Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2018 Volume 18 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2018 Volume 18 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review)

  • Authors:
    • Guillermo‑Issac Guerrero‑Ramirez
    • Cesar‑Miguel Valdez‑Cordoba
    • Jose‑Francisco Islas‑Cisneros
    • Victor Trevino
  • View Affiliations / Copyright

    Affiliations: Tecnológico de Monterrey, Escuela de Medicina, Monterrey, Nuevo León 64710, México
    Copyright: © Guerrero‑Ramirez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1225-1237
    |
    Published online on: May 29, 2018
       https://doi.org/10.3892/mmr.2018.9092
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

There is a need for specific cell types in regenerative medicine and biological research. Frequently, specific cell types may not be easily obtained or the quantity obtained is insufficient for study. Therefore, reprogramming by the direct conversion (transdifferentiation) or re‑induction of induced pluripotent stem cells has been used to obtain cells expressing similar profiles to those of the desired types. Therefore, a specific cocktail of transcription factors (TFs) is required for induction. Nevertheless, identifying the correct combination of TFs is difficult. Although certain computational approaches have been proposed for this task, their methods are complex, and corresponding implementations are difficult to use and generalize for specific source or target cell types. In the present review four computational approaches that have been proposed to obtain likely TFs were compared and discussed. A simplified view of the computational complexity of these methods is provided that consists of three basic ideas: i) The definition of target and non‑target cell types; ii) the estimation of candidate TFs; and iii) filtering candidates. This simplified view was validated by analyzing a well‑documented cardiomyocyte differentiation. Subsequently, these reviewed methods were compared when applied to an unknown differentiation of corneal endothelial cells. The generated results may provide important insights for laboratory assays. Data and computer scripts that may assist with direct conversions in other cell types are also provided.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Meguid Abdel E, Ke Y, Ji J and El-Hashash AHK: Stem cells applications in bone and tooth repair and regeneration: New insights, tools and hopes. J Cell Physiol. 233:1825–1835. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Tabar V and Studer L: Pluripotent stem cells in regenerative medicine: Challenges and recent progress. Nat Rev Genet. 15:82–92. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Valdez-Garcia JE, Zavala J and Trevino V: Current state and future perspectives in corneal endothelium differentiationFrontiers in Stem Cell and Regenerative Medicine Research. Atta-ur-Rahman and Anjum S: Bentham: 2017, View Article : Google Scholar

4 

Mora C, Serzanti M, Consiglio A, Memo M and Dell'Era P: Clinical potentials of human pluripotent stem cells. Cell Biol Toxicol. 33:351–360. 2017. View Article : Google Scholar : PubMed/NCBI

5 

López-González R and Velasco I: Therapeutic potential of motor neurons differentiated from embryonic stem cells and induced pluripotent stem cells. Arch Med Res. 43:1–10. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda S, Hori F, Ishikawa-Kato S, et al: Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 16:222015. View Article : Google Scholar : PubMed/NCBI

7 

Li M and Belmonte JC: Ground rules of the pluripotency gene regulatory network. Nat Rev Genet. 18:180–191. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Li M, Liu G and Belmonte Izpisua JC: Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol. 13:524–535. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Moris N, Pina C and Arias AM: Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet. 17:693–703. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Vaquerizas JM, Kummerfeld SK, Teichmann SA and Luscombe NM: A census of human transcription factors: Function, expression and evolution. Nat Rev Genet. 10:252–263. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Frum T and Ralston A: Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet. 31:402–410. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Morris SA: Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks. Development. 143:2696–2705. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Iwafuchi-Doi M and Zaret KS: Cell fate control by pioneer transcription factors. Development. 143:1833–1837. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC and Wernig M: Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 463:1035–1041. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG and Srivastava D: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 142:375–386. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM and Ravens U: A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J Mol Cell Cardiol. 53:323–332. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Bonilla-Porras AR, Velez-Pardo C and Jimenez-Del-Rio M: Fast transdifferentiation of human Wharton's jelly mesenchymal stem cells into neurospheres and nerve-like cells. J Neurosci Methods. 282:52–60. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Abad M, Hashimoto H, Zhou H, Morales MG, Chen B, Bassel-Duby R and Olson EN: Notch inhibition enhances cardiac reprogramming by increasing MEF2C transcriptional activity. Stem Cell Rep. 8:548–560. 2017. View Article : Google Scholar

21 

Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D, et al: Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci USA. 109:13016–13021. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Waddington CH: The strategy of the genes. Routledge: 1957

23 

Cahan P, Li H, Morris SA, Da Rocha Lummertz E, Daley GQ and Collins JJ: CellNet: Network biology applied to stem cell engineering. Cell. 158:903–915. 2014. View Article : Google Scholar : PubMed/NCBI

24 

D'Alessio AC, Fan ZP, Wert KJ, Baranov P, Cohen MA, Saini JS, Cohick E, Charniga C, Dadon D, Hannett NM, et al: A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Reports. 5:763–775. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Rackham OJL, Firas J, Fang H, Oates ME, Holmes ML and Knaupp AS: FANTOM Consortium, Suzuki H, Nefzger CM, Daub CO, et al: A predictive computational framework for direct reprogramming between human cell types. Nat Genet. 48:331–335. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Okawa S, Nicklas S, Zickenrott S, Schwamborn JC and Del Sol A: A generalized gene-regulatory network model of stem cell differentiation for predicting lineage specifiers. Stem Cell Rep. 7:307–315. 2016. View Article : Google Scholar

27 

Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W and Edgar R: NCBI GEO: Mining millions of expression profiles-database and tools. Nucleic Acids Res. 33:(Database Issue). D562–D566. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 41:(Database Issue). D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, et al: ArrayExpress-a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35:(Database Issue). D747–D750. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, et al: ArrayExpress update-simplifying data submissions. Nucleic Acids Res. 43:(Database Issue). D1113–D1116. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, et al: ENCODE Data in the UCSC genome browser: Year 5 update. Nucleic Acids Res. 41:(Database Issue). D56–D63. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Kim SY, Lee JW and Sohn IS: Comparison of various statistical methods for identifying differential gene expression in replicated microarray data. Stat Methods Med Res. 15:3–20. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Huang HC, Niu Y and Qin LX: Differential expression analysis for RNA-Seq: An overview of statistical methods and computational software. Cancer Inform. 14 Suppl 1:S57–S67. 2015.

34 

Seyednasrollah F, Laiho A and Elo LL: Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform. 16:59–70. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Sullivan GM and Feinn R: Using effect size-or why the P value is not enough. J Grad Med Educ. 4:279–282. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Huang S, Guo YP, May G and Enver T: Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol. 305:695–713. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Jacob F and Monod J: Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 3:318–356. 1961. View Article : Google Scholar : PubMed/NCBI

38 

Roeder I and Glauche I: Towards an understanding of lineage specification in hematopoietic stem cells: A mathematical model for the interaction of transcription factors GATA-1 and PU.1. J Theor Biol. 241:852–865. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ and Gardner TS: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5:e82007. View Article : Google Scholar : PubMed/NCBI

40 

Rosvall M and Bergstrom CT: Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA. 105:1118–1123. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

42 

FANTOM Consortium H, . Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, Lassmann T, Ravasi T, Hasegawa Y, et al: The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 41:553–562. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43:(Database Issue). D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Nikolsky Y, Ekins S, Nikolskaya T and Bugrim A: A novel method for generation of signature networks as biomarkers from complex high throughput data. Toxicol Lett. 158:20–29. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Crespo I and Del Sol A: A general strategy for cellular reprogramming: The importance of transcription factor cross-repression. Stem Cells. 31:2127–2135. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Kauffman SA: Homeostasis and differentiation in random genetic control networks. Nature. 224:177–178. 1969. View Article : Google Scholar : PubMed/NCBI

47 

Zhang HM, Liu T, Liu CJ, Song S, Zhang X, Liu W, Jia H, Xue Y and Guo AY: AnimalTFDB 2.0: A resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res. 43:(Database Issue). D76–D81. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Xiang FL, Guo M and Yutzey KE: Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation. 133:1081–1092. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Chakraborty S and Yutzey KE: Tbx20 regulation of cardiac cell proliferation and lineage specialization during embryonic and fetal development in vivo. Dev Biol. 363:234–246. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Addis RC, Ifkovits JL, Pinto F, Kellam LD, Esteso P, Rentschler S, Christoforou N, Epstein JA and Gearhart JD: Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol. 60:97–106. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG and Srivastava D: Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports. 1:235–247. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Chen O and Qian L: Direct cardiac reprogramming: Advances in cardiac regeneration. Biomed Res Int. 2015:5804062015.PubMed/NCBI

53 

Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM and Srivastava D: Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell. 16:233–244. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Rastegar-Pouyani S, Khazaei N, Wee P, Yaqubi M and Mohammadnia A: Meta-analysis of transcriptome regulation during induction to cardiac myocyte fate from mouse and human fibroblasts. J Cell Physiol. 232:2053–2062. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Kamaraj US, Gough J, Polo JM, Petretto E and Rackham OJ: Computational methods for direct cell conversion. Cell Cycle. 15:3343–3354. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Ebrahimi B: Biological computational approaches: New hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics. Differentiation. 92:35–40. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Risebro CA, Searles RG, Melville AA, Ehler E, Jina N, Shah S, Pallas J, Hubank M, Dillard M, Harvey NL, et al: Prox1 maintains muscle structure and growth in the developing heart. Development. 136:495–505. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Liu Q, Jiang C, Xu J, Zhao MT, Van Bortle K, Cheng X, Wang G, Chang HY, Wu JC and Snyder MP: Genome-wide temporal profiling of transcriptome and open chromatin of early cardiomyocyte differentiation derived from hiPSCs and hESCs. Circ Res. 121:376–391. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Shekhar A, Lin X, Liu FY, Zhang J, Mo H, Bastarache L, Denny JC, Cox NJ, Delmar M, Roden DM, et al: Transcription factor ETV1 is essential for rapid conduction in the heart. J Clin Invest. 126:4444–4459. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Koizumi A, Sasano T, Kimura W, Miyamoto Y, Aiba T, Ishikawa T, Nogami A, Fukamizu S, Sakurada H, Takahashi Y, et al: Genetic defects in a His-Purkinje system transcription factor, IRX3, cause lethal cardiac arrhythmias. Eur Heart J. 37:1469–1475. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Nam YS, Kim Y, Joung H, Kwon DH, Choe N, Min HK, Kim YS, Kim HS, Kim DK, Cho YK, et al: Small heterodimer partner blocks cardiac hypertrophy by interfering with GATA6 signaling. Circ Res. 115:493–503. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Frausto RF, Wang C and Aldave AJ: Transcriptome analysis of the human corneal endothelium. Invest Ophthalmol Vis Sci. 55:7821–7830. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Trevino V: Chi-Co-Express: A database of human co-expression networks from global cell states. Manuscr Prep. 2017.

64 

Li Q, Birkbak NJ, Gyorffy B, Szallasi Z and Eklund AC: Jetset: Selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics. 12:4742011. View Article : Google Scholar : PubMed/NCBI

65 

Pressman CL, Chen H and Johnson RL: LMX1B, a LIM homeodomain class transcription factor, is necessary for normal development of multiple tissues in the anterior segment of the murine eye. Genesis. 26:15–25. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Powell C, Cornblath E and Goldman D: Zinc-binding domain-dependent, deaminase-independent actions of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 2 (Apobec2), mediate its effect on zebrafish retina regeneration. J Biol Chem. 289:28924–28941. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Chen L, Martino V, Dombkowski A, Williams T, West-Mays J and Gage PJ: AP-2β is a downstream effector of PITX2 required to specify endothelium and establish angiogenic privilege during corneal development. Invest Opthalmol Vis Sci. 57:1072–1081. 2016. View Article : Google Scholar

68 

Bradley JL, Edwards CS and Fullard RJ: Adaptation of impression cytology to enable conjunctival surface cell transcriptome analysis. Curr Eye Res. 39:31–41. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Khor CC, Do T, Jia H, Nakano M, George R, Abu-Amero K, Duvesh R, Chen LJ, Li Z, Nongpiur ME, et al: Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 48:556–562. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guerrero‑Ramirez GI, Valdez‑Cordoba CM, Islas‑Cisneros JF and Trevino V: Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review). Mol Med Rep 18: 1225-1237, 2018.
APA
Guerrero‑Ramirez, G., Valdez‑Cordoba, C., Islas‑Cisneros, J., & Trevino, V. (2018). Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review). Molecular Medicine Reports, 18, 1225-1237. https://doi.org/10.3892/mmr.2018.9092
MLA
Guerrero‑Ramirez, G., Valdez‑Cordoba, C., Islas‑Cisneros, J., Trevino, V."Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review)". Molecular Medicine Reports 18.2 (2018): 1225-1237.
Chicago
Guerrero‑Ramirez, G., Valdez‑Cordoba, C., Islas‑Cisneros, J., Trevino, V."Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review)". Molecular Medicine Reports 18, no. 2 (2018): 1225-1237. https://doi.org/10.3892/mmr.2018.9092
Copy and paste a formatted citation
x
Spandidos Publications style
Guerrero‑Ramirez GI, Valdez‑Cordoba CM, Islas‑Cisneros JF and Trevino V: Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review). Mol Med Rep 18: 1225-1237, 2018.
APA
Guerrero‑Ramirez, G., Valdez‑Cordoba, C., Islas‑Cisneros, J., & Trevino, V. (2018). Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review). Molecular Medicine Reports, 18, 1225-1237. https://doi.org/10.3892/mmr.2018.9092
MLA
Guerrero‑Ramirez, G., Valdez‑Cordoba, C., Islas‑Cisneros, J., Trevino, V."Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review)". Molecular Medicine Reports 18.2 (2018): 1225-1237.
Chicago
Guerrero‑Ramirez, G., Valdez‑Cordoba, C., Islas‑Cisneros, J., Trevino, V."Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review)". Molecular Medicine Reports 18, no. 2 (2018): 1225-1237. https://doi.org/10.3892/mmr.2018.9092
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team