Open Access

Overexpression of COX6B1 protects against I/R‑induced neuronal injury in rat hippocampal neurons

  • Authors:
    • Shan Yang
    • Peng Wu
    • Jianwen Xiao
    • Li Jiang
  • View Affiliations

  • Published online on: April 10, 2019     https://doi.org/10.3892/mmr.2019.10144
  • Pages: 4852-4862
  • Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cerebrovascular disease (CVD) is one of the leading causes of mortality worldwide. The role of cytochrome c oxidase subunit 6B1 (COX6B1) in the central nervous system remains unclear. The present study aimed to analyze the role of COX6B1 in rat hippocampal neurons extracted from fetal rats. The subcellular localization of the neuron‑specific marker microtubule‑associated protein 2 was detected by immunofluorescence assay. Cell viability was assessed using a cell counting kit, and the levels of apoptosis and cytosolic Ca2+ were analyzed by flow cytometry. The expression levels of the molecular factors downstream to COX6B1 were determined using reverse transcription‑quantitative polymerase chain reaction and western blotting. Reoxygenation following oxygen‑glucose deprivation (OGD) decreased cell viability and the expression levels of COX6B1 in a time‑dependent manner, and 60 min of reoxygenation was identified as the optimal time period for establishing an ischemia/reperfusion (I/R) model. Overexpression of COX6B1 was demonstrated to reverse the viability of hippocampal neurons following I/R treatment. Specifically, COX6B1 overexpression decreased the cytosolic concentration of Ca2+ and suppressed neuronal apoptosis, which were increased following I/R treatment. Furthermore, overexpression of COX6B1 increased the protein expression levels of apoptosis regulator BCL‑2 and mitochondrial cytochrome c (cyt c), and decreased the protein expression levels of apoptosis regulator BCL2‑associated X and cytosolic cyt c in I/R model cells. Collectively, the present study results suggested that COX6B1 overexpression may reverse I/R‑induced neuronal damage by increasing the viability of neurons, by decreasing the cytosolic levels of Ca2+ and by suppressing apoptosis. These results may facilitate the development of novel strategies for the prevention and treatment of CVD.
View Figures
View References

Related Articles

Journal Cover

June-2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Yang S, Wu P, Xiao J and Jiang L: Overexpression of COX6B1 protects against I/R‑induced neuronal injury in rat hippocampal neurons. Mol Med Rep 19: 4852-4862, 2019
APA
Yang, S., Wu, P., Xiao, J., & Jiang, L. (2019). Overexpression of COX6B1 protects against I/R‑induced neuronal injury in rat hippocampal neurons. Molecular Medicine Reports, 19, 4852-4862. https://doi.org/10.3892/mmr.2019.10144
MLA
Yang, S., Wu, P., Xiao, J., Jiang, L."Overexpression of COX6B1 protects against I/R‑induced neuronal injury in rat hippocampal neurons". Molecular Medicine Reports 19.6 (2019): 4852-4862.
Chicago
Yang, S., Wu, P., Xiao, J., Jiang, L."Overexpression of COX6B1 protects against I/R‑induced neuronal injury in rat hippocampal neurons". Molecular Medicine Reports 19, no. 6 (2019): 4852-4862. https://doi.org/10.3892/mmr.2019.10144