Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2018 Volume 18 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2018 Volume 18 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cell‑specific histone modifications in atherosclerosis (Review)

  • Authors:
    • Wanlin Jiang
    • Devendra K. Agrawal
    • Chandra S. Boosani
  • View Affiliations / Copyright

    Affiliations: Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1215-1224
    |
    Published online on: June 6, 2018
       https://doi.org/10.3892/mmr.2018.9142
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Histone modifications are the key epigenetic mechanisms that have been identified to regulate gene expression in many human diseases. However, in the early developmental stages, such as in utero and the postnatal stages, histone modifications are essential for gene regulation and cell growth. Atherosclerosis represents a classical example of the involvement of different cell types, and their cumulative effects in the development of atheroma and the progression of the disease. Post translational modifications on proteins either induces their functional activity or renders them inactive. Post translational modifications such as methylation or acetylation on histones have been well characterized, and their role in enhancing or inhibiting specific gene expression was clearly elucidated. In the present review article, the critical roles of different histone modifications that occur in atherosclerosis have been summarized. Different histone proteins have been identified to serve a critical role in the development of atherosclerosis. Specifically, histone methylation and histone acetylation in monocytes, macrophages, vascular smooth muscle cells and in endothelial cells during the progression of atherosclerosis, have been well reported. In recent years, different target molecules and genes that regulate histone modifications have been examined for their effects in the treatment of atherosclerosis in animal models and in clinical trials. An increasing body of evidence suggests that these epigenetic changes resulting from DNA methylation and non‑coding RNA may also be associated with histone modifications, thereby indicating that novel therapeutic strategies can be developed by targeting these post translational modifications, which may in turn aid in the treatment of atherosclerosis.
View Figures

Figure 1

Figure 2

View References

1 

Seneviratne A, Hulsmans M, Holvoet P and Monaco C: Biomechanical factors and macrophages in plaque stability. Cardiovasc Res. 99:284–293. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Karlić R, Chung HR, Lasserre J, Vlahovicek K and Vingron M: Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA. 107:2926–2931. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Dong X and Weng Z: The correlation between histone modifications and gene expression. Epigenomics. 5:113–116. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Greer EL and Shi Y: Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet. 13:343–357. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Xiaoling Y, Li Z, ShuQiang L, Shengchao M, Anning Y, Ning D, Nan L, Yuexia J, Xiaoming Y, Guizhong L and Yideng J: Hyperhomocysteinemia in ApoE-/-Mice leads to overexpression of enhancer of zeste homolog 2 via miR-92a regulation. PLoS One. 11:e01677442016. View Article : Google Scholar : PubMed/NCBI

6 

Li Z, Cao R, Wang M, Myers MP, Zhang Y and Xu R: Structure of a Bmi-1-ring1B polycomb group ubiquitin ligase complex. J Biol Chem. 281:20643–20649. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Wierda RJ, Rietveld IM, van Eggermond MC, Belien JA, van Zwet EW, Lindeman JH and van den Elsen PJ: Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques. Life Sci. 129:3–9. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Kadakol A, Malek V, Goru SK, Pandey A and Gaikwad AB: Esculetin reverses histone H2A/H2B ubiquitination, H3 dimethylation, acetylation and phosphorylation in preventing type 2 diabetic cardiomyopathy. J Funct Foods. 17:127–136. 2015. View Article : Google Scholar

9 

Xiao Y, Huang W, Zhang J, Peng C, Xia M and Ling W: Increased plasma S-adenosylhomocysteine-accelerated atherosclerosis is associated with epigenetic regulation of endoplasmic reticulum stress in apoE-/-mice. Arterioscler Thromb Vasc Biol. 35:60–70. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Yuan Q, Xie X, Fu Z, Ma X, Yang Y, Huang D, Liu F, Dai C and Ma Y: Association of the histone-lysine N-methyltransferase MLL5 gene with coronary artery disease in Chinese Han people. Meta Gene. 2:514–524. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Chen WL, Sun HP, Li DD, Wang ZH, You QD and Guo XK: G9a-an appealing antineoplastic target. Curr Cancer Drug Targets. 17:555–568. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Cong G, Yan R, Huang H, Wang K, Yan N, Jin P, Zhang N, Hou J, Chen D and Jia S: Involvement of histone methylation in macrophage apoptosis and unstable plaque formation in methionine-induced hyperhomocysteinemic ApoE-/-mice. Life Sci. 173:135–144. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Zheng QF, Wang HM, Wang ZF, Liu JY, Zhang Q, Zhang L, Lu YH, You H and Jin GH: Reprogramming of histone methylation controls the differentiation of monocytes into macrophages. FEBS J. 284:1309–1323. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Greißel A, Culmes M, Burgkart R, Zimmermann A, Eckstein HH, Zernecke A and Pelisek J: Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc Pathol. 25:79–86. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Bekkering S, van den Munckhof I, Nielen T, Lamfers E, Dinarello C, Rutten J, de Graaf J, Joosten LA, Netea MG, Gomes ME and Riksen NP: Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis. 254:228–236. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L and Reinberg D: SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 450:4402007. View Article : Google Scholar : PubMed/NCBI

17 

Li MF, Zhang R, Li TT, Chen MY, Li LX, Lu JX and Jia WP: High glucose increases the expression of inflammatory cytokine genes in macrophages through H3K9 methyltransferase mechanism. J Interferon Cytokine Res. 36:48–61. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Paneni F, Costantino S, Battista R, Castello L, Capretti G, Chiandotto S, Scavone G, Villano A, Pitocco D, Lanza G, et al: Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes. Circ Cardiovasc Genet. 8:150–158. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG and Riksen NP: Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytessignificance. Arterioscler Thromb Vasc Biol. 34:1731–1738. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Choi J, Yoon S, Kim S and Jo Ahn S: KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels. Sci Rep. 7:450052017. View Article : Google Scholar : PubMed/NCBI

21 

Barroso M, Kao D, Blom HJ, De Almeida Tavares I, Castro R, Loscalzo J and Handy DE: S-adenosylhomocysteine induces inflammation through NFκB: A possible role for EZH2 in endothelial cell activation. Biochem Biophys Acta. 1862:82–92. 2016.PubMed/NCBI

22 

Choi J and Jo SA: KDM7A histone demethylase mediates TNF-α-induced ICAM1 protein upregulation by modulating lysosomal activity. Biochem Biophys Res Commun. 478:1355–1362. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Balcerczyk A, Rybaczek D, Wojtala M, Pirola L, Okabe J and El-Osta A: Pharmacological inhibition of arginine and lysine methyltransferases induces nuclear abnormalities and suppresses angiogenesis in human endothelial cells. Biochem Pharmacol. 121:18–32. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Gu L, Hitzel J, Moll F, Kruse C, Malik RA, Preussner J, Looso M, Leisegang MS, Steinhilber D, Brandes RP and Fork C: The histone demethylase PHF8 is essential for endothelial cell migration. PLoS One. 11:e1466452016. View Article : Google Scholar

25 

Han P, Gao D, Zhang W, Liu S, Yang S and Li X: Puerarin suppresses high glucose-induced MCP-1 expression via modulating histone methylation in cultured endothelial cells. Life Sci. 130:103–107. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Zernecke A: Dendritic cells in atherosclerosis. Arterioscler Thromb Vasc Biol. 35:763–770. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Kumar A, Kumar S, Vikram A, Hoffman TA, Naqvi A, Lewarchik CM, Kim YR and Irani K: Histone and DNA methylation-mediated epigenetic downregulation of endothelial kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol. 33:1936–1942. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME and El-Osta A: Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 58:1229–1236. 2009. View Article : Google Scholar : PubMed/NCBI

29 

El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME and Brownlee M: Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 205:2409–2417. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Chen J, Zhang J, Yang J, Xu L, Hu Q, Xu C, Yang S and Jiang H: Histone demethylase KDM3a, a novel regulator of vascular smooth muscle cells, controls vascular neointimal hyperplasia in diabetic rats. Atherosclerosis. 257:152–163. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Yousefipour Z, Newaz MA, Esmaeilli M and Ranganna K: [PP.36.07] Modification of histone induced by acrolein in rat vascular smooth muscle cells. J Hypertens. 34:e3372016. View Article : Google Scholar

32 

Lehrke M, Kahles F, Makowska A, Tilstam PV, Diebold S, Marx J, Stöhr R, Hess K, Endorf EB, Bruemmer D, et al: PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner. J Mol Cell Cardiol. 81:23–33. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Qi H, Jing Z, Xiaolin W, Changwu X, Xiaorong H, Jian Y, Jing C and Hong J: Histone demethylase JMJD2A inhibition attenuates neointimal hyperplasia in the carotid arteries of balloon-injured diabetic rats via transcriptional silencing: Inflammatory gene expression in vascular smooth muscle cells. Cell Physiol Biochem. 37:719–734. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L and Natarajan R: Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci USA. 105:9047–9052. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Xia J, Fang M, Wu X, Yang Y, Yu L, Xu H, Kong H, Tan Q, Wang H, Xie W and Xu Y: A2b adenosine signaling represses CIITA transcription via an epigenetic mechanism in vascular smooth muscle cells. Biochim Biophys Acta. 1849:665–676. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Tarling EJ, Ryan KJ, Austin R, Kugler SJ, Salter AM and Langley-Evans SC: Maternal high-fat feeding in pregnancy programs atherosclerotic lesion size in the ApoE*3 Leiden mouse. J Dev Orig Health Dis. Feb 2–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

37 

Alkemade FE, van Vliet P, Henneman P, van Dijk KW, Hierck BP, van Munsteren JC, Scheerman JA, Goeman JJ, Havekes LM, Gittenberger-de Groot AC, et al: Prenatal exposure to apoe deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. Am J Pathol. 176:542–548. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Witt O, Deubzer HE, Milde T and Oehme I: HDAC family: What are the cancer relevant targets? Cancer Lett. 277:8–21. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Tikoo K, Patel G, Kumar S, Karpe PA, Sanghavi M, Malek V and Srinivasan K: Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of epigenetic histone modifications. Biochem Pharmacol. 93:343–351. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Chaturvedi P, Kalani A, Givvimani S, Kamat PK, Familtseva A and Tyagi SC: Differential regulation of DNA methylation versus histone acetylation in cardiomyocytes during HHcy in vitro and in vivo: An epigenetic mechanism. Physiol Genomics. 46:245–255. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Kumar A and Chauhan S: How much successful are the medicinal chemists in modulation of SIRT1: A critical review. Eur J Med Chem. 119:45–69. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Sathishkumar C, Prabu P, Balakumar M, Lenin R, Prabhu D, Anjana RM, Mohan V and Balasubramanyam M: Augmentation of histone deacetylase 3 (HDAC3) epigenetic signature at the interface of proinflammation and insulin resistance in patients with type 2 diabetes. Clin Epigenetics. 8:1252016. View Article : Google Scholar : PubMed/NCBI

44 

Hoeksema MA, Gijbels MJ, Van den Bossche J, van der Velden S, Sijm A, Neele AE, Seijkens T, Stöger JL, Meiler S, Boshuizen MC, et al: Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med. 6:1124–1132. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Van den Bossche J, Neele AE, Hoeksema MA, de Heij F, Boshuizen MC, van der Velden S, de Boer VC, Reedquist KA and de Winther MPJ: Inhibiting epigenetic enzymes to improve atherogenic macrophage functions. Biochem Biophys Res Commun. 455:396–402. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Xie X, Song X, Yuan S, Cai H, Chen Y, Chang X, Liang B and Huang D: Histone acetylation regulates orphan nuclear receptor NR4A1 expression in hypercholesterolaemia. Clin Sci (Lond). 129:1151–1161. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Oksala NKJ, Seppälä I, Rahikainen R, Mäkelä KM, Raitoharju E, Illig T, Klopp N, Kholova I, Laaksonen R, Karhunen PJ, et al: Synergistic expression of histone deacetylase 9 and matrix metalloproteinase 12 in M4 macrophages in advanced carotid plaques. Eur J Vasc Endovasc. 53:632–640. 2017. View Article : Google Scholar

48 

Smith JD: New role for histone deacetylase 9 in atherosclerosis and inflammation. Arterioscler Thromb Vasc Biol. 34:1798–1799. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Cao Q, Rong S, Repa JJ, Clair RS, Parks JS and Mishra N: Histone deacetylase 9 represses cholesterol efflux and generation of alternatively activated macrophages in atherosclerosis development. Arterioscler Thrombosis Vasc Biol. 34:1871–1879. 2014. View Article : Google Scholar

50 

Salah Ud-Din IA, Tikhomirova A and Roujeinikova A: Structure and Functional diversity of GCN5-related n-acetyltransferases (GNAT). Int J Mol Sci. 17:E10182016. View Article : Google Scholar : PubMed/NCBI

51 

Chistiakov DA, Orekhov AN and Bobryshev YV: Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol. 227:66–82. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Vecellio M, Spallotta F, Nanni S, Colussi C, Cencioni C, Derlet A, Bassetti B, Tilenni M, Carena MC, Farsetti A, et al: The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients. Diabetes. 63:2132–2147. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Zeidler R, de Freitas Soares BL, Bader A and Giri S: Molecular epigenetic targets for liver diseases: Current challenges and future prospects. Drug Discov Today. 22:1620–1636. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE and Jones PA: DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 8:1579–1588. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Wierda RJ, Goedhart M, van Eggermond MC, Muggen AF, Miggelbrink XM, Geutskens SB, van Zwet E, Haasnoot GW and van den Elsen PJ: A role for KMT1c in monocyte to dendritic cell differentiation. Hum Immunol. 76:431–437. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Zhao Q, Li S, Li N, Yang X, Ma S, Yang A, Zhang H, Yang S, Mao C, Xu L, et al: miR-34a targets HDAC1-regulated H3K9 acetylation on lipid accumulation induced by homocysteine in foam cells. J Cell Biochem. 118:4617–4627. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Makino J, Ogasawara R, Kamiya T, Hara H, Mitsugi Y, Yamaguchi E, Itoh A and Adachi T: Royal jelly constituents increase the expression of extracellular superoxide dismutase through histone acetylation in monocytic thp-1 cells. J Nat Prod. 79:1137–1143. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Svennerholm K, Haney M, Biber B, Ulfhammer E, Saluveer O, Larsson P, Omerovic E, Jern S and Bergh N: Histone deacetylase inhibition enhances tissue plasminogen activator release capacity in atherosclerotic man. PLoS One. 10:e1211962015. View Article : Google Scholar

59 

Anderson SJ, Feye KM, Schmidt-McCormack GR, Malovic E, Mlynarczyk GSA, Izbicki P, Arnold LF, Jefferson MA, de la Rosa BM, Wehrman RF, et al: Off-target drug effects resulting in altered gene expression events with epigenetic and Quasi-Epigenetic origins. Pharmacol Res. 107:229–233. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Cedar H and Bergman Y: Linking DNA methylation and histone modification: Patterns and paradigms. Nat Rev Gene. 10:295–304. 2009. View Article : Google Scholar

61 

Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F and Sun SH: Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 49:1083–1096. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Chen R, Kong P, Zhang F, Shu YN, Nie X, Dong LH, Lin YL, Xie XL, Zhao LL, Zhang XJ and Han M: EZH2-mediated α-actin methylation needs lncRNA TUG1 and promotes the cortex cytoskeleton formation in VSMCs. Gene. 616:52–57. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Tee AE, Ling D, Nelson C, Atmadibrata B, Dinger ME, Xu N, Mizukami T, Liu PY, Liu B, Cheung B, et al: The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget. 5:1793–1804. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Carrer A, Parris JLD, Trefely S, Henry RA, Montgomery DC, Torres A, Viola JM, Kuo Y, Blair IA, Meier JL, et al: Impact of a high-fat diet on tissue Acyl-CoA and histone acetylation levels. J Biol Chem. 292:3312–3322. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Short JD, Tavakoli S, Nguyen HN, Carrera A, Farnen C, Cox LA and Asmis R: Dyslipidemic diet-induced monocyte ‘priming’ and dysfunction in non-human primates is triggered by elevated plasma cholesterol and accompanied by altered histone acetylation. Front Immunol. 8:9582017. View Article : Google Scholar : PubMed/NCBI

66 

Friso S, Carvajal CA, Fardella CE and Olivieri O: Epigenetics and arterial hypertension: The challenge of emerging evidence. Transl Res. 165:154–165. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Høgh Kølbæk Kjær AS, Brinkmann CR, Dinarello CA, Olesen R, Østergaard L, Søgaard OS, Tolstrup M and Rasmussen TA: The histone deacetylase inhibitor panobinostat lowers biomarkers of cardiovascular risk and inflammation in HIV patients. AIDS. 29:1195–1200. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Choi JH, Nam KH, Kim J, Baek MW, Park JE, Park HY, Kwon HJ, Kwon OS, Kim DY and Oh GT: Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 25:2404–2409. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Okamoto H, Fujioka Y, Takahashi A, Takahashi T, Taniguchi T, Ishikawa Y and Yokoyama M: Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21 (WAF1). J Atheroscler Thromb. 13:183–191. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Pandey D, Sikka G, Bergman Y, Kim JH, Ryoo S, Romer L and Berkowitz D: Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2. Arterioscler Thromb Vasc Biol. 34:1556–1566. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Liokatis S, Klingberg R, Tan S and Schwarzer D: Differentially isotope-labeled nucleosomes to study asymmetric histone modification crosstalk by time-resolved NMR spectroscopy. Angew Chem Int Ed Engl. 55:8262–8265. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Clark SJ, Lee HJ, Smallwood SA, Kelsey G and Reik W: Single-cell epigenomics: Powerful new methods for understanding gene regulation and cell identity. Genome Biol. 17:722016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang W, Agrawal DK and Boosani CS: Cell‑specific histone modifications in atherosclerosis (Review). Mol Med Rep 18: 1215-1224, 2018.
APA
Jiang, W., Agrawal, D.K., & Boosani, C.S. (2018). Cell‑specific histone modifications in atherosclerosis (Review). Molecular Medicine Reports, 18, 1215-1224. https://doi.org/10.3892/mmr.2018.9142
MLA
Jiang, W., Agrawal, D. K., Boosani, C. S."Cell‑specific histone modifications in atherosclerosis (Review)". Molecular Medicine Reports 18.2 (2018): 1215-1224.
Chicago
Jiang, W., Agrawal, D. K., Boosani, C. S."Cell‑specific histone modifications in atherosclerosis (Review)". Molecular Medicine Reports 18, no. 2 (2018): 1215-1224. https://doi.org/10.3892/mmr.2018.9142
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang W, Agrawal DK and Boosani CS: Cell‑specific histone modifications in atherosclerosis (Review). Mol Med Rep 18: 1215-1224, 2018.
APA
Jiang, W., Agrawal, D.K., & Boosani, C.S. (2018). Cell‑specific histone modifications in atherosclerosis (Review). Molecular Medicine Reports, 18, 1215-1224. https://doi.org/10.3892/mmr.2018.9142
MLA
Jiang, W., Agrawal, D. K., Boosani, C. S."Cell‑specific histone modifications in atherosclerosis (Review)". Molecular Medicine Reports 18.2 (2018): 1215-1224.
Chicago
Jiang, W., Agrawal, D. K., Boosani, C. S."Cell‑specific histone modifications in atherosclerosis (Review)". Molecular Medicine Reports 18, no. 2 (2018): 1215-1224. https://doi.org/10.3892/mmr.2018.9142
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team