Open Access

miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5

  • Authors:
    • Xiangjun Li
    • Yuqiong Wu
    • Fangfang Xie
    • Fengxue Zhang
    • Saixia Zhang
    • Jianhong Zhou
    • Dongfeng Chen
    • Aijun Liu
  • View Affiliations

  • Published online on: May 31, 2018     https://doi.org/10.3892/mmr.2018.9110
  • Pages: 1279-1286
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Our previous study indicated that loureirin A induces hair follicle stem cell (HFSC) differentiation through Wnt/β‑catenin signaling pathway activation. However, if and how microRNAs (miRNAs/miRs) modulate loureirin A‑induced differentiation remains to be elucidated. In the present study, HFSCs were separated from the vibrissae of rats and identified by CD34 and keratin, type 1 cytoskeletal (K)15 expression. Microarray‑based miRNA profiling analysis revealed that miR‑339‑5p was downregulated in loureirin A‑induced HFSC differentiation. miR‑339‑5p overexpression by transfection with miR‑339‑5p mimics markedly inhibited the expression of K10 and involucrin, which are markers of epidermal differentiation, whereas inhibition of miR‑339‑5p by miR‑339‑5p inhibitor transfection promoted the expression of K10 and involucrin. These results suggest that miR‑339‑5p is a negative regulator of HFSC differentiation following induction by loureirin A. These findings were confirmed by a luciferase assay. Homeobox protein DLX‑5 (DLX5) was identified as a direct target of miR‑339‑5p. Furthermore, it was demonstrated that miR‑339‑5p inhibited DLX5. Overexpression of miR‑339‑5p by mimic transfection significantly inhibited protein Wnt‑3a (Wnt3a) expression, while inhibition of miR‑339‑5p by inhibitor transfection significantly increased the expression of Wnt3a. Furthermore, small interfering RNA targeting DLX5 was transfected into HFSCs, and western blot analysis revealed that Wnt3a, involucrin and K10 expression was significantly downregulated. Taken together, these results suggest that miR‑339‑5p negatively regulated loureirin A‑induced HFSC differentiation by targeting DLX5, resulting in Wnt/β‑catenin signaling pathway inhibition. This may provide a possible therapeutic target for skin repair and regeneration.
View Figures
View References

Related Articles

Journal Cover

August-2018
Volume 18 Issue 2

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Wu Y, Xie F, Zhang F, Zhang S, Zhou J, Chen D and Liu A: miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5. Mol Med Rep 18: 1279-1286, 2018
APA
Li, X., Wu, Y., Xie, F., Zhang, F., Zhang, S., Zhou, J. ... Liu, A. (2018). miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5. Molecular Medicine Reports, 18, 1279-1286. https://doi.org/10.3892/mmr.2018.9110
MLA
Li, X., Wu, Y., Xie, F., Zhang, F., Zhang, S., Zhou, J., Chen, D., Liu, A."miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5". Molecular Medicine Reports 18.2 (2018): 1279-1286.
Chicago
Li, X., Wu, Y., Xie, F., Zhang, F., Zhang, S., Zhou, J., Chen, D., Liu, A."miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5". Molecular Medicine Reports 18, no. 2 (2018): 1279-1286. https://doi.org/10.3892/mmr.2018.9110