|
1
|
Burney RO and Giudice LC: Pathogenesis and
pathophysiology of endometriosis. Fertil Steril. 98:511–519. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sampson JA: Metastatic or embolic
endometriosis, due to the menstrual dissemination of endometrial
tissue into the venous circulation. Am J Pathol. 3(93–110):
1431927.PubMed/NCBI
|
|
3
|
Halme J, Hammond MG, Hulka JF, Raj SG and
Talbert LM: Retrograde menstruation in healthy women and in
patients with endometriosis. Obstet Gynecol. 64:151–154.
1984.PubMed/NCBI
|
|
4
|
BRENDA: The Comprehensive Enzyme
Information System. https://www.brenda-enzymes.org
|
|
5
|
Verma RP and Hansch C: Matrix
metalloproteinases (MMPs): Chemical-biological functions and
(Q)SARs. Bioorg Med Chem. 15:2223–2268. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rodgers WH, Osteen KG, Matrisian LM, Navre
M, Giudice LC and Gorstein F: Expression and localization of
matrilysin, a matrix metalloproteinase, in human endometrium during
the reproductive cycle. Am J Obstet Gynecol. 168:253–260. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rodgers WH, Matrisian LM, Giudice LC,
Dsupin B, Cannon P, Svitek C, Gorstein F and Osteen KG: Patterns of
matrix metalloproteinase expression in cycling endometrium imply
differential functions and regulation by steroid hormones. J Clin
Invest. 94:946–953. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chevronnay Gaide HP, Selvais C, Emonard H,
Galant C, Marbaix E and Henriet P: Regulation of matrix
metalloproteinases activity studied in human endometrium as a
paradigm of cyclic tissue breakdown and regeneration. Biochim
Biophys Acta. 1824:146–156. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Amălinei C, Căruntu ID, Giuşcă SE and
Bălan RA: Matrix metalloproteinases involvement in pathologic
conditions. Rom J Morphol Embryol. 51:215–228. 2010.PubMed/NCBI
|
|
10
|
Di Nezza LA, Misajon A, Zhang J, Jobling
T, Quinn MA, Ostör AG, Nie G, Lopata A and Salamonsen LA: Presence
of active gelatinases in endometrial carcinoma and correlation of
matrix metalloproteinase expression with increasing tumor grade and
invasion. Cancer. 94:1466–1475. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Takahashi C, Sheng Z, Horan TP, Kitayama
H, Maki M, Hitomi K, Kitaura Y, Takai S, Sasahara RM, Horimoto A,
et al: Regulation of matrix metalloproteinase-9 and inhibition of
tumor invasion by the membrane-anchored glycoprotein RECK. Proc
Natl Acad Sci USA. 95:13221–13226. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Matrisian LM: The matrix-degrading
metalloproteinases. Bioessays. 14:455–463. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Murphy G: Tissue inhibitors of
metalloproteinases. Genome Biol. 12:2332011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang WM, Ge G, Lim NH, Nagase H and
Greenspan DS: TIMP-3 inhibits the procollagen N-proteinase
ADAMTS-2. Biochem J. 398:515–519. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kashiwagi M, Tortorella M, Nagase H and
Brew K: TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4)
and aggrecanase 2 (ADAM-TS5). J Biol Chem. 276:12501–12504. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Amour A, Slocombe PM, Webster A, Butler M,
Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knäuper V,
et al: TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3.
FEBS Lett. 435:39–44. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Amour A, Knight CG, Webster A, Slocombe
PM, Stephens PE, Knäuper V, Docherty AJ and Murphy G: The in vitro
activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett.
473:275–279. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Seals DF and Courtneidge SA: The ADAMs
family of metalloproteases: Multidomain proteins with multiple
functions. Genes Dev. 17:7–30. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Alexius-Lindgren M, Andersson E, Lindstedt
I and Engström W: The RECK gene and biological malignancy-its
significance in angiogenesis and inhibition of matrix
metalloproteinases. Anticancer Res. 34:3867–3873. 2014.PubMed/NCBI
|
|
20
|
Clark JC, Thomas DM, Choong PF and Dass
CR: RECK-a newly discovered inhibitor of metastasis with prognostic
significance in multiple forms of cancer. Cancer Metastasis Rev.
26:675–683. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bruner-Tran KL, Eisenberg E, Yeaman GR,
Anderson TA, McBean J and Osteen KG: Steroid and cytokine
regulation of matrix metalloproteinase expression in endometriosis
and the establishment of experimental endometriosis in nude mice. J
Clin Endocrinol Metab. 87:4782–4791. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Osteen KG, Bruner KL and Sharpe-Timms KL:
Steroid and growth factor regulation of matrix metalloproteinase
expression and endometriosis. Semin Reprod Endocrinol. 14:247–255.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sharpe-Timms KL and Cox KE: Paracrine
regulation of matrix metalloproteinase expression in endometriosis.
Ann N Y Acad Sci. 955(147–158): 396–406. 2002.
|
|
24
|
Gezer A and Oral E: Progestin therapy in
endometriosis. Womens Health (Lond). 11:643–652. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Osteen KG, Rodgers WH, Gaire M, Hargrove
JT, Gorstein F and Matrisian LM: Stromal-epithelial interaction
mediates steroidal regulation of metalloproteinase expression in
human endometrium. Proc Natl Acad Sci USA. 91:10129–10133. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Marbaix E, Donnez J, Courtoy PJ and
Eeckhout Y: Progesterone regulates the activity of collagenase and
related gelatinases A and B in human endometrial explants. Proc
Natl Acad Sci USA. 89:11789–11793. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sillem M, Prifti S, Koch A, Neher M,
Jauckus J and Runnebaum B: Regulation of matrix metalloproteinases
and their inhibitors in uterine endometrial cells of patients with
and without endometriosis. Eur J Obstet Gynecol Reprod Biol.
95:167–174. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mönckedieck V, Sannecke C, Husen B,
Kumbartski M, Kimmig R, Tötsch M, Winterhager E and Grümmer R:
Progestins inhibit expression of MMPs and of angiogenic factors in
human ectopic endometrial lesions in a mouse model. Mol Hum Reprod.
15:633–643. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sillem M, Prifti S, Neher M and Runnebaum
B: Extracellular matrix remodelling in the endometrium and its
possible relevance to the pathogenesis of endometriosis. Hum Reprod
Update. 4:730–735. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bruner-Tran KL, Zhang Z, Eisenberg E,
Winneker RC and Osteen KG: Down-regulation of endometrial matrix
metalloproteinase-3 and −7 expression in vitro and therapeutic
regression of experimental endometriosis in vivo by a novel
nonsteroidal progesterone receptor agonist, tanaproget. J Clin
Endocrinol Metab. 91:1554–1560. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shan B, Li W, Yang SY and Li ZR: Estrogen
up-regulates MMP2/9 expression in endometrial epithelial cell via
VEGF-ERK1/2 pathway. Asian Pac J Trop Med. 6:826–830. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Huang HF, Hong LH, Tan Y and Sheng JZ:
Matrix metalloproteinase 2 is associated with changes in steroid
hormones in the sera and peritoneal fluid of patients with
endometriosis. Fertil Steril. 81:1235–1239. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ahn JH, Choi YS and Choi JH: Leptin
promotes human endometriotic cell migration and invasion by
up-regulating MMP-2 through the JAK2/STAT3 signaling pathway. Mol
Hum Reprod. 21:792–802. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sevket O, Sevket A, Molla T,
Buyukpınarbasılı N, Uysal O, Yılmaz B, Dane B and Kelekcı S:
Somatostatin analogs regress endometriotic implants in rats by
decreasing implant levels of vascular endothelial growth factor and
matrix metaloproteinase 9. Reprod Sci. 20:639–645. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yilmaz B, Kilic S, Aksakal O, Ertas IE,
Tanrisever GG, Aksoy Y, Lortlar N, Kelekci S and Gungor T:
Melatonin causes regression of endometriotic implants in rats by
modulating angiogenesis, tissue levels of antioxidants and matrix
metalloproteinases. Arch Gynecol Obstet. 292:209–216. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Parkin KL and Fazleabas AT: Uterine
leukocyte function and dysfunction: A hypothesis on the impact of
endometriosis. Am J Reprod Immunol. 75:411–417. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Braundmeier AG and Nowak RA: Cytokines
regulate matrix metalloproteinases in human uterine endometrial
fibroblast cells through a mechanism that does not involve
increases in extracellular matrix metalloproteinase inducer. Am J
Reprod Immunol. 56:201–214. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chegini N: TGF-beta system: The principal
profibrotic mediator of peritoneal adhesion formation. Semin Reprod
Med. 26:298–312. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Singer CF, Marbaix E, Lemoine P, Courtoy
PJ and Eeckhout Y: Local cytokines induce differential expression
of matrix metalloproteinases but not their tissue inhibitors in
human endometrial fibroblasts. Eur J Biochem. 259:40–45. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mulayim N, Savlu A, Guzeloglu-Kayisli O,
Kayisli UA and Arici A: Regulation of endometrial stromal cell
matrix metalloproteinase activity and invasiveness by
interleukin-8. Fertil Steril. 81 Suppl 1:S904–S911. 2004.
View Article : Google Scholar
|
|
41
|
Singer CF, Marbaix E, Kokorine I, Lemoine
P, Donnez J, Eeckhout Y and Courtoy PJ: Paracrine stimulation of
interstitial collagenase (MMP-1) in the human endometrium by
interleukin 1alpha and its dual block by ovarian steroids. Proc
Natl Acad Sci USA. 94:10341–10345. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Khoufache K, Bondza PK, Harir N, Daris M,
Leboeuf M, Mailloux J, Lemyre M, Foster W and Akoum A: Soluble
human IL-1 receptor type 2 inhibits ectopic endometrial tissue
implantation and growth: Identification of a novel potential target
for endometriosis treatment. Am J Pathol. 181:1197–1205. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Quattrone F, Sanchez AM, Pannese M,
Hemmerle T, Viganò P, Candiani M, Petraglia F, Neri D and
Panina-Bordignon P: The targeted delivery of interleukin 4 inhibits
development of endometriotic lesions in a mouse model. Reprod Sci.
22:1143–1152. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kumar R, Clerc AC, Gori I, Russell R,
Pellegrini C, Govender L, Wyss JC, Golshayan D and Canny GO:
Lipoxin A4 prevents the progression of de novo and
established endometriosis in a mouse model by attenuating
prostaglandin E2 production and estrogen signaling. PLoS
One. 9:e897422014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lee J, Banu SK, Subbarao T,
Starzinski-Powitz A and Arosh JA: Selective inhibition of
prostaglandin E2 receptors EP2 and EP4 inhibits invasion of human
immortalized endometriotic epithelial and stromal cells through
suppression of metalloproteinases. Mol Cell Endocrinol.
332:306–313. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Edwards DR, Murphy G, Reynolds JJ, Whitham
SE, Docherty AJ, Angel P and Heath JK: Transforming growth factor
beta modulates the expression of collagenase and metalloproteinase
inhibitor. EMBO J. 6:1899–1904. 1987.PubMed/NCBI
|
|
47
|
Osteen KG, Keller NR, Feltus FA and Melner
MH: Paracrine regulation of matrix metalloproteinase expression in
the normal human endometrium. Gynecol Obstet Invest. 48 Suppl
1:S2–S13. 1999. View Article : Google Scholar
|
|
48
|
Braundmeier AG, Fazleabas AT, Lessey BA,
Guo H, Toole BP and Nowak RA: Extracellular matrix
metalloproteinase inducer regulates metalloproteinases in human
uterine endometrium. J Clin Endocrinol Metab. 91:2358–2365. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bruner KL, Eisenberg E, Gorstein F and
Osteen KG: Progesterone and transforming growth factor-beta
coordinately regulate suppression of endometrial matrix
metalloproteinases in a model of experimental endometriosis.
Steroids. 64:648–653. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Witz CA, Dechaud H, Montoya-Rodriguez IA,
Thomas MR, Nair AS, Centonze VE and Schenken RS: An in vitro model
to study the pathogenesis of the early endometriosis lesion. Ann N
Y Acad Sci. 955(296–307): discussion 340–342. 396–406. 2002.
|
|
51
|
Koks CA, Weusten Demir AY, Groothuis PG,
Dunselman GA, de Goeij AF and Evers JL: Menstruum induces changes
in mesothelial cell morphology. Gynecol Obstet Invest. 50:13–18.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang J and Salamonsen LA: In vivo
evidence for active matrix metalloproteinases in human endometrium
supports their role in tissue breakdown at menstruation. J Clin
Endocrinol Metab. 87:2346–2351. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bruner KL, Matrisian LM, Rodgers WH,
Gorstein F and Osteen KG: Suppression of matrix metalloproteinases
inhibits establishment of ectopic lesions by human endometrium in
nude mice. J Clin Invest. 99:2851–2857. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Malik S, Day K, Perrault I, Charnock-Jones
DS and Smith SK: Menstrual effluent in endometriosis shows no
difference in volume, VEGF-A, MMP2 and MMP9 or sFLT. Reprod Biomed
Online. 12:174–181. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Eisermann J, Gast MJ, Pineda J, Odem RR
and Collins JL: Tumor necrosis factor in peritoneal fluid of women
undergoing laparoscopic surgery. Fertil Steril. 50:573–579. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Taketani Y, Kuo TM and Mizuno M:
Comparison of cytokine levels and embryo toxicity in peritoneal
fluid in infertile women with untreated or treated endometriosis.
Am J Obstet Gynecol. 167:265–270. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Oosterlynck DJ, Meuleman C, Waer M and
Koninckx PR: Transforming growth factor-beta activity is increased
in peritoneal fluid from women with endometriosis. Obstet Gynecol.
83:287–292. 1994.PubMed/NCBI
|
|
58
|
Sotnikova NY, Antsiferova YS, Posiseeva
LV, Shishkov DN, Posiseev DV and Filippova ES: Mechanisms
regulating invasiveness and growth of endometriosis lesions in rat
experimental model and in humans. Fertil Steril. 93:2701–2705.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gilabert-Estellés J, Ramón LA, España F,
Gilabert J, Vila V, Réganon E, Castelló R, Chirivella M and
Estellés A: Expression of angiogenic factors in endometriosis:
Relationship to fibrinolytic and metalloproteinase systems. Hum
Reprod. 22:2120–2127. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu H, Wang J, Wang H, Tang N, Li Y, Zhang
Y and Hao T: Correlation between matrix metalloproteinase-9 and
endometriosis. Int J Clin Exp Pathol. 8:13399–13404.
2015.PubMed/NCBI
|
|
61
|
Szamatowicz J, Laudański P and Tomaszewska
I: Matrix metalloproteinase-9 and tissue inhibitor of matrix
metalloproteinase-1: A possible role in the pathogenesis of
endometriosis. Hum Reprod. 17:284–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Laudanski P, Szamatowicz J and Ramel P:
Matrix metalloproteinase-13 and membrane type-1 matrix
metalloproteinase in peritoneal fluid of women with endometriosis.
Gynecol Endocrinol. 21:106–110. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sharpe-Timms KL, Keisler LW, McIntush EW
and Keisler DH: Tissue inhibitor of metalloproteinase-1
concentrations are attenuated in peritoneal fluid and sera of women
with endometriosis and restored in sera by gonadotropin-releasing
hormone agonist therapy. Fertil Steril. 69:1128–1134. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sharpe-Timms KL, Zimmer RL, Jolliff WJ,
Wright JA, Nothnick WB and Curry TE: Gonadotropin-releasing hormone
agonist (GnRH-a) therapy alters activity of plasminogen activators,
matrix metalloproteinases, and their inhibitors in rat models for
adhesion formation and endometriosis: Potential GnRH-a-regulated
mechanisms reducing adhesion formation. Fertil Steril. 69:916–923.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ulukus M, Cakmak H and Arici A: The role
of endometrium in endometriosis. J Soc Gynecol Investig.
13:467–476. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Collette T, Bellehumeur C, Kats R, Maheux
R, Mailloux J, Villeneuve M and Akoum A: Evidence for an increased
release of proteolytic activity by the eutopic endometrial tissue
in women with endometriosis and for involvement of matrix
metalloproteinase-9. Hum Reprod. 19:1257–1264. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Collette T, Maheux R, Mailloux J and Akoum
A: Increased expression of matrix metalloproteinase-9 in the
eutopic endometrial tissue of women with endometriosis. Hum Reprod.
21:3059–3067. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Di Carlo C, Bonifacio M, Tommaselli GA,
Bifulco G, Guerra G and Nappi C: Metalloproteinases, vascular
endothelial growth factor, and angiopoietin 1 and 2 in eutopic and
ectopic endometrium. Fertil Steril. 91:2315–2323. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Szymanowski K, Mikolajczyk M, Wirstlein P
and Dera-Szymanowska A: Matrix metalloproteinase-2 (MMP-2), MMP-9,
tissue inhibitor of matrix metalloproteinases (TIMP-1) and
transforming growth factor-β2 (TGF-U2) expression in eutopic
endometrium of women with peritoneal endometriosis. Ann Agric
Environ Med. 23:649–653. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wenzl RJ and Heinzl H: Localization of
matrix metalloproteinase-2 in uterine endometrium and ectopic
implants. Gynecol Obstet Invest. 45:253–257. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Uzan C, Cortez A, Dufournet C, Fauvet R,
Siffroi JP and Daraï E: Eutopic endometrium and peritoneal, ovarian
and bowel endometriotic tissues express a different profile of
matrix metalloproteinases-2, −3 and −11, and of tissue inhibitor
metalloproteinases-1 and −2. Virchows Archiv. 445:603–609. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chung HW, Lee JY, Moon HS, Hur SE, Park
MH, Wen Y and Polan ML: Matrix metalloproteinase-2, membranous type
1 matrix metalloproteinase, and tissue inhibitor of
metalloproteinase-2 expression in ectopic and eutopic endometrium.
Fertil Steril. 78:787–795. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gilabert-Estellés J, Estellés A, Gilabert
J, Castelló R, España F, Falcó C, Romeu A, Chirivella M, Zorio E
and Aznar J: Expression of several components of the plasminogen
activator and matrix metalloproteinase systems in endometriosis.
Hum Reprod. 18:1516–1522. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ramón L, Gilabert-Estellés J, Castelló R,
Gilabert J, España F, Romeu A, Chirivella M, Aznar J and Estellés
A: mRNA analysis of several components of the plasminogen activator
and matrix metalloproteinase systems in endometriosis using a
real-time quantitative RT-PCR assay. Hum Reprod. 20:272–278. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chung HW, Wen Y, Chun SH, Nezhat C, Woo BH
and Polan Lake M: Matrix metalloproteinase-9 and tissue inhibitor
of metalloproteinase-3 mRNA expression in ectopic and eutopic
endometrium in women with endometriosis: A rationale for
endometriotic invasiveness. Fertil Steril. 75:152–159. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pan H, Sheng JZ, Tang L, Zhu R, Zhou TH
and Huang HF: Increased expression of c-fos protein associated with
increased matrix metalloproteinase-9 protein expression in the
endometrium of endometriotic patients. Fertil Steril. 90:1000–1007.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gaetje R, Holtrich U, Engels K, Kourtis K,
Cikrit E, Kissler S, Rody A, Karn T and Kaufmann M: Expression of
membrane-type 5 matrix metalloproteinase in human endometrium and
endometriosis. Gynecol Endocrinol. 23:567–573. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Laudanski P, Charkiewicz R, Kuzmicki M,
Szamatowicz J, Świątecka J, Mroczko B and Niklinski J: Profiling of
selected angiogenesis-related genes in proliferative eutopic
endometrium of women with endometriosis. Eur J Obstet Gynecol
Reprod Biol. 172:85–92. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lu XE, Ning WX, Dong MY, Liu AX, Jin F and
Huang HF: Vascular endothelial growth factor and matrix
metalloproteinase-2 expedite formation of endometriosis in the
early stage ICR mouse model. Fertil Steril. 86 4 Suppl:S1175–S1181.
2006. View Article : Google Scholar
|
|
80
|
Cox KE, Piva M and Sharpe-Timms KL:
Differential regulation of matrix metalloproteinase-3 gene
expression in endometriotic lesions compared with endometrium. Biol
Reprod. 65:1297–1303. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ueda M, Yamashita Y, Takehara M, Terai Y,
Kumagai K, Ueki K, Kanda K, Hung YC and Ueki M: Gene expression of
adhesion molecules and matrix metalloproteinases in endometriosis.
Gynecol Endocrinol. 16:391–402. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kokorine I, Nisolle M, Donnez J, Eeckhout
Y, Courtoy PJ and Marbaix E: Expression of interstitial collagenase
(matrix metalloproteinase-1) is related to the activity of human
endometriotic lesions. Fertil Steril. 68:246–251. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cominelli A, Chevronnay Gaide HP, Lemoine
P, Courtoy PJ, Marbaix E and Henriet P: Matrix metalloproteinase-27
is expressed in CD163+/CD206+ M2 macrophages in the cycling human
endometrium and in superficial endometriotic lesions. Mol Hum
Reprod. 20:767–775. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mizumoto H, Saito T, Ashihara K, Nishimura
M, Takehara M, Tanaka R, Ito E and Kudo R: Expression of matrix
metalloproteinases in ovarian endometriomas: Immunohistochemical
study and enzyme immunoassay. Life Sci. 71:259–273. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Shaco-Levy R, Sharabi S, Benharroch D,
Piura B and Sion-Vardy N: Matrix metalloproteinases 2 and 9,
E-cadherin, and beta-catenin expression in endometriosis, low-grade
endometrial carcinoma and non-neoplastic eutopic endometrium. Eur J
Obstet Gynecol Reprod Biol. 139:226–232. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Londero AP, Calcagno A, Grassi T,
Marzinotto S, Orsaria M, Beltrami CA, Marchesoni D and Mariuzzi L:
Survivin, MMP-2, MT1-MMP, and TIMP-2: Their impact on survival,
implantation, and proliferation of endometriotic tissues. Virchows
Arch. 461:589–599. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Meola J, Rosa e Silva JC, Dentillo DB, da
Silva WA Jr, Veiga-Castelli LC, Bernardes LA, Ferriani RA, de Paz
CC, Giuliatti S and Martelli L: Differentially expressed genes in
eutopic and ectopic endometrium of women with endometriosis. Fertil
Steril. 93:1750–1773. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu XJ, He YL and Peng DX: Expression of
metalloproteinase-9 in ectopic endometrium in women with
endometriosis. Di Yi Jun Yi Da Xue Xue Bao. 22:467–469.
2002.PubMed/NCBI
|
|
89
|
Gottschalk C, Malberg K, Arndt M, Schmitt
J, Roessner A, Schultze D, Kleinstein J and Ansorge S: Matrix
metalloproteinases and TACE play a role in the pathogenesis of
endometriosis. Adv Exp Med Biol. 477:483–486. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ria R, Loverro G, Vacca A, Ribatti D,
Cormio G, Roccaro AM and Selvaggi L: Angiogenesis extent and
expression of matrix metalloproteinase-2 and −9 agree with
progression of ovarian endometriomas. Eur J Clin Invest.
32:199–206. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Nisenblat V, Bossuyt PM, Shaikh R,
Farquhar C, Jordan V, Scheffers CS, Mol BW, Johnson N and Hull ML:
Blood biomarkers for the non-invasive diagnosis of endometriosis.
Cochrane Database Syst Rev: Cd012179. 2016. View Article : Google Scholar
|
|
92
|
Salata IM, Stojanovic N, Cajdler-Łuba A,
Lewandowski KC and Lewiński A: Gelatinase A (MM-2), gelatinase B
(MMP-9) and their inhibitors (TIMP 1, TIMP-2) in serum of women
with endometriosis: Significant correlation between MMP-2, MMP-9
and their inhibitors without difference in levels of matrix
metalloproteinases and tissue inhibitors of metalloproteinases in
relation to the severity of endometriosis. Gynecol Endocrinol.
24:326–330. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Malvezzi H, Aguiar VG, Paz CC,
Tanus-Santos JE, Penna IA and Navarro PA: Increased circulating
MMP-2 levels in infertile patients with moderate and severe pelvic
endometriosis. Reprod Sci. 20:557–562. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kennedy S: Is there a genetic basis to
endometriosis? Semin Reprod Endocrinol. 15:309–318. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Georgiou I, Syrrou M, Bouba I, Dalkalitsis
N, Paschopoulos M, Navrozoglou I and Lolis D: Association of
estrogen receptor gene polymorphisms with endometriosis. Fertil
Steril. 72:164–166. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chang CC, Hsieh YY, Tsai FJ, Tsai CH, Tsai
HD and Lin CC: The proline form of p53 codon 72 polymorphism is
associated with endometriosis. Fertil Steril. 77:43–45. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Baranova H, Bothorishvilli R, Canis M,
Albuisson E, Perriot S, Glowaczower E, Bruhat MA, Baranov V and
Malet P: Glutathione S-transferase M1 gene polymorphism and
susceptibility to endometriosis in a French population. Mol Hum
Reprod. 3:775–780. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Han YJ, Kim HN, Yoon JK, Yi SY, Moon HS,
Ahn JJ, Kim HL and Chung HW: Haplotype analysis of the matrix
metalloproteinase-9 gene associated with advanced-stage
endometriosis. Fertil Steril. 91:2324–2330. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Saare M, Lamp M, Kaart T, Karro H,
Kadastik U, Metspalu A, Peters M and Salumets A: Polymorphisms in
MMP-2 and MMP-9 promoter regions are associated with endometriosis.
Fertil Steril. 94:1560–1563. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shan K, Ying W, Jian-Hui Z, Wei G, Na W
and Yan L: The function of the SNP in the MMP1 and MMP3 promoter in
susceptibility to endometriosis in China. Mol Hum Reprod.
11:423–427. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shan K, Lian-Fu Z, Hui D, Wei G, Na W, Xia
J and Yan L: Polymorphisms in the promoter regions of the matrix
metalloproteinases-7, −9 and the risk of endometriosis and
adenomyosis in China. Mol Hum Reprod. 12:35–39. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Borghese B, Chiche JD, Vernerey D, Chenot
C, Mir O, Bijaoui G, Bonaiti-Pellié C and Chapron C: Genetic
polymorphisms of matrix metalloproteinase 12 and 13 genes are
implicated in endometriosis progression. Hum Reprod. 23:1207–1213.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cho YJ, Kim NH, Jeong KA, Lee JY, Moon HS,
Kim HL and Chung HW: Association between MMP-2 and TIMP-2 gene
polymorphisms and advanced-stage endometriosis in Korean women. Am
J Reprod Immunol. 69:73–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Kang S, Zhao XW, Wang N, Chen SC, Zhou RM
and Li Y: Association of polymorphisms of the MMP-2 and TIMP-2
genes with the risk of endometriosis in North Chinese women. Fertil
Steril. 90:2023–2029. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ye H, He Y, Wang J, Song T, Lan Z, Zhao Y
and Xi M: Effect of matrix metalloproteinase promoter polymorphisms
on endometriosis and adenomyosis risk: Evidence from a
meta-analysis. J Genet. 95:611–619. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yang H, Liu J, Fan Y, Guo Q, Ge L, Yu N,
Zheng X, Dou Y and Zheng S: Associations between various possible
promoter polymorphisms of MMPs genes and endometriosis risk: A
meta-analysis. Eur J Obstet Gynecol Reprod Biol. 205:174–188. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Xin L, Hou Q, Xiong QI and Ding X:
Association between matrix metalloproteinase-2 and matrix
metalloproteinase-9 polymorphisms and endometriosis: A systematic
review and meta-analysis. Biomed Rep. 3:559–565. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Protopapas A, Markaki S, Mitsis T,
Milingos D, Athanasiou S, Haidopoulos D, Loutradis D and Antsaklis
A: IImmunohistochemical expression of matrix metalloproteinases,
their tissue inhibitors, and cathepsin-D in ovarian endometriosis:
Correlation with severity of disease. Fertil Steril. 94:2470–2472.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Stilley JA, Birt JA, Nagel SC, Sutovsky M,
Sutovsky P and Sharpe-Timms KL: Neutralizing TIMP1 restores
fecundity in a rat model of endometriosis and treating control rats
with TIMP1 causes anomalies in ovarian function and embryo
development. Biol Reprod. 83:185–194. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kaya H and Oral B: Effect of ovarian
involvement on the frequency of luteinized unruptured follicle in
endometriosis. Gynecol Obstet Invest. 48:123–126. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Shibata T, Makinoda S, Waseda T, Tomizawa
H, Fujii R and Utsunomiya T: Granulocyte colony-stimulating factor
as a potential inducer of ovulation in infertile women with
luteinized unruptured follicle syndrome. Transl Res. 171:63–70.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fassbender A, Rahmioglu N, Vitonis AF,
Viganò P, Giudice LC, D'Hooghe TM, Hummelshoj L, Adamson GD, Becker
CM, Missmer SA, et al: World endometriosis research foundation
endometriosis phenome and biobanking harmonisation project: IV.
Tissue collection, processing, and storage in endometriosis
research. Fertil Steril. 102:1244–1253. 2014. View Article : Google Scholar : PubMed/NCBI
|