|
1
|
Mathews LS and Vale WW: Expression cloning
of an activin receptor, a predicted transmembrane serine kinase.
Cell. 65:973–982. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mathews LS, Vale WW and Kintner CR:
Cloning of a second type of activin receptor and functional
characterization in Xenopus embryos. Science. 255:1702–1705. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Attisano L, Wrana JL, Cheifetz S and
Massagué J: Novel activin receptors: Distinct genes and alternative
mRNA splicing generate a repertoire of serine/threonine kinase
receptors. Cell. 68:97–108. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tsuchida K, Mathews LS and Vale WW:
Cloning and characterization of a transmembrane serine kinase that
acts as an activin type I receptor. Proc Natl Acad Sci USA.
90:11242–11246. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hu-Lowe DD, Chen E, Zhang L, Watson KD,
Mancuso P, Lappin P, Wickman G, Chen JH, Wang J, Jiang X, et al:
Targeting activin receptor-like kinase 1 inhibits angiogenesis and
tumorigenesis through a mechanism of action complementary to
anti-VEGF therapies. Cancer Res. 71:1362–1373. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Johnson DW, Berg JN, Baldwin MA, Gallione
CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA,
Diamond A, et al: Mutations in the activin receptor-like kinase 1
gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet.
13:189–195. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Muñoz-Félix JM, López-Novoa JM and
Martínez-Salgado C: Heterozygous disruption of activin
receptor-like kinase 1 is associated with increased renal fibrosis
in a mouse model of obstructive nephropathy. Kidney Int.
85:319–332. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Song T, Zhao J, Jiang T, Jin X, Li Y and
Liu X: Formononetin protects against balloon injury-induced
neointima formation in rats by regulating proliferation and
migration of vascular smooth muscle cells via the TGF β1/Smad3
signaling pathway. Int J Mol Med. 42:2155–2162. 2018.PubMed/NCBI
|
|
9
|
Liu H, Zhong L, Yuan T, Chen S, Zhou Y, An
L, Guo Y, Fan M, Li Y, Sun Y, et al: MicroRNA-155 inhibits the
osteogenic differentiation of mesenchymal stem cells induced by
BMP9 via downregulation of BMP signaling pathway. Int J Mol Med.
41:3379–3393. 2018.PubMed/NCBI
|
|
10
|
Takahashi S, Nakasatomi M, Takei Y,
Ikeuchi H, Sakairi T, Kaneko Y, Hiromura K, Nojima Y and Maeshima
A: Identification of urinary activin A as a novel biomarker
reflecting the severity of acute kidney injury. Sci Rep.
8:51762018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Pirruccello-Straub M, Jackson J, Wawersik
S, Webster MT, Salta L, Long K, McConaughy W, Capili A, Boston C,
Carven GJ, et al: Blocking extracellular activation of myostatin as
a strategy for treating muscle wasting. Sci Rep. 8:22922018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Donovan P, Dubey OA, Kallioinen S, Rogers
KW, Muehlethaler K, Müller P, Rimoldi D and Constam DB: Paracrine
activin-A signaling promotes melanoma growth and metastasis through
immune evasion. J Invest Dermatol. 137:2578–2587. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen
J, Wang Y and Li Y: The crucial role of activin A/ALK4 pathway in
the pathogenesis of Ang-II-induced atrial fibrosis and
vulnerability to atrial fibrillation. Basic Res Cardiol.
112:472017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Xie D, Liu Z, Wu J, Feng W, Yang K, Deng
J, Tian G, Santos S, Cui X and Lin F: The effects of activin A on
the migration of human breast cancer cells and neutrophils and
their migratory interaction. Exp Cell Res. 357:107–115. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Heldin CH, Miyazono K and Ten Dijke P:
TGF-beta signaling from cell membrane to nucleus through SMAD
proteins. Nature. 390:465–471. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Massagué J and Gomis RR: The logic of
TGFbeta signaling. FEBS Lett. 580:2811–2820. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hawinkels LJ, Garcia de Vinuesa A and Ten
Dijke P: Activin receptor-like kinase 1 as a target for
anti-angiogenesis therapy. Expert Opin Investig Drugs.
22:1371–1383. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hinck AP, Mueller TD and Springer TA:
Structural biology and evolution of the TGF-β family. Cold Spring
Harb Perspect Biol. 8(pii): a0221032016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Niu L, Cui X, Qi Y, Xie D, Wu Q, Chen X,
Ge J and Liu Z: Involvement of TGF-β1/Smad3 signaling in carbon
tetrachloride-induced acute liver injury in mice. PLoS One.
11:e01560902016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Afrakhte M, Morén A, Jossan S, Itoh S,
Sampath K, Westermark B, Heldin CH, Heldin NE and Ten Dijke P:
Induction of inhibitory Smad6 and Smad7 mRNA by TGF-beta family
members. Biochem Biophys Res Commun. 249:505–511. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Qi Y, Ge J, Ma C, Wu N, Cui X and Liu Z:
Activin A regulates activation of mouse neutrophils by Smad3
signalling. Open Biol. 7(pii): 1603422017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Moustakas A and Heldin CH: Non-Smad
TGF-beta signals. J Cell Sci. 118:3573–3584. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang YE: Non-Smad pathways in TGF-beta
signaling. Cell Res. 19:128–139. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kua HY, Liu H, Leong WF, Li L, Jia D, Ma
G, Hu Y, Wang X, Chau JF, Chen YG, et al: c-Abl promotes osteoblast
expansion by differentially regulating canonical and non-canonical
BMP pathways and p16INK4a expression. Nat Cell Biol. 14:727–737.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li Z, Fei T, Zhang J, Zhu G, Wang L, Lu D,
Chi X, Teng Y, Hou N, Yang X, et al: BMP4 signaling acts via
dual-specificity phosphatase 9 to control ERK activity in mouse
embryonic stem cells. Cell Stem Cell. 10:171–182. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Suzuki K, Kobayashi T, Funatsu O, Morita A
and Ikekita M: Activin A induces neuronal differentiation and
survival via ALK4 in a SMAD-independent manner in a subpopulation
of human neuroblastomas. Biochem Biophys Res Commun. 394:639–645.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Shoji H, Tsuchida K, Kishi H, Yamakawa N,
Matsuzaki T, Liu Z, Nakamura T and Sugino H: Identification and
characterization of a PDZ protein that interacts with activin types
II receptors. J Bol Chem. 275:5485–5492. 2000. View Article : Google Scholar
|
|
28
|
Kurisaki A, Inoue I, Kurisaki K, Yamakawa
N, Tsuchida K and Sugino H: Activin induces long-lasting
N-methyl-D-aspartate receptor activation via scaffolding PDZ
protein activin receptor interacting protein 1. Neuroscience.
151:1225–1235. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fanning AS and Anderson JM: PDZ domains:
Fundamental building blocks in the organization of protein
complexes at the plasma membrane. J Clin Invest. 103:767–772. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tsuchida K, Matsuzaki T, Yamakawa N, Liu
ZH and Sugino H: Intracellular and extracellular control of activin
function by novel regulatory molecules. Mol Cell Endocrinol.
180:25–31. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Matsuzaki T, Hanai S, Kishi H, Liu Z, Bao
Y, Kikuchi A, Tsuchida K and Sugino H: Regulation of endocytosisi
of activin type II receptors by a novel PDZ protein through
Ral/Ral-binding protein 1-dependent pathway. J Biol Chem.
277:19008–19018. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu ZH, Tsuchida K, Matsuzaki T, Bao YL,
Kurisaki A and Sugino H: Characterization of isoforms of activin
receptor-interacting protein 2 that augment activin signaling. J
Endocrinol. 189:409–421. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu HY, Chen FF, Ge JY, Wang YN, Zhang CH,
Cui XL, Yu F Tai GX and Liu ZH: Expression and localization of
activin receptor-interacting protein 2 in mouse tissues. Gen Comp
Endocrinol. 161:276–282. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Qi Y, Ge JY, Wang YN, Liu HY, Li YM, Liu
ZH and Cui XL: Co-expression of activin receptor-interacting
protein 1 and 2 in mouse nerve cells. Neurosci Lett. 542:53–58.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu HY, Wang YN, Ge JY, Li N, Cui XL and
Liu ZH: Localization and role of activin receptor-interacting
protein 1 in mouse brain. J Neuroendocrinol. 25:87–95. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Manavski Y, Abel T, Hu J, Kleinlützum D,
Buchholz CJ, Belz C, Augustin HG, Boon RA and Dimmeler S:
Endothelial transcription factor KLF2 negatively regulates liver
regeneration via induction of activin A. Proc Natl Acad Sci USA.
114:3993–3998. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wei Q, Wang YN, Liu HY, Yang J, Yang CY,
Liu M, Liu YF, Yang P and Liu ZH: The expression and role of
activin A and follistatin in heart failure rats after myocardial
infarction. Int J Cardiol. 168:2994–2997. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ogawa K, Funaba M, Chen Y and Tsujimoto M:
Activin A functions as a Th2 cytokine in the promotion of the
alternative activation of macrophages. J Immunol. 177:6787–6794.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li N, Cui X, Ge J, Li J, Niu L, Liu H, Qi
Y, Liu Z and Wang Y: Activin A inhibits activities of
lipopolysaccharide-activated macrophages via TLR4, not of TLR2.
Biochem Biophys Res Commun. 435:222–228. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Schubert D, Kimura H, LaCorbiere M,
Vaughan J, Karr D and Fische WH: Activin is a nerve cell survival
molecule. Nature. 344:868–870. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fang L, Wang YN, Cui XL, Fang SY, Ge JY,
Sun Y and Liu ZH: The role and mechanism of action of activin A in
neurite outgrowth of chicken embryonic dorsal root ganglia. J Cell
Sci. 125:1500–1507. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ottley EC, Nicholson HD and Gold EJ:
Activin A regulates microRNAs and gene expression in LNCaP cells.
Prostate. 76:951–963. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Loomans HA and Andl CD: Intertwining of
activin A and TGFβ signaling: Dual roles in cancer progression and
cancer cell invasion. Cancers (Basel). 7:70–91. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wu S, Qi Y, Niu LM, Xie DX, Cui XL and Liu
ZH: Activin A as a novel biomarker for colorectal adenocarcinoma in
humans. Eur Rev Med Pharmacol Sci. 19:4371–4378. 2015.PubMed/NCBI
|
|
45
|
Steller MD, Shaw TJ, Vanderhyden BC and
Ethier JF: Inhibin resistance is associated with aggressive
tumorigenicity of ovarian cancer cells. Mol Cancer Res. 3:50–61.
2005.PubMed/NCBI
|
|
46
|
Bashir M, Damineni S, Mukherjee G and
Kondaiah P: Activin-A signaling promotes epithelial-mesenchymal
transition, invasion, and metastatic growth of breast cancer. NPJ
Breast Cancer. 1:150072015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kalli M, Mpekris F, Wong CK, Panagi M,
Ozturk S, Thiagalingam S, Stylianopoulos T and Papageorgis P:
Activin A signaling regulates IL13Rα2 expression to promote breast
cancer metastasis. Front Oncol. 9:322019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chang KP, Kao HK, Liang Y, Cheng MH, Chang
YL, Liu SC, Lin YC, Ko TY, Lee YS, Tsai CL, et al: Overexpression
of activin a in oral squamous cell carcinoma: Association with poor
prognosis and tumor progression. Ann Surg Oncol. 17:1945–1956.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen JL, Walton KL, Qian H, Colgan TD,
Hagg A, WattM J, Harrison CA and Gregorevic P: Differential effects
of Il6 and activin a in the development of cancer-associated
cachexia. Cancer Res. 76:5372–5382. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Loumaye A, de Barsy M, Nachit M, Lause P,
van Maanen A, Trefois P, Gruson D and Thissen JP: Circulating
Activin A predicts survival in cancer patients. J Cachexia
Sarcopenia Muscle. 8:768–777. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Loumaye A, de Barsy M, Nachit M, Lause P,
Frateur L, van Maanen A, Trefois P, Gruson D and Thissen JP: Role
of activin a and myostatin in human cancer cachexia. J Clin
Endocrinol Metab. 100:2030–2038. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Burdette JE, Jeruss JS, Kurley SJ, Lee EJ
and Woodruff TK: Activin A mediates growth inhibition and cell
cycle arrest through Smads in human breast cancer cells. Cancer
Res. 65:7968–7975. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Matsuo SE, Leoni SG, Colquhoun A and
Kimura ET: Transforming growth factor-beta1 and activin A generate
antiproliferative signaling in thyroid cancer cells. J Endocrinol.
190:141–150. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kaneda H, Arao T, Matsumoto K, De Velasco
MA, Tamura D, Aomatsu K, Kudo K, Sakai K, Nagai T, Fujita Y, et al:
Activin A inhibits vascular endothelial cell growth and suppresses
tumour angiogenesis in gastric cancer. Br J Cancer. 105:1210–1217.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zonneville J, Safina A, Truskinovsky AM,
Arteaga CL and Bakin AV: TGF-β signaling promotes tumor vasculature
by enhancing the pericyte-endothelium association. BMC Cancer.
18:6702018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Furler RL, Nixon DF, Brantner CA,
Popratiloff A and Uittenbogaart CH: TGF-β sustains tumor
progression through biochemical and mechanical signal transduction.
Cancers (Basel). 10(pii): E1992018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Miyazono K: Transforming growth
factor-beta signaling in epithelial-mesenchymal transition and
progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci.
85:314–323. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hu B, An HM, Yan X, Zheng JL, Huang XW and
Li M: Traditional Chinese medicine formulation Yanggan Jiedu Sanjie
inhibits TGF-β1-induced epithelial-mesenchymal transition and
metastatic potential in human hepatocarcinoma Bel-7402 cells. BMC
Complement Altern Med. 19:672019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yi EY, Park SY, Jung SY, Jang WJ and Kim
YJ: Mitochondrial dysfunction induces EMT through the
TGF-β/Smad/Snail signaling pathway in Hep3B hepatocellular
carcinoma cells. Int J Oncol. 47:1845–1853. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zou G, Liu T, Guo L, Huang Y, Feng Y and
Duan T: MicroRNA-32 silences WWP2 expression to maintain the
pluripotency of human amniotic epithelial stem cells and β islet
like cell differentiation. Int J Mol Med. 41:1983–1991.
2018.PubMed/NCBI
|
|
61
|
Xu L, Long J, Shi C, Zhang N, Lv Y, Feng
J, Xuan A, He X, Li Q, Bai Y, et al: Effect of leukocyte inhibitory
factor on neuron differentiation from human induced pluripotent
stem cell-derived neural precursor cells. Int J Mol Med.
41:2037–2049. 2018.PubMed/NCBI
|
|
62
|
Murry CE and Keller G: Differentiation of
embryonic stem cells to clinically relevant populations: Iessons
from embryonic development. Cell. 132:661–680. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Thomsen G, Woolf T, Whitman M, Sokol S,
Vaughan J, Vale W and Melton DA: Activins are expressed early in
Xenopus embryogenesis and can induce axial mesoderm and anterior
structures. Cell. 63:485–493. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Murata M, Eto Y, Shibai H, Sakai M and
Muramatsu M: Erythroid differentiation factor is encoded by the
same mRNA as that of the inhibin beta A chain. Proc Natl Acad Sci
USA. 85:2434–2438. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bertacchi M, Lupo G, Pandolfini L,
Casarosa S, D'Onofrio M, Pedersen RA, Harris WA and Cremisi F:
Activin/Nodal signaling supports retinal progenitor specification
in a narrow time window during pluripotent stem cell neuralization.
Stem Cell Reports. 5:532–545. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Davis AA, Matzuk MM and Reh TA: Activin A
promotes progenitor differentiation into photoreceptors in rodent
retina. Mol Cell Neurosci. 15:11–21. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vallier L, Mendjan S, Brown S, Chng Z, Teo
A, Smithers LE, Trotter MW, Cho CH, Martinez A, Rugg-Gunn P, et al:
Activin/Nodal signalling maintains pluripotency by controlling
Nanog expression. Development. 136:1339–1349. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yang F, Wang N, Wang Y, Yu T and Wang H:
Activin-SMAD signaling is required for maintenance of porcine iPS
cell self-renewal through upregulation of NANOG and OCT4
expression. J Cell Physiol. 232:2253–2262. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gadue P, Huber TL, Paddison PJ and Keller
GM: Wnt and TGF-beta signaling are required for the induction of an
in vitro model of primitive streak formation using embryonic stem
cells. Proc Natl Acad Sci USA. 103:16806–16811. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kattman SJ, Witty AD, Gagliardi M, Dubois
NC, Niapour M, Hotta A, Ellis J and Keller G: Stage-specific
optimization of activin/nodal and BMP signaling promotes cardiac
differentiation of mouse and human pluripotent stem cell lines.
Cell Stem Cell. 8:228–240. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Toivonen S, Lundin K, Balboa D, Ustinov J,
Tamminen K, Palgi J, Trokovic R, Tuuri T and Otonkoski T: Activin A
and Wnt-dependent specification of human definitive endoderm cells.
Exp Cell Res. 319:2535–2544. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Duggal G, Heindryckx B, Warrier S, Taelman
J, Van der Jeught M, Deforce D, Chuva de Sousa Lopes S and De
Sutter P: Exogenous supplementation of Activin A enhances germ cell
differentiation of human embryonic stem cells. Mol Hum Reprod.
21:410–423. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kubo A, Shinozaki K, Shannon JM, Kouskoff
V, Kennedy M, Woo S, Fehling HJ and Keller G: Development of
definitive endoderm from embryonic stem cells in culture.
Development. 131:1651–1662. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
D'Amour KA, Agulnick AD, Eliazer S, Kelly
OG, Kroon E and Baetge EE: Efficient differentiation of human
embryonic stem cells to definitive endoderm. Nat Biotechnol.
23:1534–1541. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lu AQ, Popova EY and Barnstable CJ:
Activin signals through Smad2/3 to increase photoreceptor precursor
yield during embryonic stem cell differentiation. Stem Cell
Reports. 9:838–852. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yang L, Soonpaa MH, Adler ED, Roepke TK,
Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden
RM, et al: Human cardiovascular progenitor cells develop from a
KDR+embryonic-stem-cell-derived population. Nature. 453:524–528.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kim T, Echeagaray OH, Wang BJ, Casillas A,
Broughton KM, Kim BH and Sussman MA: In situ transcriptome
characteristics are lost following culture adaptation of adult
cardiac stem cells. Sci Rep. 8:120602018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cao L, Yang Y, Ye Z, Lin B, Zeng J, Li C,
Liang T, Zhou K and Li J: Quercetin-3-methyl ether suppresses human
breast cancer stem cell formation by inhibiting the Notch1 and
PI3K/Akt signaling pathways. Int J Mol Med. 42:1625–1636.
2018.PubMed/NCBI
|
|
79
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Spiller CM, Feng CW, Jackson A, Gillis AJ,
Rolland AD, Looijenga LH, Koopman P and Bowles J: Endogenous Nodal
signaling regulates germ cell potency during mammalian testis
development. Development. 139:4123–4132. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ricci-Vitiani L, Lombardi DG, Pilozzi E,
Biffoni M, Todaro M, Peschle C and De Maria R: Identification and
expansion of human colon-cancer-initiating cells. Nature.
445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Coffin CM, Hornick JL and Fletcher CD:
Inflammatory myofibroblastic tumor: Comparison of
clinicopathologic, histologic, and immunohistochemical features
including ALK expression in atypical and aggressive cases. Am J
Surg Pathol. 31:509–520. 2017. View Article : Google Scholar
|
|
83
|
David L, Mallet C, Mazerbourg S, Feige JJ
and Bailly S: Identification of BMP9 and BMP10 as functional
activators of the orphan activin receptor-like kinase 1 (ALK1) in
endothelial cells. Blood. 109:1953–1961. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
de Vinuesa AG, Bocci M, Pietras K and Ten
Dijke P: Targeting tumour vasculature by inhibiting activin
receptor-like kinase (ALK) 1 function. Biochem Soc Trans.
44:1142–1149. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Goff LW, Cohen RB, Berlin JD, de Braud FG,
Lyshchik A, Noberasco C, Bertolini F, Carpentieri M, Stampino CG,
Abbattista A, et al: A phase I study of the anti-activin
receptor-like kinase 1 (ALK-1) monoclonal antibody PF-03446962 in
patients with advanced solid tumors. Clin Cancer Res. 22:2146–2154.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Burger RA, Deng W, Makker V, Collins Y,
Gray H, Debernardo R, Martin LP and Aghajanian C: Phase II
evaluation of dalantercept in the treatment of persistent or
recurrent epithelial ovarian cancer: An NRG Oncology/Gynecologic
Oncology Group study. Gynecol Oncol. 150:466–470. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cunha SI, Pardali E, Thorikay M, Anderberg
C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, Ten Dijke P and
Pietras K: Genetic and pharmacological targeting of activin
receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp
Med. 207:85–100. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Herrera B, Garcia-Álvaro M, Cruz S, Walsh
P, Fernández M, Roncero C, Fabregat I, Sánchez A and Inman GJ: BMP9
is a proliferative and survival factor for human hepatocellular
carcinoma cells. PLoS One. 8:e695352013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li Q, Gu X, Weng H, Ghafoory S, Liu Y,
Feng T, Dzieran J, Li L, Ilkavets I, Kruithof-de Julio M, et al:
Bone morphogenetic protein-9 induces epithelial to mesenchymal
transition in hepatocellular carcinoma cells. Cancer Sci.
104:398–408. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Suzuki Y, Ohga N, Morishita Y, Hida K,
Miyazono K and Watabe T: BMP-9 induces proliferation of multiple
typese of endothelial cells in vitro and in vivo. J Cell Sci.
123:1684–1692. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Machiya A, Tsukamoto S, Ohte S, Kuratani
M, Fujimoto M, Kumagai K, Osawa K, Suda N, Bullock AN and Katagiri
T: Effects of FKBP12 and type II BMP receptors on signal
transduction by ALK2 activating mutations associated with genetic
disorders. Bone. 111:101–108. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Macías-Silva M, Hoodless PA, Tang SJ,
Buchwald M and Wrana JL: Specific activation of Smad1 signaling
pathways by the BMP7 type I receptor, ALK2. J Biol Chem.
273:25628–25636. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kim M, Choi O, Pyo S, Choi SU and Park CH:
Identification of novel ALK2 inhibitors and their effect on cancer
cells. Biochem Biophys Res Commun. 492:121–127. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhang L, Wang H, Yu D, Chen J, Xing C, Li
J, Li J and Cai Y: The effects of mouse ovarian granulosa cell
function and related gene expression by suppressing BMP/Smad
signaling pathway. Anim Cells Syst (Seoul). 22:317–323. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhou Y, Sun H, Danila DC, Johnson SR,
Sigai DP, Zhang X and Klibanski A: Truncated activin type I
receptor Alk4 isoforms are dominant negative receptors inhibiting
activin signaling. Mol Endocrinol. 14:2066–2075. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Danila DC, Zhang X, Zhou Y, Haidar JN and
Klibanski A: Overexpression of wild-type activin receptor alk4-1
restores activin antiproliferative effects in human pituitary tumor
cells. J Clin Endocrinol Metab. 87:4741–4746. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jeruss JS, Sturgis CD, Rademaker AW and
Woodruff TK: Down-regulation of activin, activin receptors, and
smads in high-grade breast cancer. Cancer Res. 63:3783–3790.
2003.PubMed/NCBI
|
|
98
|
Rodon J, Carducci MA, Sepulveda-Sánchez
JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I,
Cleverly AL, et al: First-in-human dose study of the novel
transforming growth factor-β receptor I kinase inhibitor LY2157299
monohydrate in patients with advanced cancer and glioma. Clin
Cancer Res. 21:553–560. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Fransvea E, Angelotti U, Antonaci S and
Giannelli G: Blocking transforming growth factor-beta up-regulates
E-cadherin and reduces migration and invasion of hepatocellular
carcinoma cells. Hepatology. 47:1557–1566. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Mazzocca A, Fransvea E, Dituri F, Lupo L,
Antonaci S and Giannelli GL: Down-regulation of connective tissue
growth factor by inhibition of transforming growth factor beta
blocks the tumor-stroma cross-talk and tumor progression in
hepatocellular carcinoma. Hepatology. 51:523–534. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kim IY, Ahn HJ, Zelner DJ, Shaw JW,
Sensibar JA, Kim JH, Kato M and Lee C: Genetic change in
transforming growth factor beta (TGF-beta) receptor type I gene
correlates with insensitivity to TGF-beta 1 in human prostate
cancer cells. Cancer Res. 56:44–48. 1996.PubMed/NCBI
|
|
102
|
Kim IY, Ahn HJ, Lang S, Oefelein MG, Oyasu
R, Kozlowski JM and Lee C: Loss of expression of transforming
growth factor-beta receptors is associated with poor prognosis in
prostate cancer patients. Clin Cancer Res. 4:1625–1630.
1998.PubMed/NCBI
|
|
103
|
Singh J, Ling LE, Sawyer JS, Lee WC, Zhang
F and Yingling JM: Transforming the TGFbeta pathway: Convergence of
distinct lead generation strategies on a novel kinase pharmacophore
for TbetaRI (ALK5). Curr Opin Drug Discov Devel. 7:437–445.
2004.PubMed/NCBI
|
|
104
|
Shinriki S, Jono H, Maeshiro M, Nakamura
T, Guo J, Li JD, Ueda M, Yoshida R, Shinohara M, Nakayama H, et al:
Loss of CYLD promotes cell invasion via ALK5 stabilization in oral
squamous cell carcinoma. J Pathol. 244:367–379. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zeddou M, Relic B, Malaise O, Charlier E,
Desoroux A, Beguin Y, de Seny D and Malaise MG: Differential
signalling through ALK-1 and ALK-5 regulates leptin expression in
mesenchymal stem cells. Stem Cells Dev. 21:1948–1955. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
de Kroon LM, Narcisi R, Blaney Davidson
EN, Cleary MA, van Beuningen HM, Koevoet WJ, van Osch GJ and van
der Kraan PM: Activin receptor-like kinase receptors ALK5 and ALK1
are both required for TGFβ-induced chondrogenic differentiation of
human bone marrow-derived mesenchymal stem cells. PLoS One.
10:e01461242015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Hatsell SJ, Idone V, Wolken DM, Huang L,
Kim HJ, Wang L, Wen X, Nannuru KC, Jimenez J, Xie L, et al:
ACVR1R206H receptor mutation causes fibrodysplasia ossificans
progressiva by imparting responsiveness to activin A. Sci Transl
Med. 7:303ra1372015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lin H, Ying Y, Wang YY, Jiang SS, Huang D,
Luo L, Chen YG, Gerstenfeld LC and Luo Z: AMPK downregulates ALK2
via increasing the interaction between Smurf1 and Smad6, leading to
inhibition of osteogenic differentiation. Biochim Biophys Acta Mol
Cell Res. 1864:2369–2377. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove
S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A and Ding S: A
chemical platform for improved induction of human iPSCs. Nature
Methods. 6:805–808. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Laping NJ, Grygielko E, Mathur A, Butter
S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J,
et al: Inhibition of transforming growth factor (TGF)-beta1-induced
extracellular matrix with a novel inhibitor of the TGF-beta type I
receptor kinase activity: SB-431542. Mol Pharmacol. 62:58–64. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Inman GJ, Nicolás FJ, Callahan JF, Harling
JD, Gaster LM, Reith AD, Laping NJ and Hill CS: SB-431542 is a
potent and specific inhibitor of transforming growth factor-beta
superfamily type I activin receptor-like kinase (ALK) receptors
ALK4, ALK5, and ALK7. Mol Pharmacol. 62:65–74. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Tojo M, Hamashima Y, Hanyu A, Kajimoto T,
Saitoh M, Miyazono K, Node M and Imamura T: The ALK-5 inhibitor
A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal
transition by transforming growth factor-beta. Cancer Sci.
96:791–800. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T,
Hao E, Hayek A, Deng H and Ding S: Generation of rat and human
induced pluripotent stem cells by combining genetic reprogramming
and chemical inhibitors. Cell Stem Cell. 4:16–19. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Klincumhom N, Tharasanit T,
Thongkittidilok C, Tiptanavattana N, Rungarunlert S, Dinnyés A and
Techakumphu M: Selective TGF-β1/ALK inhibitor improves neuronal
differentiation of mouse embryonic stem cells. Neurosci Lett.
578:1–6. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Halder SK, Beauchamp RD and Datta PK: A
specific inhibitor of TGF-beta receptor kinase, SB-431542, as a
potent antitumor agent for human cancers. Neoplasia. 7:509–521.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Matsuyama S, Iwadate M, Kondo M, Saitoh M,
Hanyu A, Shimizu K, Aburatani H, Mishima HK, Imamura T, Miyazono K
and Miyazawa K: SB-431542 and Gleevec inhibit transforming growth
factor-beta-induced proliferation of human osteosarcoma cells.
Cancer Res. 63:7791–7798. 2003.PubMed/NCBI
|
|
117
|
Sato M, Matsubara T, Adachi J, Hashimoto
Y, Fukamizu K, Kishida M, Yang YA, Wakefield LM and Tomonaga T:
Differential proteome analysis identifies TGF-β-related
pro-metastatic proteins in a 4T1 murine breast cancer model. PLoS
One. 10:e01264832015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kim BH, Guardia Clausi M, Frondelli M,
Nnah IC, Saqcena C, Dobrowolski R and Levison SW: Age-dependent
effects of ALK5 inhibition and mechanism of neuroprotection in
neonatal hypoxic-ischemic brain injury. Dev Neurosci. 39:338–351.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wang XB, Zhu H, Song W and Su JH: Gremlin
regulates podocyte apoptosis via transforming growth factor-β
(TGF-β) pathway in diabetic nephropathy. Med Sci Monit. 24:183–189.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Grygielko ET, Martin WM, Tweed C, Thornton
P, Harling J, Brooks DP and Laping NJ: Inhibition of gene markers
of fibrosis with a novel inhibitor of transforming growth
factor-beta type I receptor kinase in puromycin-induced nephritis.
J Pharmacol Exp Ther. 313:943–951. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Xu H, Yang F, Sun Y, Yuan Y, Cheng H, Wei
Z, Li S, Cheng T, Brann D and Wang R: A new antifibrotic target of
Ac-SDKP: Inhibition of myofibroblast differentiation in rat lung
with silicosis. PLoS One. 7:e403012012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gauger KJ, Chenausky KL, Murray ME and
Schneider SS: SFRP1 reduction results in an increased sensitivity
to TGF-β signaling. BMC Cancer. 11:592011. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kimura-Kuroda J, Teng X, Komuta Y,
Yoshioka N, Sango K, Kawamura K, Raisman G and Kawano H: An in
vitro model of the inhibition of axon growth in the lesion scar
formed after central nervous system injury. Mol Cell Neurosci.
43:177–187. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Giannelli G, Villa E and Lahn M:
Transforming growth factor-β as a therapeutic target in
hepatocellular carcinoma. Cancer Res. 74:1890–1894. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Bueno L, de Alwis DP, Pitou C, Yingling J,
Lahn M, Glatt S and Trocóniz IF: Semi-mechanistic modelling of the
tumour growth inhibitory effects of LY2157299, a new type I
receptor TGF-beta kinase antagonist, in mice. Eur J Cancer.
44:142–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
de Gouville AC, Boullay V, Krysa G, Pilot
J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A,
Gellibert F and Huet S: Inhibition of TGF-beta signaling by an ALK5
inhibitor protects rats from dimethylnitrosamine-induced liver
fibrosis. Br J Pharmacol. 145:166–177. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Leung SY, Niimi A, Noble A, Oates T,
Williams AS, Medicherla S, Protter AA and Chung KF: Effect of
transforming growth factor-beta receptor I kinase inhibitor
2,4-disubstituted pteridine (SD-208) in chronic allergic airway
inflammation and remodeling. J Pharmacol Exp Ther. 319:586–594.
2006. View Article : Google Scholar : PubMed/NCBI
|