|
1
|
Raposo G and Stoorvogel W: Extracellular
vesicles: Exosomes, microvesicles, and friends. J Cell Biol.
200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pan BT and Johnstone RM: Fate of the
transferrin receptor during maturation of sheep reticulocytes in
vitro: Selective externalization of the receptor. Cell. 33:967–978.
1983. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Skog J, Wurdinger T, van Rijn S, Meijer
DH, Gainche L, Curry WT Jr, Carter BS, Krichevsky AM and
Breakefield XO: Glioblastoma microvesicles transport RNA and
proteins that promote tumour growth and provide diagnostic
biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Al-Nedawi K, Meehan B, Micallef J, Lhotak
V, May L, Guha A and Rak J: Intercellular transfer of the oncogenic
receptor EGFRvIII by microvesicles derived from tumour cells. Nat
Cell Biol. 10:619–624. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Antonyak MA, Li B, Boroughs LK, Johnson
JL, Druso JE, Bryant KL, Holowka DA and Cerione RA: Cancer
cell-derived microvesicles induce transformation by transferring
tissue transglutaminase and fibronectin to recipient cells. Proc
Natl Acad Sci USA. 108:pp. 4852–4857. 2011; View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Montecalvo A, Larregina AT, Shufesky WJ,
Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G,
Wang Z, et al: Mechanism of transfer of functional microRNAs
between mouse dendritic cells via exosomes. Blood. 119:756–766.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fabbri M, Paone A, Calore F, Galli R,
Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, et al:
MicroRNAs bind to Toll-like receptors to induce prometastatic
inflammatory response. Proc Natl Acad Sci USA. 109:pp. E2110–E2116.
2012; View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y,
Chen W, Liu F, Sun W, Li XF, et al: Exosome-transmitted lncARSR
promotes sunitinib resistance in renal cancer by acting as a
competing endogenous RNA. Cancer Cell. 29:653–668. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chiba M, Kimura M and Asari S: Exosomes
secreted from human colorectal cancer cell lines contain mRNAs,
microRNAs and natural antisense RNAs, that can transfer into the
human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep.
28:1551–1558. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy
SL, Breakefield XO and Skog J: Tumour microvesicles contain
retrotransposon elements and amplified oncogene sequences. Nat
Commun. 2:1802011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Frühbeis C, Fröhlich D and Krämer-Albers
EM: Emerging roles of exosomes in neuron-glia communication. Front
Physiol. 3:1192012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Marcilla A, Trelis M, Cortés A, Sotillo J,
Cantalapiedra F, Minguez MT, Valero ML, Sánchez del Pino MM,
Muñoz-Antoli C, Toledo R and Bernal D: Extracellular vesicles from
parasitic helminths contain specific excretory/secretory proteins
and are internalized in intestinal host cells. PLoS One.
7:e459742012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Regev-Rudzki N, Wilson DW, Carvalho TG,
Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill
AF, et al: Cell-cell communication between malaria-infected red
blood cells via exosome-like vesicles. Cell. 153:1120–1133. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mathivanan S, Ji H and Simpson RJ:
Exosomes: Extracellular organelles important in intercellular
communication. J Proteomics. 73:1907–1920. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Camussi G, Deregibus MC, Bruno S,
Cantaluppi V and Biancone L: Exosomes/microvesicles as a mechanism
of cell-to-cell communication. Kidney Int. 78:838–848. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Christianson HC, Svensson KJ and Belting
M: Exosome and microvesicle mediated phene transfer in mammalian
cells. Semin Cancer Biol. 28:31–38. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Katzmann DJ, Babst M and Emr SD:
Ubiquitin-dependent sorting into the multivesicular body pathway
requires the function of a conserved endosomal protein sorting
complex, ESCRT-I. Cell. 106:145–155. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kowal J, Tkach M and Théry C: Biogenesis
and secretion of exosomes. Curr Opin Cell Biol. 29:116–125. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kosaka N, Iguchi H, Yoshioka Y, Takeshita
F, Matsuki Y and Ochiya T: Secretory mechanisms and intercellular
transfer of microRNAs in living cells. J Biol Chem.
285:17442–17452. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kosaka N, Iguchi H, Hagiwara K, Yoshioka
Y, Takeshita F and Ochiya T: Neutral sphingomyelinase 2
(nSMase2)-dependent exosomal transfer of angiogenic microRNAs
regulate cancer cell metastasis. J Biol Chem. 288:10849–10859.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mulcahy LA, Pink RC and Carter DR: Routes
and mechanisms of extracellular vesicle uptake. J Extracell
Vesicles. 3:2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ,
Chang LF, Zhou Q and Sui SF: Cellular internalization of exosomes
occurs through phagocytosis. Traffic. 11:675–687. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fitzner D, Schnaars M, van Rossum D,
Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK and Simons
M: Selective transfer of exosomes from oligodendrocytes to
microglia by macropinocytosis. J Cell Sci. 124:447–458. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tian T, Zhu YL, Zhou YY, Liang GF, Wang
YY, Hu FH and Xiao ZD: Exosome uptake through clathrin-mediated
endocytosis and macropinocytosis and mediating miR-21 delivery. J
Biol Chem. 289:22258–22267. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Stathis A and Moore MJ: Advanced
pancreatic carcinoma: Current treatment and future challenges. Nat
Rev Clin Oncol. 7:163–172. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Provenzano PP, Cuevas C, Chang AE, Goel
VK, Von Hoff DD and Hingorani SR: Enzymatic targeting of the stroma
ablates physical barriers to treatment of pancreatic ductal
adenocarcinoma. Cancer Cell. 21:418–429. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wolfgang CL, Herman JM, Laheru DA, Klein
AP, Erdek MA, Fishman EK and Hruban RH: Recent progress in
pancreatic cancer. CA Cancer J Clin. 63:318–348. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nazarenko I, Rana S, Baumann A, McAlear J,
Hellwig A, Trendelenburg M, Lochnit G, Preissner KT and Zöller M:
Cell surface tetraspanin Tspan8 contributes to molecular pathways
of exosome-induced endothelial cell activation. Cancer Res.
70:1668–1678. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Masamune A, Yoshida N, Hamada S, Takikawa
T, Nabeshima T and Shimosegawa T: Exosomes derived from pancreatic
cancer cells induce activation and profibrogenic activities in
pancreatic stellate cells. Biochem Biophys Res Commun. 495:71–77.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pang W, Su J, Wang Y, Feng H, Dai X, Yuan
Y, Chen X and Yao W: Pancreatic cancer-secreted miR-155 implicates
in the conversion from normal fibroblasts to cancer-associated
fibroblasts. Cancer Sci. 106:1362–1369. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen
J, Xiang J, Wu Z, Jiang G and Cao L: Pancreatic cancer-derived
exosomes transfer miRNAs to dendritic cells and inhibit RFXAP
expression via miR-212-3p. Oncotarget. 6:29877–29888. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Su MJ, Aldawsari H and Amiji M: Pancreatic
cancer cell exosome-mediated macrophage reprogramming and the role
of microRNAs 155 and 125b2 transfection using nanoparticle delivery
systems. Sci Rep. 6:301102016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Amikura K, Kobori M and Matsuno S: The
mechanism of liver metastasis in pancreatic cancer. Jpn J
Gastroenterol Surg. 24:1112–1116. 1991. View Article : Google Scholar
|
|
36
|
French KC, Antonyak MA and Cerione RA:
Extracellular vesicle docking at the cellular port: Extracellular
vesicle binding and uptake. Semin Cell Dev Biol. 67:48–55. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Qu JL, Qu XJ, Zhao MF, Teng YE, Zhang Y,
Hou KZ, Jiang YH, Yang XH and Liu YP: Gastric cancer exosomes
promote tumour cell proliferation through PI3K/Akt and MAPK/ERK
activation. Dig Liver Dis. 41:875–880. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan
Y, Xu X, Wang M, Qian H and Xu W: Exosomes derived from human bone
marrow mesenchymal stem cells promote tumor growth in vivo. Cancer
Lett. 315:28–37. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yoon YJ, Kim DK, Yoon CM, Park J, Kim YK,
Roh TY and Gho YS: Egr-1 activation by cancer-derived extracellular
vesicles promotes endothelial cell migration via ERK1/2 and JNK
signaling pathways. PLoS One. 9:e1151702014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pietras A: Cancer stem cells in tumor
heterogeneity. Adv Cancer Res. 112:255–281. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Maia J, Caja S, Strano Moraes MC, Couto N
and Costa-Silva B: Exosome-based cell-cell communication in the
tumor microenvironment. Front Cell Dev Biol. 6:182018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Whiteside TL: Tumor-derived exosomes and
their role in cancer progression. Adv Clin Chem. 74:103–141. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kanada M, Bachmann MH and Contag CH:
Signaling by extracellular vesicles advances cancer hallmarks.
Trends Cancer. 2:84–94. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gangoda L, Boukouris S, Liem M, Kalra H
and Mathivanan S: Extracellular vesicles including exosomes are
mediators of signal transduction: Are they protective or
pathogenic? Proteomics. 15:260–271. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yang L, Wu XH, Wang D, Luo CL and Chen LX:
Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis
and induce cell proliferation in vitro. Mol Med Rep. 8:1272–1278.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li W, Zhang X, Wang J, Li M, Cao C, Tan J,
Ma D and Gao Q: TGFβ1 in fibroblasts-derived exosomes promotes
epithelial-mesenchymal transition of ovarian cancer cells.
Oncotarget. 8:96035–96047. 2017.PubMed/NCBI
|
|
47
|
Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo
J, Zhang G, Wang T and He QY: Cytoskeleton-centric protein
transportation by exosomes transforms tumor-favorable macrophages.
Oncotarget. 7:67387–67402. 2016.PubMed/NCBI
|
|
48
|
Lee HY, Chen CK, Ho CM, Lee SS, Chang CY,
Chen KJ and Jou YS: EIF3C-enhanced exosome secretion promotes
angiogenesis and tumorigenesis of human hepatocellular carcinoma.
Oncotarget. 9:13193–13205. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen X, Ying X and Wang X, Wu X, Zhu Q and
Wang X: Exosomes derived from hypoxic epithelial ovarian cancer
deliver microRNA-940 to induce macrophage M2 polarization. Oncol
Rep. 38:522–528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
McKelvey KJ, Powell KL, Ashton AW, Morris
JM and McCracken SA: Exosomes: Mechanisms of uptake. J Circ
Biomark. 4:72015. View
Article : Google Scholar : PubMed/NCBI
|
|
51
|
Escrevente C, Keller S, Altevogt P and
Costa J: Interaction and uptake of exosomes by ovarian cancer
cells. BMC Cancer. 11:1082011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Morelli AE, Larregina AT, Shufesky WJ,
Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z,
Watkins SC, et al: Endocytosis, intracellular sorting, and
processing of exosomes by dendritic cells. Blood. 104:3257–3266.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Singh M, Jadhav HR and Bhatt T: Dynamin
functions and ligands: Classical mechanisms behind. Mol Pharmacol.
91:123–134. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Macia E, Ehrlich M, Massol R, Boucrot E,
Brunner C and Kirchhausen T: Dynasore, a cell-permeable inhibitor
of dynamin. Dev Cell. 10:839–850. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kawamoto T, Ohga N, Akiyama K, Hirata N,
Kitahara S, Maishi N, Osawa T, Yamamoto K, Kondoh M, Shindoh M, et
al: Tumor-derived microvesicles induce proangiogenic phenotype in
endothelial cells via endocytosis. PLoS One. 7:e340452012.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Roberts-Dalton HD, Cocks A, Falcon-Perez
JM, Sayers EJ, Webber JP, Watson P, Clayton A and Jones AT:
Fluorescence labelling of extracellular vesicles using a novel
thiol-based strategy for quantitative analysis of cellular delivery
and intracellular traffic. Nanoscale. 9:13693–13706. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang R, Ding Q, Yaqoob U, de Assuncao TM,
Verma VK, Hirsova P, Cao S, Mukhopadhyay D, Huebert RC and Shah VH:
Exosome adherence and internalization by hepatic stellate cells
triggers sphingosine 1-phosphate-dependent migration. J Biol Chem.
290:30684–30696. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lajoie P and Nabi IR: Lipid rafts,
caveolae, and their endocytosis. Int Rev Cell Mol Biol.
282:135–163. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bourseau-Guilmain E, Menard JA, Lindqvist
E, Indira Chandran V, Christianson HC, Magaña MC, Lidfeldt J,
Marko-Varga G, Welinder C and Belting M: Hypoxia regulates global
membrane protein endocytosis through caveolin-1 in cancer cells.
Nat Commun. 7:113712016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jin X, Newton JR, Montgomery-Smith S and
Smith G: A generalized kinetic model for amine modification of
proteins with application to phage display. Biotechniques.
46:175–182. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gu X, Reagan AM, McClellan ME and Elliott
MH: Caveolins and caveolae in ocular physiology and
pathophysiology. Prog Retin Eye Res. 56:84–106. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nanbo A, Kawanishi E, Yoshida R and
Yoshiyama H: Exosomes derived from Epstein-Barr virus-infected
cells are internalized via caveola-dependent endocytosis and
promote phenotypic modulation in target cells. J Virol.
87:10334–10347. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Svensson KJ, Christianson HC, Wittrup A,
Bourseau-Guilmain E, Lindqvist E, Svensson LM, Mörgelin M and
Belting M: Exosome uptake depends on ERK1/2-heat shock protein 27
signaling and lipid Raft-mediated endocytosis negatively regulated
by caveolin-1. J Biol Chem. 288:17713–17724. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ha KD, Bidlingmaier SM and Liu B:
Macropinocytosis exploitation by cancers and cancer therapeutics.
Front Physiol. 7:3812016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lamaze C, Fujimoto LM, Yin HL and Schmid
SL: The actin cytoskeleton is required for receptor-mediated
endocytosis in mammalian cells. J Biol Chem. 272:20332–20335. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Barrès C, Blanc L, Bette-Bobillo P, André
S, Mamoun R, Gabius HJ and Vidal M: Galectin-5 is bound onto the
surface of rat reticulocyte exosomes and modulates vesicle uptake
by macrophages. Blood. 115:696–705. 2010. View Article : Google Scholar : PubMed/NCBI
|