Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2019 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2019 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data

  • Authors:
    • Yan Hou
    • Yaoqin Wang
    • Suming Xu
    • Gaimei Qi
    • Xueqing Wu
  • View Affiliations / Copyright

    Affiliations: The Second Hospital of Shanxi Medical University Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China, Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, P.R. China
    Copyright: © Hou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 281-291
    |
    Published online on: May 16, 2019
       https://doi.org/10.3892/mmr.2019.10253
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Polycystic ovary syndrome (PCOS) is the most common endocrine disease in women of reproductive age. MicroRNAs (miRNAs or miRs) serve important roles in the physiological and pathological process of PCOS. To identify PCOS‑associated miRNAs, the dataset GSE84376 was extracted from the Gene Expression Omnibus database. Differentially expressed miRNAs (DE‑miRNAs) were obtained from Gene‑Cloud Biotechnology Information and potential target genes were predicted using TargetScan, DIANA‑microT‑CDS, miRDB and miRTarBase tools. Gene Ontology enrichment analysis was performed using Metascape and a protein‑protein interaction network was constructed using Cytoscape. Transcription factors were obtained from FunRich. DE‑miRNAs were verified by reverse transcription‑quantitative PCR. At the screening phase, there were seven DE‑miRNAs in the PCOS group not present in the control group. In total, 935 target genes were identified, which are involved in the development and maturation of oocytes. Mitogen‑activated protein kinase 1, phosphatase and tensin homolog, cAMP responsive element binding protein 1, signal transducer and activator of transcription 3, interferon γ, Fms‑related tyrosine kinase 1, transcription factor p65, insulin receptor substrate 1, DnaJ homolog superfamily C member 10 and casein kinase 2 α 1 were identified as the top 10 hub genes in the protein‑protein interaction network. Specificity protein 1 was the most enriched transcription factor. At the validation phase, the levels of Homo sapiens (hsa)‑miR‑3188 and hsa‑miR‑3135b were significantly higher in the PCOS group than in the control group. In addition, the expression level of hsa‑miR‑3135b was significantly correlated with the number of oocytes retrieved, the fertilization rate and the cleavage rate (P<0.05). The present bioinformatics study on miRNAs may offer a novel understanding of the mechanism of PCOS, and may serve to identify novel miRNA therapeutic targets.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Franks S: Polycystic ovary syndrome. N Engl J Med. 333:853–861. 1995. View Article : Google Scholar : PubMed/NCBI

2 

Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L and Azziz R: Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 106:6–15. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Zhao Y and Qiao J: Ethnic differences in the phenotypic expression of polycystic ovary syndrome. Steroids. 78:755–760. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Dumesic DA, Padmanabhan V and Abbott DH: Polycystic ovary syndrome and oocyte developmental competence. Obstet Gynecol Surv. 63:39–48. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Nelson LR and Bulun SE: Estrogen production and action. J Am Acad Dermatol 45 (3 Suppl). S116–S124. 2001. View Article : Google Scholar

6 

Artimani T, Saidijam M, Aflatoonian R, Amiri I, Ashrafi M, Shabab N, Mohammadpour N and Mehdizadeh M: Estrogen and progesterone receptor subtype expression in granulosa cells from women with polycystic ovary syndrome. Gynecol Endocrinol. 31:379–383. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Haouzi D, Assou S, Monzo C, Vincens C, Dechaud H and Hamamah S: Altered gene expression profile in cumulus cells of mature MII oocytes from patients with polycystic ovary syndrome. Hum Reprod. 27:3523–3530. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Jansen E, Laven JS, Dommerholt HB, Polman J, van Rijt C, van den Hurk C, Westland J, Mosselman S and Fauser BC: Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol. 18:3050–3063. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Manneras-Holm L, Benrick A and Stener-Victorin E: Gene expression in subcutaneous adipose tissue differs in women with polycystic ovary syndrome and controls matched pair-wise for age, body weight, and body mass index. Adipocyte. 3:190–196. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Sorensen AE, Wissing ML, Salö S, Englund AL and Dalgaard LT: MicroRNAs related to polycystic ovary syndrome (PCOS). Genes (Basel). 5:684–708. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Wood JR, Ho CK, Nelson-Degrave VL, McAllister JM and Strauss JF III: The molecular signature of polycystic ovary syndrome (PCOS) theca cells defined by gene expression profiling. J Reprod Immunol. 63:51–60. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Rossi JJ: New hope for a microRNA therapy for liver cancer. Cell. 137:990–992. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Kim YJ, Ku SY, Kim YY, Liu HC, Chi SW, Kim SH, Choi YM, Kim JG and Moon SY: MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles. Hum Reprod. 28:3050–3061. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Xu B, Zhang YW, Tong XH and Liu YS: Characterization of microRNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 404:26–36. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Imbar T and Eisenberg I: Regulatory role of microRNAs in ovarian function. Fertil Steril. 101:1524–1530. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, Li Q and Pan Z: Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep. 6:211972016. View Article : Google Scholar : PubMed/NCBI

18 

Zhou J, Liu J, Pan Z, Du X, Li X, Ma B, Yao W, Li Q and Liu H: The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-beta type 1 receptor. Mol Cell Endocrinol. 409:103–112. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Carletti MZ and Christenson LK: MicroRNA in the ovary and female reproductive tract. J Anim Sci 87 (14 Suppl). E29–E38. 2009. View Article : Google Scholar

20 

Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM, Chen BS, Chazenbalk G and Azziz R: miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 62:2278–2286. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Long W, Zhao C, Ji C, Ding H, Cui Y, Guo X, Shen R and Liu J: Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell Physiol Biochem. 33:1304–1315. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D and Katz-Jaffe MG: Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 31:355–362. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Murri M, Insenser M, Fernandez-Duran E, San-Millan JL and Escobar-Morreale HF: Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 expression. J Clin Endocrinol Metab. 98:E1835–E1844. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Shi L, Liu S, Zhao W and Shi J: miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online. 31:565–572. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Jiang L, Huang J, Li L, Chen Y, Chen X, Zhao X and Yang D: MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J Clin Endocrinol Metab. 100:E729–E738. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Zhu XL, Chen XF and Xu WL: miR-34a regulates apoptosis of human ovarian granulosa cells. J Jiangsu Univ (Med Ed). 26:470–474. 2016.(In Chinese).

27 

He X and Zhang J: Why do hubs tend to be essential in protein networks? PLoS Genet. 2:e882006. View Article : Google Scholar : PubMed/NCBI

28 

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C and Jensen LJ: STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41 (Database Issue). D808–D815. 2013.

29 

Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, et al: FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 15:2597–2601. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop Group, : Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 19:41–47. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, et al: Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J Clin Endocrinol Metab. 91:4237–4245. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Escobar-Morreale HF, Luque-Ramirez M and San Millan JL: The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev. 26:251–282. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Miska EA: How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 15:563–568. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Maalouf SW, Liu WS and Pate JL: MicroRNA in ovarian function. Cell Tissue Res. 363:7–18. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Xue Y, Lv J, Xu P, Gu L, Cao J, Xu L, Xue K and Li Q: Identification of microRNAs and genes associated with hyperandrogenism in the follicular fluid of women with polycystic ovary syndrome. J Cell Biochem. 119:3913–3921. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Jiang YC and Ma JX: The role of MiR-324-3p in polycystic ovary syndrome (PCOS) via targeting WNT2B. Eur Rev Med Pharmacol Sci. 22:3286–3293. 2018.PubMed/NCBI

38 

Murri M, Insenser M, Fernandez-Duran E, San-Millan JL, Luque-Ramirez M and Escobar-Morreale HF: Non-targeted profiling of circulating microRNAs in women with polycystic ovary syndrome (PCOS): Effects of obesity and sex hormones. Metabolism. 86:49–60. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Arancio W, Calogero Amato M, Magliozzo M, Pizzolanti G, Vesco R and Giordano C: Serum miRNAs in women affected by hyperandrogenic polycystic ovary syndrome: The potential role of miR-155 as a biomarker for monitoring the estroprogestinic treatment. Gynecol Endocrinol. 34:704–708. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Zhong Z, Li F, Li Y, Qin S, Wen C, Fu Y and Xiao Q: Inhibition of microRNA-19b promotes ovarian granulosa cell proliferation by targeting IGF-1 in polycystic ovary syndrome. Mol Med Rep. 17:4889–4898. 2018.PubMed/NCBI

41 

Wang M, Liu M, Sun J, Jia L, Ma S, Gao J, Xu Y, Zhang H, Tsang SY and Li X: MicroRNA-27a-3p affects estradiol and androgen imbalance by targeting Creb1 in the granulosa cells in mouse polycytic ovary syndrome model. Reprod Biol. 17:295–304. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Yao G, Yin M, Lian J, Tian H, Liu L, Li X and Sun F: MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 24:540–551. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Carletti MZ, Fiedler SD and Christenson LK: MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod. 83:286–295. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Yin M, Wang X, Yao G, Lü M, Liang M, Sun Y and Sun F: Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 289:18239–18257. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Fiedler SD, Carletti MZ, Hong X and Christenson LK: Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod. 79:1030–1037. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Zhou SJ, Deng YL, Liang HF, Jaoude JC and Liu FY: Hepatitis B virus X protein promotes CREB-mediated activation of miR-3188 and Notch signaling in hepatocellular carcinoma. Cell Death Differ. 24:1577–1587. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Chen X and Chen J: MiR-3188 regulates cell proliferation, apoptosis, and migration in breast cancer by targeting TUSC5 and regulating the p38 MAPK signaling pathway. Oncol Res. 26:363–372. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Zhao M, Luo R, Liu Y, Gao L, Fu Z, Fu Q, Luo X, Chen Y, Deng X, Liang Z, et al: miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN. Nat Commun. 7:113092016. View Article : Google Scholar : PubMed/NCBI

49 

Liu W, Ling S, Sun W, Liu T, Li Y, Zhong G, Zhao D, Zhang P, Song J, Jin X, et al: Circulating microRNAs correlated with the level of coronary artery calcification in symptomatic patients. Sci Rep. 5:160992015. View Article : Google Scholar : PubMed/NCBI

50 

Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, Bean AJ, Calin GA, Fueyo J, Walters ET, et al: Exosomes from Glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res. 77:5808–5819. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Sun P, Zhang D, Huang H, Yu Y, Yang Z, Niu Y and Liu J: MicroRNA-1225-5p acts as a tumor-suppressor in laryngeal cancer via targeting CDC14B. Biol Chem. 400:237–246. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Fomicheva KA, Osip'yants AI, Knyazev EN, Samatov TR and Shkurnikov MY: Detection of potential metastatic prostate cancer circulating biomarkers by comparison of miRNA profiles in DU145 cells and culture medium. Bull Exp Biol Med. 162:792–796. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Song L, Zhang W, Chang Z, Pan Y, Zong H, Fan Q and Wang L: miR-4417 targets tripartite motif-containing 35 (TRIM35) and regulates pyruvate kinase muscle 2 (PKM2) phosphorylation to promote proliferation and suppress apoptosis in hepatocellular carcinoma cells. Med Sci Monit. 23:1741–1750. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Schreiner D and Weiner JA: Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci USA. 107:14893–14898. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Yagi T and Takeichi M: Cadherin superfamily genes: Functions, genomic organization, and neurologic diversity. Genes Dev. 14:1169–1180. 2000.PubMed/NCBI

56 

Mah KM and Weiner JA: Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol. 69:158–171. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Inan MS, Al-Hassan S, Ozand P and Coskun S: Transcriptional profiling of granulosa cells from a patient with recurrent empty follicle syndrome. Reprod Biomed Online. 13:481–491. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Dickinson SE: Effect of pre-ovulatory follicle size on oocyte transcript abundance in beef cows. Master's Thesis University of Missouri-Columbia. 2016.

59 

Mitchell LM, Kennedy CR and Hartshorne GM: Expression of nitric oxide synthase and effect of substrate manipulation of the nitric oxide pathway in mouse ovarian follicles. Hum Reprod. 19:30–40. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Guo YX, Zhang GM, Yao XL, Tong R, Cheng CY, Zhang TT, Wang ST, Yang H and Wang F: Effects of nitric oxide on steroidogenesis and apoptosis in goat luteinized granulosa cells. Theriogenology. 126:55–62. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Liu Z, Liu C, Hao C, Xue Q, Huang X, Zhang N, Bao H and Qu Q: Aberrant expression of angiopoietin-like proteins 1 and 2 in cumulus cells is potentially associated with impaired oocyte developmental competence in polycystic ovary syndrome. Gynecol Endocrinol. 32:557–561. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Chen H, Guo JH, Lu YC, Ding GL, Yu MK, Tsang LL, Fok KL, Liu XM, Zhang XH, Chung YW, et al: Impaired CFTR-dependent amplification of FSH-stimulated estrogen production in cystic fibrosis and PCOS. J Clin Endocrinol Metab. 97:923–932. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Sun M, Sui Y, Li L, Su W, Hao F, Zhu Q, Di W, Gao H and Ma T: Anoctamin 1 calcium-activated chloride channel downregulates estrogen production in mouse ovarian granulosa cells. Endocrinology. 155:2787–2796. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Li D, You Y, Bi FF, Zhang TN, Jiao J, Wang TR, Zhou YM, Shen ZQ, Wang XX and Yang Q: Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction. 155:85–92. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Cui Y, Sun Y, Hu S, Luo J, Li L, Li X, Yeh S, Jin J and Chang C: Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals. Oncogene. 35:6065–6076. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Kupreeva M, Diane A, Lehner R, Watts R, Ghosh M, Proctor S and Vine D: Effect of metformin and flutamide on insulin, lipogenic and androgen-estrogen signaling and cardiometabolic risk in a PCOS-prone rodent model. Am J Physiol Endocrinol Metab. 316:E16–E33. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Liu N, Ding D, Hao W, Yang F, Wu X, Wang M, Xu X, Ju Z, Liu JP, Song Z, et al: hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res. 44:8693–8703. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Solomon SS, Majumdar G, Martinez-Hernandez A and Raghow R: A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones. Life Sci. 83:305–312. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Anjali G, Kaur S, Lakra R, Taneja J, Kalsey GS, Nagendra A, Shrivastav TG, Devi MG, Malhotra N, Kriplani A and Singh R: FSH stimulates IRS-2 expression in human granulosa cells through cAMP/SP1, an inoperative FSH action in PCOS patients. Cell Signal. 27:2452–2466. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hou Y, Wang Y, Xu S, Qi G and Wu X: Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data. Mol Med Rep 20: 281-291, 2019.
APA
Hou, Y., Wang, Y., Xu, S., Qi, G., & Wu, X. (2019). Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data. Molecular Medicine Reports, 20, 281-291. https://doi.org/10.3892/mmr.2019.10253
MLA
Hou, Y., Wang, Y., Xu, S., Qi, G., Wu, X."Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data". Molecular Medicine Reports 20.1 (2019): 281-291.
Chicago
Hou, Y., Wang, Y., Xu, S., Qi, G., Wu, X."Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data". Molecular Medicine Reports 20, no. 1 (2019): 281-291. https://doi.org/10.3892/mmr.2019.10253
Copy and paste a formatted citation
x
Spandidos Publications style
Hou Y, Wang Y, Xu S, Qi G and Wu X: Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data. Mol Med Rep 20: 281-291, 2019.
APA
Hou, Y., Wang, Y., Xu, S., Qi, G., & Wu, X. (2019). Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data. Molecular Medicine Reports, 20, 281-291. https://doi.org/10.3892/mmr.2019.10253
MLA
Hou, Y., Wang, Y., Xu, S., Qi, G., Wu, X."Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data". Molecular Medicine Reports 20.1 (2019): 281-291.
Chicago
Hou, Y., Wang, Y., Xu, S., Qi, G., Wu, X."Bioinformatics identification of microRNAs involved in polycystic ovary syndrome based on microarray data". Molecular Medicine Reports 20, no. 1 (2019): 281-291. https://doi.org/10.3892/mmr.2019.10253
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team