : PubMed/NCBI

207 

Mohanty K, Tanwar M, Dada R and Dada T: Screening of the LTBP2 gene in a north Indian population with primary congenital glaucoma. Mol Vis. 19:78–84. 2013.PubMed/NCBI

208 

Safari I, Akbarian S, Yazdani S and Elahi E: A possible role for LTBP2 in the etiology of primary angle closure glaucoma. J Ophthalmic Vis Res. 10:123–129. 2015. View Article : Google Scholar : PubMed/NCBI

209 

Chen X, Chen Y, Fan BJ, Xia M, Wang L and Sun X: Screening of the LTBP2 gene in 214 Chinese sporadic CYP1B1-negative patients with primary congenital glaucoma. Mol Vis. 22:528–535. 2016.PubMed/NCBI

210 

Souma T, Tompson SW, Thomson BR, Siggs OM, Kizhatil K, Yamaguchi S, Feng L, Limviphuvadh V, Whisenhunt KN, Maurer-Stroh S, et al: Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest. 126:2575–2587. 2016. View Article : Google Scholar : PubMed/NCBI

211 

Kizhatil K, Ryan M, Marchant JK, Henrich S and John SW: Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol. 12:e10019122014. View Article : Google Scholar : PubMed/NCBI

212 

Kasetti RB, Phan TN, Millar JC and Zode GS: Expression of mutant myocilin induces abnormal intracellular accumulation of selected extracellular matrix proteins in the trabecular meshwork. Invest Ophthalmol Vis Sci. 57:6058–6069. 2016. View Article : Google Scholar : PubMed/NCBI

213 

Williams AL, Eason J, Chawla B and Bohnsack BL: Cyp1b1 regulates ocular fissure closure through a retinoic acid-independent pathway. Invest Ophthalmol Vis Sci. 58:1084–1097. 2017. View Article : Google Scholar : PubMed/NCBI

214 

García-Antón MT, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Triviño A, Aroca-Aguilar JD, García-Feijoo J, Escribano J and Ramírez JM: Goniodysgenesis variability and activity of CYP1B1 genotypes in primary congenital glaucoma. PLoS One. 12:e01763862017. View Article : Google Scholar : PubMed/NCBI

215 

Reis LM, Tyler RC, Weh E, Hendee KE, Kariminejad A, Abdul-Rahman O, Ben-Omran T, Manning MA, Yesilyurt A, McCarty CA, et al: Analysis of CYP1B1 in pediatric and adult glaucoma and other ocular phenotypes. Mol Vis. 22:1229–1238. 2016.PubMed/NCBI

216 

Jain A, Zode G, Kasetti RB, Ran FA, Yan W, Sharma TP, Bugge K, Searby CC, Fingert JH, Zhang F, et al: CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci USA. 114:11199–11204. 2017. View Article : Google Scholar : PubMed/NCBI

217 

Daliri K, Ljubimov AV and Hekmatimoghaddam S: Glaucoma, stem cells, and gene therapy: Where are we now? Int J Stem Cells. 10:119–128. 2017. View Article : Google Scholar : PubMed/NCBI

218 

Shah SZA, Zhao D, Hussain T and Yang L: The role of unfolded protein response and mitogen-activated protein kinase signaling in neurodegenerative diseases with special focus on prion diseases. Front Aging Neurosci. 9:1202017. View Article : Google Scholar : PubMed/NCBI

219 

Chong WC, Shastri MD and Eri R: Endoplasmic reticulum stress and oxidative stress: A vicious nexus implicated in bowel disease pathophysiology. Int J Mol Sci. 18:pii: E771. 2017. View Article : Google Scholar

220 

Lindholm D, Korhonen L, Eriksson O and Kõks S: Recent insights into the role of unfolded protein response in er stress in health and disease. Front Cell Dev Biol. 5:482017. View Article : Google Scholar : PubMed/NCBI

221 

Jackrel ME and Shorter J: Protein-remodeling factors as potential therapeutics for neurodegenerative disease. Front Neurosci. 11:992017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang HW, Sun P, Chen Y, Jiang LP, Wu HP, Zhang W and Gao F: Research progress on human genes involved in the pathogenesis of glaucoma (Review). Mol Med Rep 18: 656-674, 2018.
APA
Wang, H., Sun, P., Chen, Y., Jiang, L., Wu, H., Zhang, W., & Gao, F. (2018). Research progress on human genes involved in the pathogenesis of glaucoma (Review). Molecular Medicine Reports, 18, 656-674. https://doi.org/10.3892/mmr.2018.9071
MLA
Wang, H., Sun, P., Chen, Y., Jiang, L., Wu, H., Zhang, W., Gao, F."Research progress on human genes involved in the pathogenesis of glaucoma (Review)". Molecular Medicine Reports 18.1 (2018): 656-674.
Chicago
Wang, H., Sun, P., Chen, Y., Jiang, L., Wu, H., Zhang, W., Gao, F."Research progress on human genes involved in the pathogenesis of glaucoma (Review)". Molecular Medicine Reports 18, no. 1 (2018): 656-674. https://doi.org/10.3892/mmr.2018.9071
Copy and paste a formatted citation
x
Spandidos Publications style
Wang HW, Sun P, Chen Y, Jiang LP, Wu HP, Zhang W and Gao F: Research progress on human genes involved in the pathogenesis of glaucoma (Review). Mol Med Rep 18: 656-674, 2018.
APA
Wang, H., Sun, P., Chen, Y., Jiang, L., Wu, H., Zhang, W., & Gao, F. (2018). Research progress on human genes involved in the pathogenesis of glaucoma (Review). Molecular Medicine Reports, 18, 656-674. https://doi.org/10.3892/mmr.2018.9071
MLA
Wang, H., Sun, P., Chen, Y., Jiang, L., Wu, H., Zhang, W., Gao, F."Research progress on human genes involved in the pathogenesis of glaucoma (Review)". Molecular Medicine Reports 18.1 (2018): 656-674.
Chicago
Wang, H., Sun, P., Chen, Y., Jiang, L., Wu, H., Zhang, W., Gao, F."Research progress on human genes involved in the pathogenesis of glaucoma (Review)". Molecular Medicine Reports 18, no. 1 (2018): 656-674. https://doi.org/10.3892/mmr.2018.9071
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team