Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2018 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2018 Volume 18 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway

  • Authors:
    • Yueqiu Gao
    • Zhengzheng Yu
  • View Affiliations / Copyright

    Affiliations: Department of Otolaryngology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
  • Pages: 4042-4050
    |
    Published online on: August 17, 2018
       https://doi.org/10.3892/mmr.2018.9394
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chronic inflammation of the nasal mucosal tissue plays important roles in the pathogenesis of allergic rhinitis (AR). Aberrantly expressed microRNAs (miRNAs) have been found to have strong associations with inflammatory reactions in allergic diseases; however, its functional significance and molecular mechanism underlying in AR remains unclear. The aim of the present study was to investigate the biological functions of miRNA and reveal its underlying molecular mechanisms in AR. miRNA microarray was performed to analyze miRNAs expression levels in 3 paired nasal mucosal samples from patients with AR and a control group. Subsequently, human nasal epithelial cells (JME/CF15) were used as an in vitro model to further explore the functions of miRNAs. Microarray data revealed that miR‑16 was one of the miRNAs being most significantly downregulated. Interleukin (IL)‑13 stimulation gradually decreased the levels of miR‑16 in JME/CF15 cells. Moreover, upregulation of miR‑16 inhibited inflammatory cytokines, including granulocyte‑macrophage colony‑stimulating factor (GM‑CSF), eotaxin, IL‑1β, IL‑6 and IL‑10 in IL‑13‑treated JME/CF15 cells. Furthermore, overexpression of miR‑16 significantly decreased the mRNA and protein expression levels of mucin 5AC (MUC5AC). IκB kinase β (IKKβ) was identified as a direct target of miR‑16 and its expression was negatively regulated by miR‑16 at mRNA and protein levels. Notably, forced expression of miR‑16 blocked NF‑κB signaling by decreasing the expression of nuclear p‑p65 and p‑IκB‑α, as well as increasing the expression of IκB‑α in IL‑13‑treated nasal epithelial cells. Moreover, enhanced IKKβ reactivated the NF‑κB pathway that was blocked by miR‑16 mimics and then effectively suppressed the miR‑16‑mediated inhibitory effects on inflammatory response. These findings suggested that miR‑16 suppressed the inflammatory response by inhibiting the activation of IKKβ/NF‑κB signaling pathways.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, Zuberbier T, Baena-Cagnani CE, Canonica GW, van Weel C, et al: Allergic rhinitis and its impact on asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 63 Suppl 86:S8–S160. 2008. View Article : Google Scholar

2 

Steelant B, Farré R, Wawrzyniak P, Belmans J, Dekimpe E, Vanheel H, Van Gerven L, Kortekaas Krohn I, Bullens DMA, Ceuppens JL, et al: Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol. 137:1043–1053.e5. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Bradding P, Feather IH, Wilson S, Bardin PG, Heusser CH, Holgate ST and Howarth PH: Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol. 151:3853–3865. 1993.PubMed/NCBI

4 

Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, Labit C, Leplatois P, Liauzun P, Miloux B, et al: Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 362:248–250. 1993. View Article : Google Scholar : PubMed/NCBI

5 

Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL and Donaldson DD: Interleukin-13: Central mediator of allergic asthma. Science. 282:2258–2261. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, Elias JA, Sheppard D and Erle DJ: Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 8:885–889. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Galli SJ and Tsai M: IgE and mast cells in allergic disease. Nat Med. 18:693–704. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Wang B, Gao Y, Zheng G, Ren X, Sun B, Zhu K, Luo H, Wang Z and Xu M: Platycodin D inhibits interleukin-13-induced the expression of inflammatory cytokines and mucus in nasal epithelial cells. Biomed Pharmacother. 84:1108–1112. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Zhang T, Finn DF, Barlow JW and Walsh JJ: Mast cell stabilisers. Biomed Pharmacother. 778:158–168. 2016.

10 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Lu TX, Munitz A and Rothenberg ME: MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 182:4994–5002. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Roush S and Slack FJ: The let-7 family of microRNAs. Trends Cell Biol. 18:505–516. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Yu S, Zhang R, Liu G, Yan Z, Hu H, Yu S, Zhang J, Yu S, Zhang R, et al: Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy. 25:e242–e246. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Sonkoly E, Wei T, Janson PC, Sääf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, et al: MicroRNAs: Novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2:e6102007. View Article : Google Scholar : PubMed/NCBI

15 

Vennegaard MT, Bonefeld CM, Hagedorn PH, Bangsgaard N, Løvendorf MB, Odum N, Woetmann A, Geisler C and Skov L: Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis. 67:298–305. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Case SR, Martin RJ, Jiang D, Minor MN and Chu HW: MicroRNA-21 inhibits toll-like receptor 2 agonist-induced lung inflammation in mice. Exp Lung Res. 37:500–508. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Collison A, Mattes J, Plank M and Foster PS: Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 128:160–167.e164e. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Ruocco L, Fattori B, Romanelli A, Martelloni M, Casani A, Samolewska M and Rezzonico R: A new collection method for the evaluation of nasal mucus proteins. Clin Exp Allergy. 28:881–888. 1998. View Article : Google Scholar : PubMed/NCBI

19 

Xu H, Wu Y, Li L, Yuan W, Zhang D, Yan Q, Guo Z and Huang W: MiR-344b-1-3p targets TLR2 and negatively regulates TLR2 signaling pathway. Int J Chron Obstruct Pulmon Dis. 12:627–638. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Chen W, Guo S and Wang S: MicroRNA-16 alleviates inflammatory pain by targeting ras-related protein 23 (RAB23) and inhibiting p38 MAPK activation. Med Sci Monit. 22:3894–3901. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Liang X, Xu Z, Yuan M, Zhang Y, Zhao B, Wang J, Zhang A and Li C: MicroRNA-16 suppresses the activation of inflammatory macrophages in atherosclerosis by targeting PDCD4. Int J Mol Med. 37:967–975. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Matsukura S, Stellato C, Georas SN, Casolaro V, Plitt JR, Miura K, Kurosawa S, Schindler U and Schleimer RP: Interleukin-13 upregulates eotaxin expression in airway epithelial cells by a STAT6-dependent mechanism. Am J Respir Cell Mol Biol. 24:755–761. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Wills-Karp M: Interleukin-13 in asthma pathogenesis. Curr Allergy Asthma Rep. 4:123–131. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Corren J: Role of interleukin-13 in asthma. Curr Allergy Asthma Rep. 13:415–420. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Voynow JA, Gendler SJ and Rose MC: Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol. 34:661–665. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Thai P, Loukoianov A, Wachi S and Wu R: Regulation of airway mucin gene expression. Annu Rev Physiol. 70:405–429. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Menssen A, Häupl T, Sittinger M, Delorme B, Charbord P and Ringe J: Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development. BMC Genomics. 12:4612011. View Article : Google Scholar : PubMed/NCBI

28 

Perkins ND: Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 8:49–62. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Häcker H and Karin M: Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006:re132006. View Article : Google Scholar : PubMed/NCBI

30 

Miao Z, Mao F, Liang J, Szyf M, Wang Y and Sun ZS: Anxiety-related behaviours associated with microRNA-206-3p and BDNF expression in pregnant female mice following psychological social stress. Mol Neurobiol. 55:1097–1111. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Ye EA, Liu L, Jiang Y, Jan J, Gaddipati S, Suvas S and Steinle JJ: miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J Neuroinflammation. 13:3052016. View Article : Google Scholar : PubMed/NCBI

32 

Chen Y, Garvin LM, Nickola TJ, Watson AM, Colberg-Poley AM and Rose MC: IL-1β induction of MUC5AC gene expression is mediated by CREB and NF-κB and repressed by dexamethasone. Am J Physiol Lung Cell Mol Physiol. 306:L797–L807. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Kim HY, Nam SY, Hwang SY, Kim HM and Jeong HJ: Atractylone, an active constituent of KMP6, attenuates allergic inflammation on allergic rhinitis in vitro and in vivo models. Mol Immunol. 78:121–132. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Shakoory B, Fitzgerald SM, Lee SA, Chi DS and Krishnaswamy G: The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res. 24:271–281. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Nam SY, Chung CK, Seo JH, Rah SY, Kim HM and Jeong HJ: The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int Immunopharmacol. 23:273–282. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Rebane A, Runnel T, Aab A, Maslovskaja J, Rückert B, Zimmermann M, Plaas M, Kärner J, Treis A, Pihlap M, et al: MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol. 134:836–847.e11. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Malmhäll C, Alawieh S, Lu Y, Sjöstrand M, Bossios A, Eldh M and Rådinger M: MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol. 133:1429–1438, 1438.e1-7. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Teng Y, Zhang R, Liu C, Zhou L, Wang H, Zhuang W, Huang Y and Hong Z: miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Rα1. Biochem Biophys Res Commun. 457:58–64. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Eifan AO and Durham SR: Pathogenesis of rhinitis. Clin Exp Allergy. 46:1139–1151. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Howarth PH, Salagean M and Dokic D: Allergic rhinitis: Not purely a histamine-related disease. Allergy. 55 Suppl 64:S7–S16. 2000. View Article : Google Scholar

41 

Li L, Xia Y, Nguyen A, Lai YH, Feng L, Mosmann TR and Lo D: Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol. 162:2477–2487. 1999.PubMed/NCBI

42 

Han D, Zhou B, Cheng L, Oh Y and Li H: P38 MAP-kinase pathway is involved in the production of CLC-3 in nasal epithelial cells with allergic rhinitis induced by interleukin-4. Laryngoscope. 116:1973–1977. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Zhou LF, Zhu Y, Cui XF, Xie WP, Hu AH and Yin KS: Arsenic trioxide, a potent inhibitor of NF-kappaB, abrogates allergen-induced airway hyperresponsiveness and inflammation. Respir Res. 7:1462006. View Article : Google Scholar : PubMed/NCBI

44 

Shin VY, Jin H, Ng EK, Cheng AS, Chong WW, Wong CY, Leung WK, Sung JJ and Chu KM: NF-κB targets miR-16 and miR-21 in gastric cancer: Involvement of prostaglandin E receptors. Carcinogenesis. 32:240–245. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao Y and Yu Z: MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway. Mol Med Rep 18: 4042-4050, 2018.
APA
Gao, Y., & Yu, Z. (2018). MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway. Molecular Medicine Reports, 18, 4042-4050. https://doi.org/10.3892/mmr.2018.9394
MLA
Gao, Y., Yu, Z."MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway". Molecular Medicine Reports 18.4 (2018): 4042-4050.
Chicago
Gao, Y., Yu, Z."MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway". Molecular Medicine Reports 18, no. 4 (2018): 4042-4050. https://doi.org/10.3892/mmr.2018.9394
Copy and paste a formatted citation
x
Spandidos Publications style
Gao Y and Yu Z: MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway. Mol Med Rep 18: 4042-4050, 2018.
APA
Gao, Y., & Yu, Z. (2018). MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway. Molecular Medicine Reports, 18, 4042-4050. https://doi.org/10.3892/mmr.2018.9394
MLA
Gao, Y., Yu, Z."MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway". Molecular Medicine Reports 18.4 (2018): 4042-4050.
Chicago
Gao, Y., Yu, Z."MicroRNA‑16 inhibits interleukin‑13‑induced inflammatory cytokine secretion and mucus production in nasal epithelial cells by suppressing the IκB kinase β/nuclear factor‑κB pathway". Molecular Medicine Reports 18, no. 4 (2018): 4042-4050. https://doi.org/10.3892/mmr.2018.9394
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team