Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
May-2019 Volume 19 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2019 Volume 19 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway

  • Authors:
    • Zhaodong Zhang
    • Xiuzhi Zhang
    • Dewei Zhao
    • Baoyi Liu
    • Benjie Wang
    • Weiting Yu
    • Junlei Li
    • Xiaobing Yu
    • Fang Cao
    • Guoshuang Zheng
    • Yao Zhang
    • Yupeng Liu
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedics, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China, Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3505-3518
    |
    Published online on: March 18, 2019
       https://doi.org/10.3892/mmr.2019.10051
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Transforming growth factor β1 (TGF‑β1) has been suggested to be a candidate cytokine in the field of bone tissue engineering. Cytokines serve important roles in tissue engineering, particularly in the repair of bone damage; however, the underlying molecular mechanisms remain unclear. In the present study, the effects of TGF‑β1 on the osteogenesis and motility of hFOB1.19 human osteoblasts were demonstrated via the phenotype and gene expression of cells. Additionally, the role of the phosphatidylinositol 3‑kinase/protein kinase B/mammalian target of rapamycin/S6 kinase 1 (PI3K/AKT/mTOR/S6K1) signalling pathway in the effects of TGF‑β1 on osteoblasts was investigated. It was demonstrated using Cell Counting Kit‑8 and flow cytometry assays that the proliferation of human osteoblasts was promoted by 1 ng/ml TGF‑β1. In addition, alkaline phosphatase activity, Alizarin red staining, scratch‑wound and Transwell assays were conducted. It was revealed that osteogenesis and the migration of cells were regulated by TGF‑β1 via the upregulation of osteogenic and migration‑associated genes. Alterations in the expression of osteogenesis‑ and migration‑associated genes were evaluated following pre‑treatment with a PI3K/AKT inhibitor (LY294002) and an mTOR/S6K1 inhibitor (rapamycin), with or without TGF‑β1. The results indicated that TGF‑β1 affected the osteogenesis and mineralisation of osteoblasts via the PI3K/AKT signalling pathway. Furthermore, TGF‑β1 exhibited effects on mTOR/S6K1 downstream of PI3K/AKT. The present study demonstrated that TGF‑β1 promoted the proliferation, differentiation and migration of human hFOB1.19 osteoblasts, and revealed that TGF‑β1 affected the biological activity of osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Our findings may provide novel insight to aid the development of bone tissue engineering methods for the treatment of bone injury.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

View References

1 

Wei X, Zhao D, Wang B, Wang W, Kang K, Xie H, Liu B, Zhang X, Zhang J and Yang Z: Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo. Exp Biol Med (Maywood). 241:592–602. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Su N, Gao PL, Wang K, Wang JY, Zhong Y and Luo Y: Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials. 141:74–85. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N and Xu HHK: Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials. 183:151–170. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Hallam P, Haddad F and Cobb J: Pain in the well-fixed, aseptic titanium hip replacement. The role of corrosion. J Bone Joint Surg Br. 86:27–30. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Zhang X, Zu H, Zhao D, Yang K, Tian S, Yu X, Lu F, Liu B, Yu X, Wang B, et al: Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater. 63:369–382. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Lin D, Zuo S, Li L, Wang L and Lian K: Treatment of neglected femoral neck fractures using the modified dynamic hip screw with autogenous bone and bone morphogenetic protein-2 composite materials grafting. Indian J Orthop. 49:342–346. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Moore NM, Lin NJ, Gallant ND and Becker ML: Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater. 7:2091–2100. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Piek E, Sleumer LS, van Someren EP, Heuver L, de Haan JR, de Grijs I, Gilissen C, Hendriks JM, van Ravestein-van Os RI, Bauerschmidt S, et al: Osteo-transcriptomics of human mesenchymal stem cells: Accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone. 46:613–627. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Poh CK, Shi Z, Lim TY, Neoh KG and Wang W: The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials. 31:1578–1585. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Geiger F, Beverungen M, Lorenz H, Wieland J, Fehr M and Kasten P: Bone substitute effect on vascularization and bone remodeling after application of phVEGF165 transfected BMSC. J Funct Biomater. 3:313–326. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Yu H, Zeng X, Deng C, Shi C, Ai J and Leng W: Exogenous VEGF introduced by bioceramic composite materials promotes the restoration of bone defect in rabbits. Biomed Pharmacother. 98:325–332. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Ueland T, Lekva T, Otterdal K, Dahl TB, Olarescu NC, Jørgensen AP, Fougner KJ, Brixen K, Aukrust P and Bollerslev J: Increased serum and bone matrix levels of transforming growth factor {beta}1 in patients with GH deficiency in response to GH treatment. Eur J Endocrinol. 165:393–400. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Bonewald LF and Dallas SL: Role of active and latent transforming growth factor beta in bone formation. J Cell Biochem. 55:350–357. 1994. View Article : Google Scholar : PubMed/NCBI

14 

Zhao Y, Li Y, Gao Y, Yuan M, Manthari RK and Wang J and Wang J: TGF-β1 acts as mediator in fluoride-induced autophagy in the mouse osteoblast cells. Food Chem Toxicol. 115:26–33. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Siegel PM and Massagué J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 3:807–821. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Lind M: Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. Acta Orthop Scand Suppl. 283:2–37. 1998.PubMed/NCBI

17 

Duan X, Liu J, Zheng X, Wang Z, Zhang Y, Hao Y, Yang T and Deng H: Deficiency of ATP6V1H causes bone loss by inhibiting bone resorption and bone formation through the TGF-β1 pathway. Theranostics. 6:2183–2195. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Marcelli C, Yates AJ and Mundy GR: In vivo effects of human recombinant transforming growth factor beta on bone turnover in normal mice. J Bone Miner Res. 5:1087–1096. 1990. View Article : Google Scholar : PubMed/NCBI

19 

Chen LJ, Chen C, Qiao XY, Yu K, Xie LZ, Cao J, Liu BL and Yan Y: Effect of porous titanium coated with IGF-1 and TGF-β1 loaded gelatin microsphere on function of MG63 cells. Transact Nonferr Metals Soc China. 25:2974–2985. 2015. View Article : Google Scholar

20 

Lamberg A, Schmidmaier G, Søballe K and Elmengaard B: Locally delivered TGF-beta1 and IGF-1 enhance the fixation of titanium implants: A study in dogs. Acta Orthop. 77:799–805. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Feng XH and Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 21:659–693. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Karst M, Gorny G, Galvin RJ and Oursler MJ: Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation. J Cell Physiol. 200:99–106. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Chen G, Deng C and Li YP: TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Kang JS, Alliston T, Delston R and Derynck R: Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J. 24:2543–2555. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Xie F, Ling L, van Dam H, Zhou F and Zhang L: TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin (Shanghai). 50:121–132. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Wang J, Ma XY, Feng YF, Ma ZS, Ma TC, Zhang Y, Li X, Wang L and Lei W: Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Trace Elem Res. 179:284–293. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A and Saki N: Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci. 72:2337–2347. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Manfredi GI, Dicitore A, Gaudenzi G, Caraglia M, Persani L and Vitale G: PI3K/Akt/mTOR signaling in medullary thyroid cancer: A promising molecular target for cancer therapy. Endocrine. 48:363–370. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Golub EE, Harrison G, Taylor AG, Camper S and Shapiro IM: The role of alkaline phosphatase in cartilage mineralization. Bone Miner. 17:273–278. 1992. View Article : Google Scholar : PubMed/NCBI

30 

Luo G, Xu B and Huang Y: Icariside II promotes the osteogenic differentiation of canine bone marrow mesenchymal stem cells via the PI3K/AKT/mTOR/S6K1 signaling pathways. Am J Transl Res. 9:2077–2087. 2017.PubMed/NCBI

31 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Chen Q, Zhu C and Thouas GA: Progress and challenges in biomaterials used for bone tissue engineering: Bioactive glasses and elastomeric composites. Prog Biomater. 1:22012. View Article : Google Scholar : PubMed/NCBI

33 

Chen X, Lu J, Ji Y, Hong A and Xie Q: Cytokines in osteoblast-conditioned medium promote the migration of breast cancer cells. Tumour Biol. 35:791–798. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Hughes FJ, Turner W, Belibasakis G and Martuscelli G: Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000. 41:48–72. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Janssens K, ten Dijke P, Janssens S and Van Hul W: Transforming growth factor-beta1 to the bone. Endocr Rev. 26:743–774. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S and Oursler MJ: TGF-β induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. Endocrinology. 154:3745–3752. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Kanaan RA and Kanaan LA: Transforming growth factor beta1, bone connection. Med Sci Monit. 12:RA164–RA169. 2006.PubMed/NCBI

38 

Wang X, Dong F, Zhang S, Yang W, Yu W, Wang Z, Zhang S, Wang J, Ma S, Wu P, et al: TGF-beta1 negatively regulates the number and function of hematopoietic stem cells. Stem Cell Reports. 11:274–287. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Matsunobu T, Torigoe K, Ishikawa M, de Vega S, Kulkarni AB, Iwamoto Y and Yamada Y: Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol. 332:325–338. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Ramirez-Yañez GO, Hamlet S, Jonarta A, Seymour GJ and Symons AL: Prostaglandin E2 enhances transforming growth factor-beta 1 and TGF-beta receptors synthesis: An in vivo and in vitro study. Prostaglandins Leukot Essent Fatty Acids. 74:183–192. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Cantrell DA: Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 114:1439–1445. 2001.PubMed/NCBI

42 

Cantley LC: The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Guntur AR and Rosen CJ: The skeleton: A multi-functional complex organ: New insights into osteoblasts and their role in bone formation: The central role of PI3Kinase. J Endocrinol. 211:123–130. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Mukherjee A and Rotwein P: Akt promotes BMP2-mediated osteoblast differentiation and bone development. J Cell Sci. 122:716–726. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Kristensen HB, Andersen TL, Marcussen N, Rolighed L and Delaisse JM: Osteoblast recruitment routes in human cancellous bone remodeling. Am J Pathol. 184:778–789. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G and Kronenberg HM: Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 19:329–344. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Ota K, Quint P, Weivoda MM, Ruan M, Pederson L, Westendorf JJ, Khosla S and Oursler MJ: Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone. 57:68–75. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Fie C, Guo J, Zhao Y, Gu S, Zhao S, Li X and Chang C: Notch-Hes pathway mediates the impaired osteogenic differentiation of bone marrow mesenchymal stromal cells from myelodysplastic syndromes patients through the down-regulation of Runx2. Am J Transl Res. 7:1939–1951. 2015.PubMed/NCBI

49 

Kumar Y, Kapoor I, Khan K, Thacker G, Khan MP, Shukla N, Kanaujiya JK, Sanyal S, Chattopadhyay N and Trivedi AK: E3 ubiquitin ligase Fbw7 negatively regulates osteoblast differentiation by targeting Runx2 for degradation. J Biol Chem. 290:30975–30987. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Gersbach CA, Byers BA, Pavlath GK and García AJ: Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp Cell Res. 300:406–417. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Creff G, Safi S, Roques J, Michel H, Jeanson A, Solari PL, Basset C, Simoni E, Vidaud C and Den Auwer C: Actinide(IV) deposits on bone: Potential role of the osteopontin-thorium complex. Inorg Chem. 55:29–36. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Schwetz V, Pieber T and Obermayer-Pietsch B: The endocrine role of the skeleton: Background and clinical evidence. Eur J Endocrinol. 166:959–967. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, et al: Endocrine regulation of energy metabolism by the skeleton. Cell. 130:456–469. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Renn J and Winkler C: Osterix/Sp7 regulates biomineralization of otoliths and bone in medaka (Oryzias latipes). Matrix Biol. 34:193–204. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Dong Q, Fu L, Zhao Y, Tan S and Wang E: Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 8:17059–17069. 2017.PubMed/NCBI

56 

Huang J and Manning BD: The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. Biochem J. 412:179–190. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Magnuson B, Ekim B and Fingar D: Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 441:1–21. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Swiech L, Perycz M, Malik A and Jaworski J: Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta. 1784:116–132. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Inoki K, Ouyang H, Li Y and Guan KL: Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev. 69:79–100. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Z, Zhang X, Zhao D, Liu B, Wang B, Yu W, Li J, Yu X, Cao F, Zheng G, Zheng G, et al: TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol Med Rep 19: 3505-3518, 2019.
APA
Zhang, Z., Zhang, X., Zhao, D., Liu, B., Wang, B., Yu, W. ... Liu, Y. (2019). TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Molecular Medicine Reports, 19, 3505-3518. https://doi.org/10.3892/mmr.2019.10051
MLA
Zhang, Z., Zhang, X., Zhao, D., Liu, B., Wang, B., Yu, W., Li, J., Yu, X., Cao, F., Zheng, G., Zhang, Y., Liu, Y."TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway". Molecular Medicine Reports 19.5 (2019): 3505-3518.
Chicago
Zhang, Z., Zhang, X., Zhao, D., Liu, B., Wang, B., Yu, W., Li, J., Yu, X., Cao, F., Zheng, G., Zhang, Y., Liu, Y."TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway". Molecular Medicine Reports 19, no. 5 (2019): 3505-3518. https://doi.org/10.3892/mmr.2019.10051
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Z, Zhang X, Zhao D, Liu B, Wang B, Yu W, Li J, Yu X, Cao F, Zheng G, Zheng G, et al: TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Mol Med Rep 19: 3505-3518, 2019.
APA
Zhang, Z., Zhang, X., Zhao, D., Liu, B., Wang, B., Yu, W. ... Liu, Y. (2019). TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Molecular Medicine Reports, 19, 3505-3518. https://doi.org/10.3892/mmr.2019.10051
MLA
Zhang, Z., Zhang, X., Zhao, D., Liu, B., Wang, B., Yu, W., Li, J., Yu, X., Cao, F., Zheng, G., Zhang, Y., Liu, Y."TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway". Molecular Medicine Reports 19.5 (2019): 3505-3518.
Chicago
Zhang, Z., Zhang, X., Zhao, D., Liu, B., Wang, B., Yu, W., Li, J., Yu, X., Cao, F., Zheng, G., Zhang, Y., Liu, Y."TGF‑β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway". Molecular Medicine Reports 19, no. 5 (2019): 3505-3518. https://doi.org/10.3892/mmr.2019.10051
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team