|
1
|
Garcia-Aranda M and Redondo M: Protein
kinase targets in breast cancer. Int J Mol Sci. 18(pii): E25432017.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu
ZY, Shi W, Jiang J, Yao PP and Zhu HP: Risk factors and preventions
of breast cancer. Int J Biol Sci. 13:1387–1397. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ye JC and Formenti SC: Integration of
radiation and immunotherapy in breast cancer - Treatment
implications. Breast. 38:66–74. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kasi PD, Tamilselvam R, Skalicka-Woźniak
K, Nabavi SF, Daglia M, Bishayee A, Pazoki-Toroudi H and Nabavi SM:
Molecular targets of curcumin for cancer therapy: An updated
review. Tumour Biol. 37:13017–13028. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Williams GH and Stoeber K: The cell cycle
and cancer. J Pathol. 226:352–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fulda S: Modulation of apoptosis by
natural products for cancer therapy. Planta Med. 76:1075–1079.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G,
Gong J, Zhong Z, Xu Z, Dang Y, et al: Anti-cancer natural products
isolated from chinese medicinal herbs. Chin Med. 6:272011.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Demain AL and Vaishnav P: Natural products
for cancer chemotherapy. Microb Biotechnol. 4:687–699. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yuan R, Hou Y, Sun W, Yu J, Liu X, Niu Y,
Lu JJ and Chen X: Natural products to prevent drug resistance in
cancer chemotherapy: A review. Ann N Y Acad Sci. 1401:19–27. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Messner DJ, Robinson T and Kowdley KV:
Curcumin and turmeric modulate the tumor-promoting effects of iron
in vitro. Nutr Cancer. 69:481–489. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hou J and Cui HL: In Vitro antioxidant,
antihemolytic and anticancer activity of the carotenoids from
halophilic archaea. Curr Microbiol. 75:266–271. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nabavi SM, Marchese A, Izadi M, Curti V,
Daglia M and Nabavi SF: Plants belonging to the genus Thymus as
antibacterial agents: from farm to pharmacy. Food Chem.
173:339–347. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yang HL, Korivi M, Lin MK, Chang HC, Wu
CR, Lee MS, Chen WT and Hseu YC: Antihemolytic and antioxidant
properties of pearl powder against 2,2′-azobis(2-amidinopropane)
dihydrochloride-induced hemolysis and oxidative damage to
erythrocyte membrane lipids and proteins. J Food Drug Anal.
25:898–907. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hirapara H, Ghori V, Anovadiya A, Baxi S
and Tripathi C: Effects of ethanolic extract of Jasminum
grandiflorum Linn. Flowers on wound healing in diabetic Wistar
albino rats. Avicenna J Phytomed. 7:401–408. 2017.PubMed/NCBI
|
|
15
|
Nomura EC, Rodrigues MR, da Silva CF, Hamm
LA, Nascimento AM, de Souza LM, Cipriani TR, Baggio CH and Werner
MF: Antinociceptive effects of ethanolic extract from the flowers
of Acmella oleracea (L.) R.K. Jansen in mice. J Ethnopharmacol.
150:583–589. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nabavi SM, Habtemariam S, Nabavi SF,
Sureda A, Daglia M, Moghaddam AH and Amani MA: Protective effect of
gallic acid isolated from Peltiphyllum peltatum against sodium
fluoride-induced oxidative stress in rat's kidney. Mol Cell
Biochem. 372:233–239. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fadus MC, Lau C, Bikhchandani J and Lynch
HT: Curcumin: An age-old anti-inflammatory and anti-neoplastic
agent. J Tradit Complement Med. 7:339–346. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Banik U, Parasuraman S, Adhikary AK and
Othman NH: Curcumin: The spicy modulator of breast carcinogenesis.
J Exp Clin Cancer Res. 36:982017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Shishodia S, Sethi G and Aggarwal BB:
Curcumin: Getting back to the roots. Ann N Y Acad Sci.
1056:206–217. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Aggarwal BB, Kumar A and Bharti AC:
Anticancer potential of curcumin: Preclinical and clinical studies.
Anticancer Res. 23:363–398. 2003.PubMed/NCBI
|
|
21
|
Han X, Deng S, Wang N, Liu Y and Yang X:
Inhibitory effects and molecular mechanisms of tetrahydrocurcumin
against human breast cancer MCF-7 cells. Food Nutr Res.
60:306162016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liu JL, Pan YY, Chen O, Luan Y, Xue X,
Zhao JJ, Liu L and Jia HY: Curcumin inhibits MCF-7 cells by
modulating the NF-κB signaling pathway. Oncol Lett. 14:5581–5584.
2017.PubMed/NCBI
|
|
23
|
Zheng J, Zhou Y, Li Y, Xu DP, Li S and Li
HB: Spices for prevention and treatment of cancers. Nutrients.
8(pii): E4952016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang Y, Yu J, Cui R, Lin J and Ding X:
Curcumin in treating breast cancer: A review. J Lab Autom.
21:723–731. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Imran M, Ullah A, Saeed F, Nadeem M,
Arshad MU and Suleria HAR: Cucurmin, anticancer, & antitumor
perspectives: A comprehensive review. Crit Rev Food Sci Nutr.
58:1271–1293. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ko EY and Moon A: Natural products for
chemoprevention of breast cancer. J Cancer Prev. 20:223–231. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hossain DM, Bhattacharyya S, Das T and Sa
G: Curcumin: The multi-targeted therapy for cancer regression.
Front Biosci (Schol Ed). 4:335–355. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhou H, Beevers CS and Huang S: The
targets of curcumin. Curr Drug Targets. 12:332–347. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Huang G, Xu Z, Huang Y, Duan X, Gong W,
Zhang Y, Fan J and He F: Curcumin protects against collagen-induced
arthritis via suppression of BAFF production. J Clin Immunol.
33:550–557. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schneider C, Gordon ON, Edwards RL and
Luis PB: Degradation of curcumin: From mechanism to biological
implications. J Agric Food Chem. 63:7606–7614. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jamil QUA, Jaerapong N, Zehl M,
Jarukamjorn K and Jäger W: Metabolism of curcumin in human breast
cancer cells: Impact of sulfation on cytotoxicity. Planta Med.
83:1028–1034. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Vera-Ramirez L, Perez-Lopez P,
Varela-Lopez A, Ramirez-Tortosa M, Battino M and Quiles JL:
Curcumin and liver disease. Biofactors. 39:88–100. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Marin E, Briceño MI, Torres A and
Caballero-George C: New curcumin-loaded chitosan nanocapsules: In
vivo evaluation. Planta Med. 83:877–883. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Feng T, Wei Y, Lee RJ and Zhao L:
Liposomal curcumin and its application in cancer. Int J
Nanomedicine. 12:6027–6044. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tamvakopoulos C, Dimas K, Sofianos ZD,
Hatziantoniou S, Han Z, Liu ZL, Wyche JH and Pantazis P: Metabolism
and anticancer activity of the curcumin analogue,
dimethoxycurcumin. Clin Cancer Res. 13:1269–1277. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Venkateswarlu S, Ramachandra MS and
Subbaraju GV: Synthesis and biological evaluation of
polyhydroxycurcuminoids. Bioorg Med Chem. 13:6374–6380. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nagaraju GP, Aliya S, Zafar SF, Basha R,
Diaz R and El-Rayes BF: The impact of curcumin on breast cancer.
Integr Biol (Camb). 4:996–1007. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Labbozzetta M, Notarbartolo M, Poma P,
Maurici A, Inguglia L, Marchetti P, Rizzi M, Baruchello R, Simoni D
and D'Alessandro N: Curcumin as a possible lead compound against
hormone-independent, multidrug-resistant breast cancer. Ann N Y
Acad Sci. 1155:278–283. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tang H, Murphy CJ, Zhang B, Shen Y, Van
Kirk EA, Murdoch WJ and Radosz M: Curcumin polymers as anticancer
conjugates. Biomaterials. 31:7139–7149. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Catania A, Barrajón-Catalán E, Nicolosi S,
Cicirata F and Micol V: Immunoliposome encapsulation increases
cytotoxic activity and selectivity of curcumin and resveratrol
against HER2 overexpressing human breast cancer cells. Breast
Cancer Res Treat. 141:55–65. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bayet-Robert M and Morvan D: Metabolomics
reveals metabolic targets and biphasic responses in breast cancer
cells treated by curcumin alone and in association with docetaxel.
PLoS One. 8:e579712013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Patil S, Choudhary B, Rathore A, Roy K and
Mahadik K: Enhanced oral bioavailability and anticancer activity of
novel curcumin loaded mixed micelles in human lung cancer cells.
Phytomedicine. 22:1103–1111. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Frouin I, Montecucco A, Biamonti G,
Hübscher U, Spadari S and Maga G: Cell cycle-dependent dynamic
association of cyclin/Cdk complexes with human DNA replication
proteins. EMBO J. 21:2485–2495. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
John PC, Mews M and Moore R: Cyclin/Cdk
complexes: Their involvement in cell cycle progression and mitotic
division. Protoplasma. 216:119–142. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Villegas SL, Darb-Esfahani S, von
Minckwitz G, Huober J, Weber K, Marmé F, Furlanetto J, Schem C,
Pfitzner BM, Lederer B, et al: Expression of cyclin D1 protein in
residual tumor after neoadjuvant chemotherapy for breast cancer.
Breast Cancer Res Treat. 168:179–187. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lamb R, Lehn S, Rogerson L, Clarke RB and
Landberg G: Cell cycle regulators cyclin D1 and CDK4/6 have
estrogen receptor-dependent divergent functions in breast cancer
migration and stem cell-like activity. Cell Cycle. 12:2384–2394.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Peurala E, Koivunen P, Haapasaari KM,
Bloigu R and Jukkola-Vuorinen A: The prognostic significance and
value of cyclin D1, CDK4 and p16 in human breast cancer. Breast
Cancer Res. 15:R52013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Aggarwal BB, Banerjee S, Bharadwaj U, Sung
B, Shishodia S and Sethi G: Curcumin induces the degradation of
cyclin E expression through ubiquitin-dependent pathway and
up-regulates cyclin-dependent kinase inhibitors p21 and p27 in
multiple human tumor cell lines. Biochem Pharmacol. 73:1024–1032.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Doostan I, Karakas C, Kohansal M, Low KH,
Ellis MJ, Olson JA Jr, Suman VJ, Hunt KK, Moulder SL and Keyomarsi
K: Cytoplasmic cyclin E mediates resistance to aromatase inhibitors
in breast cancer. Clin Cancer Res. 23:7288–7300. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mazumder S, DuPree EL and Almasan A: A
dual role of cyclin E in cell proliferation and apoptosis may
provide a target for cancer therapy. Curr Cancer Drug Targets.
4:65–75. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Keyomarsi K, Tucker SL, Buchholz TA,
Callister M, Ding Y, Hortobagyi GN, Bedrosian I, Knickerbocker C,
Toyofuku W, Lowe M, et al: Cyclin E and survival in patients with
breast cancer. N Engl J Med. 347:1566–1575. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Choudhuri T, Pal S, Das T and Sa G:
Curcumin selectively induces apoptosis in deregulated cyclin
D1-expressed cells at G2 phase of cell cycle in a p53-dependent
manner. J Biol Chem. 280:20059–20068. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Muller PA and Vousden KH: Mutant p53 in
cancer: New functions and therapeutic opportunities. Cancer Cell.
25:304–317. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fan H, Liang Y, Jiang B, Li X, Xun H, Sun
J, He W, Lau HT and Ma X: Curcumin inhibits intracellular fatty
acid synthase and induces apoptosis in human breast cancer
MDA-MB-231 cells. Oncol Rep. 35:2651–2656. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Choudhuri T, Pal S, Agwarwal ML, Das T and
Sa G: Curcumin induces apoptosis in human breast cancer cells
through p53-dependent Bax induction. FEBS Lett. 512:334–340. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Adjei AA: Blocking oncogenic Ras signaling
for cancer therapy. J Natl Cancer Inst. 93:1062–1074. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kim MS, Kang HJ and Moon A: Inhibition of
invasion and induction of apoptosis by curcumin in
H-ras-transformed MCF10A human breast epithelial cells. Arch Pharm
Res. 24:349–354. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ono M, Higuchi T, Takeshima M, Chen C and
Nakano S: Differential anti-tumor activities of curcumin against
Ras- and Src-activated human adenocarcinoma cells. Biochem Biophys
Res Commun. 436:186–191. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ettl T, Schwarz-Furlan S, Haubner F,
Müller S, Zenk J, Gosau M, Reichert TE and Zeitler K: The
PI3K/AKT/mTOR signalling pathway is active in salivary gland cancer
and implies different functions and prognoses depending on cell
localisation. Oral Oncol. 48:822–830. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen WC, Lai YA, Lin YC, Ma JW, Huang LF,
Yang NS, Ho CT, Kuo SC and Way TD: Curcumin suppresses
doxorubicin-induced epithelial-mesenchymal transition via the
inhibition of TGF-β and PI3K/AKT signaling pathways in
triple-negative breast cancer cells. J Agric Food Chem.
61:11817–11824. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Carnero A, Blanco-Aparicio C, Renner O,
Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications. Curr Cancer Drug Targets. 8:187–198.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Akkoc Y, Berrak Ö, Arisan ED, Obakan P,
Çoker-Gürkan A and Palavan-Ünsal N: Inhibition of PI3K signaling
triggered apoptotic potential of curcumin which is hindered by
Bcl-2 through activation of autophagy in MCF-7 cells. Biomed
Pharmacother. 71:161–171. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yu S, Shen G, Khor TO, Kim JH and Kong AN:
Curcumin inhibits Akt/mammalian target of rapamycin signaling
through protein phosphatase-dependent mechanism. Mol Cancer Ther.
7:2609–2620. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zou YF, Xie CW, Yang SX and Xiong JP: AMPK
activators suppress breast cancer cell growth by inhibiting
DVL3-facilitated Wnt/β-catenin signaling pathway activity. Mol Med
Rep. 15:899–907. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pohl SG, Brook N, Agostino M, Arfuso F,
Kumar AP and Dharmarajan A: Wnt signaling in triple-negative breast
cancer. Oncogenesis. 6:e3102017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kwon YJ, Leibovitch BA, Bansal N, Pereira
L, Chung CY, Ariztia EV, Zelent A, Farias EF and Waxman S: Targeted
interference of SIN3A-TGIF1 function by SID decoy treatment
inhibits Wnt signaling and invasion in triple negative breast
cancer cells. Oncotarget. 8:88421–88436. 2016.PubMed/NCBI
|
|
68
|
Ma X, Zhao X, Yan W, Yang J, Zhao X, Zhang
H, Hui Y and Zhang S: Tumor-infiltrating lymphocytes are associated
with β-catenin overexpression in breast cancer. Cancer Biomark.
21:639–650. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Roy A, Ansari SA, Das K, Prasad R,
Bhattacharya A, Mallik S, Mukherjee A and Sen P: Coagulation factor
VIIa-mediated protease-activated receptor 2 activation leads to
β-catenin accumulation via the AKT/GSK3β pathway and contributes to
breast cancer progression. J Biol Chem. 292:13688–13701. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gao S, Ge A, Xu S, You Z, Ning S, Zhao Y
and Pang D: PSAT1 is regulated by ATF4 and enhances cell
proliferation via the GSK3β/β-catenin/cyclin D1 signaling pathway
in ER-negative breast cancer. J Exp Clin Cancer Res. 36:1792017.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Prasad CP, Rath G, Mathur S, Bhatnagar D
and Ralhan R: Potent growth suppressive activity of curcumin in
human breast cancer cells: Modulation of Wnt/beta-catenin
signaling. Chem Biol Interact. 181:263–271. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Poma P, Labbozzetta M, D'Alessandro N and
Notarbartolo M: NF-kB is a potential molecular drug target in
triple-negative breast cancers. OMICS. 21:225–231. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pires BR, Mencalha AL, Ferreira GM, de
Souza WF, Morgado-Diaz JA, Maia AM, Corrêa S and Abdelhay ES:
NF-kappaB is involved in the regulation of EMT genes in breast
cancer cells. PLoS One. 12:e01696222017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Park YH: The nuclear factor-kappa B
pathway and response to treatment in breast cancer.
Pharmacogenomics. 18:1697–1709. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Stanic Z: Curcumin, a compound from
natural sources, a true scientific challenge-a review. Plant Foods
Hum Nutr. 72:1–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Murray-Stewart T and Casero RA: Regulation
of polyamine metabolism by curcumin for cancer prevention and
therapy. Med Sci (Basel). 5(pii): E382017.PubMed/NCBI
|
|
77
|
Oyagbemi AA, Saba AB and Ibraheem AO:
Curcumin: From food spice to cancer prevention. Asian Pac J Cancer
Prev. 10:963–967. 2009.PubMed/NCBI
|
|
78
|
Leu TH and Maa MC: The molecular
mechanisms for the antitumorigenic effect of curcumin. Curr Med
Chem Anticancer Agents. 2:357–370. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gafner S, Lee SK, Cuendet M, Barthélémy S,
Vergnes L, Labidalle S, Mehta RG, Boone CW and Pezzuto JM: Biologic
evaluation of curcumin and structural derivatives in cancer
chemoprevention model systems. Phytochemistry. 65:2849–2859. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Qian C, Li P, Yan W, Shi L, Zhang J, Wang
Y, Liu H and You Y: Downregulation of osteopontin enhances the
sensitivity of glioma U251 cells to temozolomide and cisplatin by
targeting the NF-κB/Bcl2 pathway. Mol Med Rep. 11:1951–1955. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Shehzad A, Qureshi M, Anwar MN and Lee YS:
Multifunctional curcumin mediate multitherapeutic effects. J Food
Sci. 82:2006–2015. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Arablou T and Kolahdouz-Mohammadi R:
Curcumin and endometriosis: Review on potential roles and molecular
mechanisms. Biomed Pharmacother. 97:91–97. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Carroll CE, Ellersieck MR and Hyder SM:
Curcumin inhibits MPA-induced secretion of VEGF from T47-D human
breast cancer cells. Menopause. 15:570–574. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Saberi-Karimian M, Katsiki N, Caraglia M,
Boccellino M, Majeed M and Sahebkar A: Vascular endothelial growth
factor: An important molecular target of curcumin. Crit Rev Food
Sci Nutr. 1–14. 2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chakraborty G, Jain S, Kale S, Raja R,
Kumar S, Mishra R and Kundu GC: Curcumin suppresses breast tumor
angiogenesis by abrogating osteopontin-induced VEGF expression. Mol
Med Rep. 1:641–646. 2008.PubMed/NCBI
|
|
86
|
DeBusk RM: Dietary supplements and
cardiovascular disease. Curr Atheroscler Rep. 2:508–514. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kawanishi S, Oikawa S and Murata M:
Evaluation for safety of antioxidant chemopreventive agents.
Antioxid Redox Signal. 7:1728–1739. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Di Martino RM, Luppi B, Bisi A, Gobbi S,
Rampa A, Abruzzo A and Belluti F: Recent progress on curcumin-based
therapeutics: A patent review (2012–2016). Part I: Curcumin. Expert
Opin Ther Pat. 27:579–590. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Di Martino RMC, Bisi A, Rampa A, Gobbi S
and Belluti F: Recent progress on curcumin-based therapeutics: A
patent review (2012–2016). Part II: Curcumin derivatives in cancer
and neurodegeneration. Expert Opin Ther Pat. 27:953–965. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Somasundaram R, Jacob L, Swoboda R, Caputo
L, Song H, Basak S, Monos D, Peritt D, Marincola F, Cai D, et al:
Inhibition of cytolytic T lymphocyte proliferation by autologous
CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is
mediated by transforming growth factor-beta. Cancer Res.
62:5267–5272. 2002.PubMed/NCBI
|
|
91
|
Strofer M, Jelkmann W, Metzen E,
Brockmeier U, Dunst J and Depping R: Stabilisation and knockdown of
HIF-two distinct ways comparably important in radiotherapy. Cell
Physiol Biochem. 28:805–812. 2011. View Article : Google Scholar : PubMed/NCBI
|