Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2018 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2018 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis

  • Authors:
    • Weiwei Qi
    • Libin Sun
    • Ning Liu
    • Shufen Zhao
    • Jing Lv
    • Wensheng Qiu
  • View Affiliations / Copyright

    Affiliations: Department of Oncology and Chemotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China, Department of Tumor Combined Therapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
    Copyright: © Qi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3599-3610
    |
    Published online on: August 8, 2018
       https://doi.org/10.3892/mmr.2018.9360
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gastric cancer has become a serious disease in the past decade. It has the second highest mortality rate among the four most common cancer types, leading to ~700,000 mortalities annually. Previous studies have attempted to elucidate the underlying biological mechanisms of gastric cancer. The present study aimed to obtain useful biomarkers and to improve the understanding of gastric cancer mechanisms at the genetic level. The present study used bioinformatics analysis to identify 1,829 differentially expressed genes (DEGs) which were obtained from the GSE54129 dataset. Using protein‑protein interaction information from the Search Tool for the Retrieval of Interacting Genes database, disease modules were constructed for gastric cancer using Cytoscape software. In the Gene Ontology analysis of biology processes, upregulated genes were significantly enriched in ‘extracellular matrix organization’, ‘cell adhesion’ and ‘inflammatory response’, whereas downregulated DEGs were significantly enriched in ‘xenobiotic metabolic process’, ‘oxidation‑reduction process’ and ‘steroid metabolic process’. During Kyoto Encyclopedia of Genes and Genomes analysis, upregulated DEGs were significantly enriched in ‘extracellular matrix‑receptor interaction’, ‘focal adhesion’ and ‘PI3K‑Akt signaling pathway’, whereas the downregulated DEGs were significantly enriched in ‘chemical carcinogenesis’, ‘metabolism of xenobiotics by cytochrome P450’ and ‘peroxisome’. The present study additionally identified 10 hub genes from the DEGs: Tumor protein p53 (TP53), C‑X‑C motif chemokine ligand 8 (CXCL8), tetraspanin 4 (TSPAN4), lysophosphatidic acid receptor 2 (LPAR2), adenylate cyclase 3 (ADCY3), phosphoinositide‑3‑kinase regulatory subunit 1 (PIK3R1), neuromedin U (NMU), C‑X‑C motif chemokine ligand (CXCL12), fos proto‑oncogene, AP‑1 transcription factor subunit (FOS) and sphingosine‑1‑phosphate receptor 1 (S1PR1), which have high degrees with other DEGs. The survival analysis revealed that the high expression of ADCY3, LPAR2, S1PR1, TP53 and TSPAN4 was associated with a lower survival rate, whereas high expression of CXCL8, FOS, NMU and PIK3R1 was associated with a higher survival rate. No significant association was identified between CXCL12 and survival rate. Additionally, TSPAN1 and TSPAN8 appeared in the top 100 DEGs. Finally, it was observed that 4 hub genes were highly expressed in gastric cancer tissue compared with para‑carcinoma tissue in the 12 patients; the increased TSPAN4 was significant (>5‑fold). Tetraspanin family genes may be novel biomarkers of gastric cancer. The findings of the present study may improve the understanding of the molecular mechanisms underlying the development of gastric cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Crew KD and Neugut AI: Epidemiology of gastric cancer. World J Gastroenterol. 12:354–362. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Parkin DM, Bray F, Ferlay J and Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005. View Article : Google Scholar : PubMed/NCBI

3 

World Health Organization (WHO), . GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. WHO; Geneva: 2012, http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx

4 

Liu P, Wang X, Hu CH and Hu TH: Bioinformatics analysis with graph-based clustering to detect gastric cancer-related pathways. Genet Mol Res. 11:3497–3504. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Tian J, Wang XD and Chen ZC: Survival of patients with stomach cancer in Changle city of China. World J Gastroenterol. 10:1543–1546. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Wagner AD, Grothe W, Haerting J, Kleber G, Grothey A and Fleig WE: Chemotherapy in advanced gastric cancer: A systematic review and meta-analysis based on aggregate data. J Clin Oncol. 24:2903–2909. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Bejjani BA and Shaffer LG: Clinical utility of contemporary molecular cytogenetics. Annu Rev Genomics Hum Genet. 9:71–86. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Arocho A, Chen B, Ladanyi M and Pan Q: Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol. 15:56–61. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Gautier L, Cope L, Bolstad BM and Irizarry RA: affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Phipson B, Lee S, Majewski IJ, Alexander WS and Smyth GK: Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat:. 10:946–963. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Andy Liaw WH, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M and Venables B: gplots: Various R Programming Tools for Plotting Data. https://cran.r-project.org/web/packages/gplots/index.htmlMarch 30–2016

12 

Kanehisa M: The KEGG database. Novartis Found Symp. 247:91–101; discussion 101–103, 119–128. 244–252. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Martucci D, Masseroli M and Pinciroli F: Gene ontology application to genomic functional annotation, statistical analysis and knowledge mining. Stud Health Technol Inform. 102:108–131. 2004.PubMed/NCBI

14 

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI

15 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database Issue): D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Szász AM, Lánczky A, Nagy Á, Förster S, Hark K, Green JE, Boussioutas A, Busuttil R, Szabó A and Győrffy B: Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget. 7:49322–49333. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C and Lunet N: Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. Eur J Cancer. 50:1330–1344. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Yang S, Shin J, Park KH, Jeung HC, Rha SY, Noh SH, Yang WI and Chung HC: Molecular basis of the differences between normal and tumor tissues of gastric cancer. Biochim Biophys Acta. 1772:1033–1040. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Zhao Z, Song Y, Piao D, Liu T and Zhao L: Identification of genes and long non-coding RNAs associated with the pathogenesis of gastric cancer. Oncol Rep. 34:1301–1310. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Guo LL, He ZC, Yang CQ, Qiao PT and Yin GL: Epigenetic silencing of olfactomedin-4 enhances gastric cancer cell invasion via activation of focal adhesion kinase signaling. BMB Rep. 48:630–635. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Nam KH, Lee BL, Park JH, Kim J, Han N, Lee HE, Kim MA, Lee HS and Kim WH: Caveolin 1 expression correlates with poor prognosis and focal adhesion kinase expression in gastric cancer. Pathobiology. 80:87–94. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Hao NB, Tang B, Wang GZ, Xie R, Hu CJ, Wang SM, Wu YY, Liu E, Xie X and Yang SM: Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-κB signaling pathway for gastric cancer metastasis. Cancer Lett. 361:57–66. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Cho SJ, Kook MC, Lee JH, Shin JY, Park J, Bae YK, Choi IJ, Ryu KW and Kim YW: Peroxisome proliferator-activated receptor γ upregulates galectin-9 and predicts prognosis in intestinal-type gastric cancer. Int J Cancer. 136:810–820. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Choi JM, Park WS, Song KY, Lee HJ and Jung BH: Development of simultaneous analysis of tryptophan metabolites in serum and gastric juice-an investigation towards establishing a biomarker test for gastric cancer diagnosis. Biomed Chromatogr. 30:1963–1974. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Leung WK, Wu KC, Wong CY, Cheng AS, Ching AK, Chan AW, Chong WW, Go MY, Yu J, To KF, et al: Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice. Carcinogenesis. 29:1648–1654. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Kim HS, Kwack SJ and Lee BM: Alteration of cytochrome P-450 and glutathione S-transferase activity in normal and malignant human stomach. J Toxicol Environ Health A. 68:1611–1620. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Song H, Peng JS, Yao DS, Liu DL, Yang ZL, Du YP and Xiang J: Metabolic disorders of fatty acids and fatty acid amides associated with human gastric cancer morbidity. Chin Med J (Engl). 125:757–763. 2012.PubMed/NCBI

28 

Li C, Qiu W, Yang Z, Luo J, Yang F, Liu M, Xie J and Tang J: Stereoselective synthesis of some methyl-substituted steroid hormones and their in vitro cytotoxic activity against human gastric cancer cell line MGC-803. Steroids. 75:859–869. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico-Petruzzelli M and Raschellà G: DNA repair and aging: The impact of the p53 family. Aging (Albany NY). 7:1050–1065. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Rufini A, Tucci P, Celardo I and Melino G: Senescence and aging: The critical roles of p53. Oncogene. 32:5129–5143. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Wawryk-Gawda E, Chylińska-Wrzos P, Lis-Sochocka M, Chłapek K, Bulak K, Jędrych M and Jodłowska-Jędrych B: P53 protein in proliferation, repair and apoptosis of cells. Protoplasma. 251:525–533. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Yuan L, Zhang Y, Xia J, Liu B, Zhang Q, Liu J, Luo L, Peng Z, Song Z and Zhu R: Resveratrol induces cell cycle arrest via a p53-independent pathway in A549 cells. Mol Med Rep. 11:2459–2464. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Ando K, Oki E, Zhao Y, Ikawa-Yoshida A, Kitao H, Saeki H, Kimura Y, Ida S, Morita M, Kusumoto T and Maehara Y: Mortalin is a prognostic factor of gastric cancer with normal p53 function. Gastric Cancer. 17:255–262. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Uchi R, Kogo R, Kawahara K, Sudo T, Yokobori T, Eguchi H, Sugimachi K, Maehama T, Mori M, Suzuki A, et al: PICT1 regulates TP53 via RPL11 and is involved in gastric cancer progression. Br J Cancer. 109:2199–2206. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Busuttil RA, Zapparoli GV, Haupt S, Fennell C, Wong SQ, Pang JM, Takeno EA, Mitchell C, Di Costanzo N, Fox S, et al: Role of p53 in the progression of gastric cancer. Oncotarget. 5:12016–12026. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Yang D, Yang W, Zhang Q, Hu Y, Bao L and Damirin A: Migration of gastric cancer cells in response to lysophosphatidic acid is mediated by LPA receptor 2. Oncol Lett. 5:1048–1052. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Hong SH, Goh SH, Lee SJ, Hwang JA, Lee J, Choi IJ, Seo H, Park JH, Suzuki H, Yamamoto E, et al: Upregulation of adenylate cyclase 3 (ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway. Oncotarget. 4:1791–1803. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Luo Y, Zhang C, Tang F, Zhao J, Shen C, Wang C, Yu P, Wang M, Li Y, Di JI, et al: Bioinformatics identification of potentially involved microRNAs in Tibetan with gastric cancer based on microRNA profiling. Cancer Cell Int. 15:1152015. View Article : Google Scholar : PubMed/NCBI

39 

Wang C, Mao J, Redfield S, Mo Y, Lage JM and Zhou X: Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues. Exp Mol Pathol. 97:259–265. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Chen L, Li X, Wang GL, Wang Y, Zhu YY and Zhu J: Clinicopathological significance of overexpression of TSPAN1, K167 and CD34 in gastric carcinoma. Tumori. 94:531–538. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Lu Z, Luo T, Nie M, Pang T, Zhang X, Shen X, Ma L, Bi J, Wei G, Fang G and Xue X: TSPAN1 functions as an oncogene in gastric cancer and is downregulated by miR-573. FEBS Lett. 589:1988–1994. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Anami K, Oue N, Noguchi T, Sakamoto N, Sentani K, Hayashi T, Naito Y, Oo HZ and Yasui W: TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer. Gastric Cancer. 19:370–380. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Wei L, Li Y and Suo Z: TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. Int J Clin Exp Med. 8:8599–8607. 2015.PubMed/NCBI

44 

Fu Y, Zhang Q, Kang C, Zhang J, Zhang K, Pu P, Wang G and Wang T: Inhibitory effects of adenovirus mediated Akt1 and PIK3R1 shRNA on the growth of malignant tumor cells in vitro and in vivo. Cancer Biol Ther. 8:1002–1009. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M, Sato F, Meltzer SJ and Sidransky D: Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell. 2:485–495. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Przygodzka P, Papiewska-Pajak I, Bogusz H, Kryczka J, Sobierajska K, Kowalska MA and Boncela J: Neuromedin U is upregulated by Snail at early stages of EMT in HT29 colon cancer cells. Biochim Biophys Acta. 1860:2445–2453. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Huang Q, Lan F, Wang X, Yu Y, Ouyang X, Zheng F, Han J, Lin Y, Xie Y, Xie F, et al: IL-1β-induced activation of p38 promotes metastasis in gastric adenocarcinoma via upregulation of AP-1/c-fos, MMP2 and MMP9. Mol Cancer. 13:182014. View Article : Google Scholar : PubMed/NCBI

48 

Verbeke H, Geboes K, Van Damme J and Struyf S: The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta. 1825:117–129. 2012.PubMed/NCBI

49 

Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, Yasuda T, Kiyozumi Y, Kaida T, Kurashige J, et al: CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer. 138:1207–1219. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qi W, Sun L, Liu N, Zhao S, Lv J and Qiu W: Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis. Mol Med Rep 18: 3599-3610, 2018.
APA
Qi, W., Sun, L., Liu, N., Zhao, S., Lv, J., & Qiu, W. (2018). Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis. Molecular Medicine Reports, 18, 3599-3610. https://doi.org/10.3892/mmr.2018.9360
MLA
Qi, W., Sun, L., Liu, N., Zhao, S., Lv, J., Qiu, W."Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis". Molecular Medicine Reports 18.4 (2018): 3599-3610.
Chicago
Qi, W., Sun, L., Liu, N., Zhao, S., Lv, J., Qiu, W."Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis". Molecular Medicine Reports 18, no. 4 (2018): 3599-3610. https://doi.org/10.3892/mmr.2018.9360
Copy and paste a formatted citation
x
Spandidos Publications style
Qi W, Sun L, Liu N, Zhao S, Lv J and Qiu W: Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis. Mol Med Rep 18: 3599-3610, 2018.
APA
Qi, W., Sun, L., Liu, N., Zhao, S., Lv, J., & Qiu, W. (2018). Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis. Molecular Medicine Reports, 18, 3599-3610. https://doi.org/10.3892/mmr.2018.9360
MLA
Qi, W., Sun, L., Liu, N., Zhao, S., Lv, J., Qiu, W."Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis". Molecular Medicine Reports 18.4 (2018): 3599-3610.
Chicago
Qi, W., Sun, L., Liu, N., Zhao, S., Lv, J., Qiu, W."Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis". Molecular Medicine Reports 18, no. 4 (2018): 3599-3610. https://doi.org/10.3892/mmr.2018.9360
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team