Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2018 Volume 18 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2018 Volume 18 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells

  • Authors:
    • Changjiang Li
    • Lei Cheng
    • Haitao Wu
    • Peijie He
    • Yanping Zhang
    • Yue Yang
    • Jian Chen
    • Min Chen
  • View Affiliations / Copyright

    Affiliations: Department of Otorhinolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, P.R. China, Department of Central Laboratory, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2541-2550
    |
    Published online on: July 16, 2018
       https://doi.org/10.3892/mmr.2018.9288
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

At present there are no studies investigating the effects of the kelch‑like ECH‑associated protein 1 (KEAP1)‑nuclear factor erythroid 2‑related factor 2 (NRF2)‑antioxidant response element (ARE) signaling pathway on Hep2 cell line. The present study aimed to investigate this topic through knockdown of the KEAP1 gene. A stable Hep2 cell line specifically silencing the human KEAP1 gene was initially constructed. Hydrogen peroxide (H2O2) was added to the culture medium at various concentrations for various durations to interact with the short hairpin (sh)KEAP1‑transfected Hep2 cells. Subsequently, the gene and protein expression levels of KEAP1, NRF2, NAD(P)H quinone oxidoreductase1 (NQO1) and heme oxygenase 1 (HO1) in experimental and control cells were measured by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. Furthermore, the viability and apoptotic rate of the shKEAP1‑transfected Hep2 cells were detected by a Cell Counting‑Kit 8 assay and flow cytometry, respectively. In the shKEAP1 Hep2 cell line, the mRNA and protein expression levels of NRF2, NQO1 and HO1 were markedly higher compared with the scramble control‑transfected Hep2 and parent Hep2 cell lines. Immunofluorescence staining indicated that NRF2 was primarily located in the cytoplasm of scHep2 and parent Hep2 cell lines, but was present in the nuclei and cytoplasm of the shKEAP1 Hep2 cell line, where it translocates into the nuclei in response to H2O2. Following knockdown of the KEAP1 gene Hep2 cells, the apoptosis rates were 31.8 and 45.3% in scHep2 cells at 0.1 and 0.25 mmol/l H2O2 respectively and 14.1 and 27.9% in shKEAP1 cells. The present study indicated that the KEAP1‑NRF2‑ARE signaling pathway may exhibit an antioxidative effect within Hep2 cells and may be used for clinical treatment of cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Jałoszyński P, Jaruga P, Oliński R, Biczysko W, Szyfter W, Nagy E, Möller L and Szyfter K: Oxidative DNA base modifications and polycyclic aromatic hydrocarbon DNA adducts in squamous cell carcinoma of larynx. Free Radic Res. 37:231–240. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Seven A, Civelek S, Inci E, Inci F, Korkut N and Burçak G: Evaluation of oxidative stress parameters in blood of patients with laryngeal carcinoma. Clin Biochem. 32:369–373. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Dwivedi R, Raturi D, Kandpal N, Dwivedi R, Singh R and Puri V: Oxidative stress in patients with laryngeal carcinoma. Indian J Cancer. 45:97–99. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Inci E, Civelek S, Seven A, Inci F, Korkut N and Burçax G: Laryngeal cancer: In relation to oxidative stress. Tohoku J Exp Med. 200:17–23. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Motohashi H and Yamamoto M: Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 10:549–557. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Uruno A and Motohashi H: The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide. 25:153–160. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Awadallah NS, Dehn D, Shah RJ, Nash Russell S, Chen YK, Ross D, Bentz JS and Shroyer KR: NQO1 expression in pancreatic cancer and its potential use as a biomarker. Appl Immunohistochem Mol Morphol. 16:24–31. 2008.PubMed/NCBI

8 

Dunn L, Midwinter RG, Ni J, Hamid HA, Parish CR and Stoker R: New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal. 20:1723–1742. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Kensler TW and Wakabayashi N: Nrf2: Friend or foe for chemoprevention? Carcinogenesis. 31:90–99. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, et al: Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3:e4202006. View Article : Google Scholar : PubMed/NCBI

11 

Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S, Grammatikos AP, Hecht JL and Cannistra SA: Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res. 71:5081–5089. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Kim JH, Choi YK, Lee KS, Cho DH, Baek YY, Lee DK, Ha KS, Choe J, Won MH, Jeoung D, et al: Functional dissection of Nrf2-dependent phase II genes in vascular inflammation and endotoxic injury using Keap1 siRNA. Free Radic Biol Med. 53:629–640. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, et al: Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 35:238–245. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Spanou C, Stagos D, Aligiannis N and Kouretas D: Influence of potent antioxidant leguminosae family plant extracts on growth and antioxidant defense system of Hep2 cancer cell line. J Med Food. 13:149–55. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Spanou C, Stagos D, Aligiannis N and Kouretas D: Influence of potent antioxidant leguminosae family plant extracts on growth and antioxidant defense system of Hep2 cancer cell line. J Med Food. 13:149–155. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Jewett A, Wang MY, Teruel A, Poupak Z, Bostanian Z and Park NH: Cytokine dependent inverse regulation of CD54 (ICAM1) and major histocompatibility complex class I antigens by nuclear factor kappaB in HEp2 tumor cel: Effect on the function of natural killer cells. Hum Immunol. 64:505–520. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Suzuki T, Wakai K, Matsuo K, Hirose K, Ito H, Kuriki K, Sato S, Ueda R, Hasegawa Y and Tajima K: Effect of dietary antioxidants and risk of oral, pharyngeal and laryngeal squamous cell carcinoma according to smoking and drinking habits. Cancer Sci. 97:760–767. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Khor TO, Huang MT, Prawan A, Liu Y, Hao X, Yu S, Cheung WK, Chan JY, Reddy BS, Yang CS and Kong AN: Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res (Phila). 1:187–191. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, Shimazui T, Akaza H and Yamamoto M: Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 64:6424–6431. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, Copple IM, Williams S, Owen A, Neoptolemos JP, et al: Nrf2 is overexpressed in pancreatic cancer: Implications for cell proliferation and therapy. Mol Cancer. 10:372011. View Article : Google Scholar : PubMed/NCBI

22 

Jung KA and Kwak MK: Enhanced 4-hydroxynonenal resistance in KEAP1 silenced human colon cancer cells. Oxid Med Cell Longev. 2013:4239652013. View Article : Google Scholar : PubMed/NCBI

23 

Li K, Zhong C, Wang B, He J and Bi J: Nrf2 expression participates in growth and differentiation of endometrial carcinoma cells in vitro and in vivo. J Mol Histol. 45:161–167. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Ma X, Zhang J, Liu S, Huang Y, Chen B and Wang D: Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer. Cancer Chemother Pharmacol. 69:485–494. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Dell'Orco M, Milani P, Arrigoni L, Pansarasa O, Sardone V, Maffioli E, Polveraccio F, Bordoni M, Diamanti L, Ceroni M, et al: Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration. Biochim Biophys Acta. 1859:315–323. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Erlank H, Elmann A, Kohen R and Kanner J: Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones, and quinones. Free Radic Biol Med. 51:2319–2327. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Pi J, Qu W, Reece JM, Kumagai Y and Waalkes MP: Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: Involvement of hydrogen peroxide. Exp Cell Res. 290:234–245. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Habib E, Linher-Melville K, Lin HX and Singh G: Expression of xCT and activity of system xc(−) are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol. 5:33–42. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Chen J, Yu Y, Ji T, Ma R, Chen M, Li G, Li F, Ding Q, Kang Q, Huang D, et al: Clinical implication of Keap1 and phosphorylated Nrf2 expression in hepatocellular carcinoma. Cancer Med. 5:2678–2687. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li C, Cheng L, Wu H, He P, Zhang Y, Yang Y, Chen J and Chen M: Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells. Mol Med Rep 18: 2541-2550, 2018.
APA
Li, C., Cheng, L., Wu, H., He, P., Zhang, Y., Yang, Y. ... Chen, M. (2018). Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells. Molecular Medicine Reports, 18, 2541-2550. https://doi.org/10.3892/mmr.2018.9288
MLA
Li, C., Cheng, L., Wu, H., He, P., Zhang, Y., Yang, Y., Chen, J., Chen, M."Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells". Molecular Medicine Reports 18.3 (2018): 2541-2550.
Chicago
Li, C., Cheng, L., Wu, H., He, P., Zhang, Y., Yang, Y., Chen, J., Chen, M."Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells". Molecular Medicine Reports 18, no. 3 (2018): 2541-2550. https://doi.org/10.3892/mmr.2018.9288
Copy and paste a formatted citation
x
Spandidos Publications style
Li C, Cheng L, Wu H, He P, Zhang Y, Yang Y, Chen J and Chen M: Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells. Mol Med Rep 18: 2541-2550, 2018.
APA
Li, C., Cheng, L., Wu, H., He, P., Zhang, Y., Yang, Y. ... Chen, M. (2018). Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells. Molecular Medicine Reports, 18, 2541-2550. https://doi.org/10.3892/mmr.2018.9288
MLA
Li, C., Cheng, L., Wu, H., He, P., Zhang, Y., Yang, Y., Chen, J., Chen, M."Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells". Molecular Medicine Reports 18.3 (2018): 2541-2550.
Chicago
Li, C., Cheng, L., Wu, H., He, P., Zhang, Y., Yang, Y., Chen, J., Chen, M."Activation of the KEAP1‑NRF2‑ARE signaling pathway reduces oxidative stress in Hep2 cells". Molecular Medicine Reports 18, no. 3 (2018): 2541-2550. https://doi.org/10.3892/mmr.2018.9288
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team