Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2019 Volume 19 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2019 Volume 19 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of the inflammasome in the gut‑liver axis (Review)

  • Authors:
    • Junfeng Wang
    • Rui Dong
    • Shan Zheng
  • View Affiliations / Copyright

    Affiliations: Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai 201102, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3-14
    |
    Published online on: November 20, 2018
       https://doi.org/10.3892/mmr.2018.9679
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The gut‑liver axis connects the liver with the intestine via bile acid metabolism. Bile acid dysregulation leads to intestinal dysbiosis, that allows enterogenous pathogenic bacteria, including Gram‑negative bacteria and their products lipopolysaccharide (LPS), into the liver via the portal vein, triggering inflammation in the liver. The inflammasome serves as an intracellular pattern recognition receptor that detects pathogens or danger signals and mediates innate immunity in the liver or gut. Specifically, the NACHT, LRR and PYD domains‑containing protein (NLRP)6 inflammasome maintains intestinal microbial balance, by promoting interleukin (IL)‑18‑dependent antimicrobial peptide synthesis and mucus secretion from goblet cells. The NLRP3 inflammasome, in contrast, primarily induces IL‑1β and aggravates inflammatory liver injury. Furthermore, the NLRP3 inflammasome affects the epithelial integrity of cholangiocytes by inducing the production of pro‑inflammatory cytokines. In addition, bile acids, including deoxycholic acid and chenodeoxycholic acid, are able to activate the NLRP3 inflammasome in macrophages; however, bile acids have the potential to exert the opposite role by interacting with the membrane‑bound Takeda G‑protein receptor 5 or by activating nuclear farnesoid‑X receptor. Therefore, further investigation of the molecular mechanisms underlying the inflammasome, involved in the gut‑liver axis, may provide important insights into the identification of a potential therapeutic target for the treatment of liver and gut diseases. The present review discusses the roles of the inflammasome in the gut‑liver axis, and the emerging associations between the inflammasome and the intestinal microbiota or the bile acids in the gut‑liver axis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Visschers RG, Luyer MD, Schaap FG, Olde Damink SW and Soeters PB: The gut-liver axis. Curr Opin Clin Nutr Metab Care. 16:576–581. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T and Yokota A: Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 141:1773–1781. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Yokota A, Fukiya S, Islam KB, Ooka T, Ogura Y, Hayashi T, Hagio M and Ishizuka S: Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes. 3:455–459. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Cai SY and Boyer JL: Studies on the mechanisms of bile acid initiated hepatic inflammation in cholestatic liver injury. Inflamm Cell Signal. 4:e15612017.PubMed/NCBI

5 

Cai SY, Ouyang X, Chen Y, Soroka CJ, Wang J, Mennone A, Wang Y, Mehal WZ, Jain D and Boyer JL: Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight. 2:e907802017. View Article : Google Scholar : PubMed/NCBI

6 

Perez MJ and Briz O: Bile-acid-induced cell injury and protection. World J Gastroenterol. 15:1677–1689. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Allen K, Jaeschke H and Copple BL: Bile acids induce inflammatory genes in hepatocytes: A novel mechanism of inflammation during obstructive cholestasis. Am J Pathol. 178:175–186. 2011. View Article : Google Scholar : PubMed/NCBI

8 

De Minicis S, Rychlicki C, Agostinelli L, Saccomanno S, Candelaresi C, Trozzi L, Mingarelli E, Facinelli B, Magi G, Palmieri C, et al: Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology. 59:1738–1749. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Sabino J, Vieira-Silva S, Machiels K, Joossens M, Falony G, Ballet V, Ferrante M, Van Assche G, Van der Merwe S, Vermeire S and Raes J: Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut. 65:1681–1689. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Wiest R, Albillos A, Trauner M, Bajaj JS and Jalan R: Intestinal hepatic axis for liver disease. J Hepatol. 67:1084–1103. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B and Knight R: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 15:397–411. 2018. View Article : Google Scholar : PubMed/NCBI

12 

O'Toole A, Alakkari A, Keegan D, Doherty G, Mulcahy H and O'Donoghue D: Primary sclerosing cholangitis and disease distribution in inflammatory bowel disease. Clin Gastroenterol Hepatol. 10:439–441. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Weismüller TJ, Trivedi PJ, Bergquist A, Imam M, Lenzen H, Ponsioen CY, Holm K, Gotthardt D, Färkkilä MA, Marschall HU, et al: Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology. 152:1975–1984, e1978. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Liu R, Li X, Huang Z, Zhao D, Ganesh BS, Lai G, Pandak WM, Hylemon PB, Bajaj JS, Sanyal AJ and Zhou H: C/EBP homologous protein-induced loss of intestinal epithelial stemness contributes to bile duct ligation-induced cholestatic liver injury in mice. Hepatology. 67:1441–1457. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Jee J, Mourya R, Shivakumar P, Fei L, Wagner M and Bezerra JA: Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia. PLoS One. 12:e01820892017. View Article : Google Scholar : PubMed/NCBI

16 

Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, Barrieau M, Min SY, Kurt-Jones EA and Szabo G: IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest. 122:3476–3489. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, et al: Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 482:179–185. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, Frankel G, Levy M, Katz MN, Philbrick WM, et al: NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 156:1045–1059. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, et al: Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 163:1428–1443. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu C, Chen Y, Cai W and Wu J: Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget. 7:83951–83963. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Han J, Bae J, Choi CY, Choi SP, Kang HS, Jo EK, Park J, Lee YS, Moon HS, Park CG, et al: Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 12:2326–2343. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Wree A, McGeough MD, Inzaugarat ME, Eguchi A, Schuster S, Johnson CD, Peña CA, Geisler LJ, Papouchado BG, Hoffman HM and Feldstein AE: NLRP3 inflammasome driven liver injury and fibrosis. Roles of IL-17 and TNF. Hepatology. 2017.

24 

Barreyro FJ, Holod S, Finocchietto PV, Camino AM, Aquino JB, Avagnina A, Carreras MC, Poderoso JJ and Gores GJ: The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 35:953–966. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Alaish SM, Smith AD, Timmons J, Greenspon J, Eyvazzadeh D, Murphy E, Shea-Donahue T, Cirimotich S, Mongodin E, Zhao A, et al: Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host. Gut Microbes. 4:292–305. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Pierantonelli I, Rychlicki C, Agostinelli L, Giordano DM, Gaggini M, Fraumene C, Saponaro C, Manghina V, Sartini L, Mingarelli E, et al: Lack of NLRP3-inflammasome leads to gut-liver axis derangement, gut dysbiosis and a worsened phenotype in a mouse model of NAFLD. Sci Rep. 7:122002017. View Article : Google Scholar : PubMed/NCBI

27 

Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, et al: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 45:802–816. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, Wang G and Gonzalez FJ: Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 25:856–867, e855. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Xie S, Guo C, Chi Z, Huang B, Wu Y, Wang D and Xia D: A rapid administration of GW4064 inhibits the NLRP3 inflammasome activation independent of farnesoid X receptor agonism. FEBS Lett. 591:2836–2847. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Martinon F, Burns K and Tschopp J: The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Giebeler A, Brandenburg LO, Kaldenbach M, Erschfeld S, Wasmuth H, Wruck C, Trautwein C and Streetz KL: Lack of hepatic c-Met and gp130 expression is associated with an impaired antibacterial response and higher lethality after bile duct ligation. Lab Invest. 92:1726–1737. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Matsushita H, Miyake Y, Takaki A, Yasunaka T, Koike K, Ikeda F, Shiraha H, Nouso K and Yamamoto K: TLR4, TLR9, and NLRP3 in biliary epithelial cells of primary sclerosing cholangitis: Relationship with clinical characteristics. J Gastroenterol Hepatol. 30:600–608. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Szabo G and Petrasek J: Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 12:387–400. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Gross O, Thomas CJ, Guarda G and Tschopp J: The inflammasome: An integrated view. Immunol Rev. 243:136–151. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, et al: The NLR gene family: A standard nomenclature. Immunity. 28:285–287. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, et al: Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 183:787–791. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Boaru SG, Borkham-Kamphorst E, Van de Leur E, Lehnen E, Liedtke C and Weiskirchen R: NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes. Biochem Biophys Res Commun. 458:700–706. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Kahlenberg JM and Dubyak GR: Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol. 286:C1100–C1108. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P and Núñez G: Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity. 26:433–443. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA and Latz E: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 9:847–856. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Zhou R, Tardivel A, Thorens B, Choi I and Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–140. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI and Flavell RA: NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 145:745–757. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Gremel G, Wanders A, Cedernaes J, Fagerberg L, Hallström B, Edlund K, Sjöstedt E, Uhlén M and Pontén F: The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling. J Gastroenterol. 50:46–57. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Del Chierico F, Vernocchi P, Petrucca A, Paci P, Fuentes S, Praticò G, Capuani G, Masotti A, Reddel S, Russo A, et al: Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PLoS One. 10:e01373472015. View Article : Google Scholar : PubMed/NCBI

45 

Kempster SL, Belteki G, Forhead AJ, Fowden AL, Catalano RD, Lam BY, McFarlane I, Charnock-Jones DS and Smith GC: Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine. Am J Physiol Gastrointest Liver Physiol. 300:G253–G263. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD, Rahman A, Remark R, Mogno I, Ng R, Gnjatic S, et al: Host-Protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell. 167:444–456, e414. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Sun Y, Zhang M, Chen CC, Gillilland M III, Sun X, El-Zaatari M, Huffnagle GB, Young VB, Zhang J, Hong SC, et al: Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice. Gastroenterology. 144:1478–1487, e1471-1487.e1-e8. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Birchenough GM, Nyström EE, Johansson ME and Hansson GC: A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science. 352:1535–1542. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, Hedl M, Zhang W, O'Connor W Jr, Murphy AJ, et al: IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 491:259–263. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Wang P, Zhu S, Yang L, Cui S, Pan W, Jackson R, Zheng Y, Rongvaux A, Sun Q, Yang G, et al: Nlrp6 regulates intestinal antiviral innate immunity. Science. 350:826–830. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Elinav E, Thaiss CA and Flavell RA: Analysis of microbiota alterations in inflammasome-deficient mice. Methods Mol Biol. 1040:185–194. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Chen GY, Liu M, Wang F, Bertin J and Núñez G: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 186:7187–7194. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Normand S, Delanoye-Crespin A, Bressenot A, Huot L, Grandjean T, Peyrin-Biroulet L, Lemoine Y, Hot D and Chamaillard M: Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci USA. 108:9601–9606. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Hu B, Elinav E, Huber S, Strowig T, Hao L, Hafemann A, Jin C, Wunderlich C, Wunderlich T, Eisenbarth SC and Flavell RA: Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci USA. 110:9862–9867. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Seo SU, Kamada N, Muñoz-Planillo R, Kim YG, Kim D, Koizumi Y, Hasegawa M, Himpsl SD, Browne HP, Lawley TD, et al: Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 42:744–755. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Filardy AA, He J, Bennink J, Yewdell J and Kelsall BL: Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages. Mucosal Immunol. 9:850–858. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C and Ting JP: The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 207:1045–1056. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, Eisenbarth SC and Flavell RA: Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA. 107:21635–21640. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Ruiz PA, Morón B, Becker HM, Lang S, Atrott K, Spalinger MR, Scharl M, Wojtal KA, Fischbeck-Terhalle A, Frey-Wagner I, et al: Titanium dioxide nanoparticles exacerbate DSS-induced colitis: Role of the NLRP3 inflammasome. Gut. 66:1216–1224. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Zherebiatiev A and Kamyshnyi A: Expression levels of proinflammatory cytokines and NLRP3 inflammasome in an experimental model of Oxazolone-induced colitis. Iran J Allergy Asthma Immunol. 15:39–45. 2016.PubMed/NCBI

61 

De la Fuente M, Franchi L, Araya D, Díaz-Jiménez D, Olivares M, Álvarez-Lobos M, Golenbock D, González MJ, López-Kostner F, Quera R, et al: Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome. Int J Med Microbiol. 304:384–392. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Bauer C, Duewell P, Lehr HA, Endres S and Schnurr M: Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: Influence of genetic and environmental factors. Dig Dis. 30 Suppl 1:S82–S90. 2012. View Article : Google Scholar

63 

Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, Lam V, Potentier MS, Ng K, Bawa M, et al: NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 17:1359–1372. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M and Kanneganti TD: The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 32:379–391. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Szabo G and Csak T: Inflammasomes in liver diseases. J Hepatol. 57:642–654. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Mandrekar P, Ambade A, Lim A, Szabo G and Catalano D: An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: Regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology. 54:2185–2197. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA and Seki E: Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 139:323–334.e327. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Kubes P and Mehal WZ: Sterile inflammation in the liver. Gastroenterology. 143:1158–1172. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Csak T, Pillai A, Ganz M, Lippai D, Petrasek J, Park JK, Kodys K, Dolganiuc A, Kurt-Jones EA and Szabo G: Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int. 34:1402–1413. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Rao RK and Samak G: Bile duct epithelial tight junctions and barrier function. Tissue Barriers. 1:e257182013. View Article : Google Scholar : PubMed/NCBI

71 

Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R, Lammert F, Langner C, Zatloukal K, et al: Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology. 127:261–274. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Maroni L, Agostinelli L, Saccomanno S, Pinto C, Giordano DM, Rychlicki C, De Minicis S, Trozzi L, Banales JM, Melum E, et al: Nlrp3 activation induces Il-18 synthesis and affects the epithelial barrier function in reactive cholangiocytes. Am J Pathol. 187:366–376. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Ikegami T and Honda A: Reciprocal interactions between bile acids and gut microbiota in human liver diseases. Hepatol Res. 48:15–27. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Hofmann AF: The enterohepatic circulation of bile acids in mammals: Form and functions. Front Biosci (Landmark Ed). 14:2584–2598. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Dawson PA and Karpen SJ: Intestinal transport and metabolism of bile acids. J Lipid Res. 56:1085–1099. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Ridlon JM, Kang DJ and Hylemon PB: Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 47:241–259. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Halilbasic E, Claudel T and Trauner M: Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol. 58:155–168. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ and Shan B: Identification of a nuclear receptor for bile acids. Science. 284:1362–1365. 1999. View Article : Google Scholar : PubMed/NCBI

79 

Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD and Lehmann JM: Bile acids: Natural ligands for an orphan nuclear receptor. Science. 284:1365–1368. 1999. View Article : Google Scholar : PubMed/NCBI

80 

Potthoff MJ, Potts A, He T, Duarte JA, Taussig R, Mangelsdorf DJ, Kliewer SA and Burgess SC: Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol. 304:G371–G380. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Schaap FG, Trauner M and Jansen PL: Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 11:55–67. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Reich M, Klindt C, Deutschmann K, Spomer L, Häussinger D and Keitel V: Role of the G protein-coupled bile acid receptor TGR5 in liver damage. Dig Dis. 35:235–240. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, et al: A G protein-coupled receptor responsive to bile acids. J Biol Chem. 278:9435–9440. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Ding JW, Andersson R, Soltesz V, Willén R and Bengmark S: The role of bile and bile acids in bacterial translocation in obstructive jaundice in rats. Eur Surg Res. 25:11–19. 1993. View Article : Google Scholar : PubMed/NCBI

85 

Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, et al: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 103:3920–3925. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Wahlström A, Sayin SI, Marschall HU and Bäckhed F: Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24:41–50. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Wang YD, Chen WD, Wang M, Yu D, Forman BM and Huang W: Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 48:1632–1643. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Wagner M, Zollner G and Trauner M: Nuclear receptors in liver disease. Hepatology. 53:1023–1034. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Zhu C, Fuchs CD, Halilbasic E and Trauner M: Bile acids in regulation of inflammation and immunity: Friend or foe? Clin Exp Rheumatol. 34 (4 Suppl 98):S25–S31. 2016.PubMed/NCBI

90 

Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, et al: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2:217–225. 2005. View Article : Google Scholar : PubMed/NCBI

91 

Péan N, Doignon I, Garcin I, Besnard A, Julien B, Liu B, Branchereau S, Spraul A, Guettier C, Humbert L, et al: The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology. 58:1451–1460. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L, Roda A, Vecchiotti S, Gonzalez FJ, Schoonjans K, Strazzabosco M, et al: Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO3 output. Hepatology. 54:1303–1312. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Dong R and Zheng S: Roles of the inflammasome in the gut‑liver axis (Review). Mol Med Rep 19: 3-14, 2019.
APA
Wang, J., Dong, R., & Zheng, S. (2019). Roles of the inflammasome in the gut‑liver axis (Review). Molecular Medicine Reports, 19, 3-14. https://doi.org/10.3892/mmr.2018.9679
MLA
Wang, J., Dong, R., Zheng, S."Roles of the inflammasome in the gut‑liver axis (Review)". Molecular Medicine Reports 19.1 (2019): 3-14.
Chicago
Wang, J., Dong, R., Zheng, S."Roles of the inflammasome in the gut‑liver axis (Review)". Molecular Medicine Reports 19, no. 1 (2019): 3-14. https://doi.org/10.3892/mmr.2018.9679
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Dong R and Zheng S: Roles of the inflammasome in the gut‑liver axis (Review). Mol Med Rep 19: 3-14, 2019.
APA
Wang, J., Dong, R., & Zheng, S. (2019). Roles of the inflammasome in the gut‑liver axis (Review). Molecular Medicine Reports, 19, 3-14. https://doi.org/10.3892/mmr.2018.9679
MLA
Wang, J., Dong, R., Zheng, S."Roles of the inflammasome in the gut‑liver axis (Review)". Molecular Medicine Reports 19.1 (2019): 3-14.
Chicago
Wang, J., Dong, R., Zheng, S."Roles of the inflammasome in the gut‑liver axis (Review)". Molecular Medicine Reports 19, no. 1 (2019): 3-14. https://doi.org/10.3892/mmr.2018.9679
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team