|
1
|
Wynn TA: Cellular and molecular mechanisms
of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pu KM, Sava P and Gonzalez AL:
Microvascular targets for anti-fibrotic therapeutics. Yale J Biol
Med. 86:537–554. 2013.PubMed/NCBI
|
|
3
|
Wynn TA: Common and unique mechanisms
regulate fibrosis in various fibroproliferative diseases. J Clin
Invest. 117:524–529. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sziksz E, Pap D, Lippai R, Béres NJ,
Fekete A, Szabó AJ and Vannay A: Fibrosis related inflammatory
mediators: Role of the IL-10 cytokine family. Mediators Inflamm.
2015:7646412015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Giacomelli R, Afeltra A, Alunno A, Baldini
C, Bartoloni-Bocci E, Berardicurti O, Carubbi F, Cauli A, Cervera
R, Ciccia F, et al: International consensus: What else can we do to
improve diagnosis and therapeutic strategies in patients affected
by autoimmune rheumatic diseases (rheumatoid arthritis,
spondyloarthritides, systemic sclerosis, systemic lupus
erythematosus, antiphospholipid syndrome and Sjogren's syndrome)?
The unmet needs and the clinical grey zone in autoimmune disease
management. Autoimmun Rev. 16:911–924. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cox TR and Erler JT: Remodeling and
homeostasis of the extracellular matrix: Implications for fibrotic
diseases and cance. Dis Models Mech. 4:165–178. 2011. View Article : Google Scholar
|
|
7
|
Gabbiani G: The myofibroblast in wound
healing and fibrocontractive diseases. J Pathol. 200:500–503. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hinz B, Phan SH, Thannickal VJ, Galli A,
Bochaton-Piallat ML and Gabbiani G: The myofibroblast: One
function, multiple origins. Am J Pathol. 170:1807–1816. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cipriani P, Marrelli A, Liakouli V, Di
Benedetto P and Giacomelli R: Cellular players in angiogenesis
during the course of systemic sclerosis. Autoimmun Rev. 10:641–646.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Desmouliere A, Darby IA and Gabbiani G:
Normal and pathologic soft tissue remodeling: Role of the
myofibroblast, with special emphasis on liver and kidney fibrosis.
Lab Invest. 83:1689–1707. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Virag JI and Murry CE: Myofibroblast and
endothelial cell proliferation during murine myocardial infarct
repair. Am J Pathol. 163:2433–2440. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Phan SH: The myofibroblast in pulmonary
fibrosis. Chest. 122:286S–289S. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cipriani P, Di Benedetto P, Ruscitti P,
Capece D, Zazzeroni F, Liakouli V, Pantano I, Berardicurti O,
Carubbi F, Pecetti G, et al: The Endothelial-mesenchymal transition
in systemic sclerosis is induced by endothelin-1 and transforming
growth factor-β and May Be blocked by macitentan, a dual
endothelin-1 receptor antagonist. J Rheumatol. 42:1808–1816. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liakouli V, Cipriani P, Di Benedetto P,
Ruscitti P, Carubbi F, Berardicurti O, Panzera N and Giacomelli R:
The role of extracellular matrix components in angiogenesis and
fibrosis: Possible implication for systemic sclerosis. Mod
Rheumatol. 15:1–11. 2018.
|
|
15
|
Sacchetti C, Bai Y, Stanford SM, Di
Benedetto P, Cipriani P, Santelli E, Piera-Velazquez S, Chernitskiy
V, Kiosses WB, Ceponis A, et al: PTP4A1 promotes TGFβ signaling and
fibrosis in systemic sclerosis. Nat Commun. 8:10602017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Abe R, Donnelly SC, Peng T, Bucala R and
Metz CN: Peripheral blood fibrocytes: differentiation pathway and
migration to wound sites. J Immunol. 166:7556–7562. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Leaf IA and Duffield JS: What can target
kidney fibrosis? Nephrol Dial Transplant. 32 (Suppl 1):i89–i97.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Magro CM, Ross P, Marsh CB, Allen JN, Liff
D, Knight DA, Waldman WJ and Cowden DJ: The role of
anti-endothelial cell antibody-mediated microvascular injury in the
evolution of pulmonary fibrosis in the setting of collagen vascular
disease. Am J Clin Pathol. 127:237–247. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ruart M, Chavarria L, Campreciós G,
Suárez-Herrera N, Montironi C, Guixé-Muntet S, Bosch J, Friedman
SL, Garcia-Pagán JC and Hernández-Gea V: Impaired endothelial
autophagy promotes liver fibrosis by aggravating the oxidative
stress response during acute liver injury. J Hepatol. 70:458–469.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lax S, Hardie D, Wilson A, Douglas M,
Anderson G, Huso D, Isacke CM and Buckley CD: The pericyte and
stromal marker CD248 (endosialin) is required for efficient lymph
node expansion. Eur J Immunol. 40:1884–1889. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bagley RG, Honma N, Weber W, Boutin P,
Rouleau C, Shankara S, Kataoka S, Ishida I, Roberts BL and Teicher
BA: Endosialin/TEM1/CD248 is a pericyte marker of embryonic and
tumour neovascularisation. Microvasc Res. 76:180–188. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kontsekova S, Polcicova K, Takacova M and
Pastorekova S: Endosialin: Molecular and functional links to tumour
angiogenesis. Neoplasma. 63:183–192. 2016.PubMed/NCBI
|
|
23
|
Nanda A, Karim B, Peng Z, Liu G, Qiu W,
Gan C, Vogelstein B, St Croix B, Kinzler KW and Huso DL: Tumor
endothelial marker 1 (TEM1) functions in the growth and progression
of abdominal tumours. Proc Natl Acad Sci USA. 103:3351–3356. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Viski C, König C, Kijewska M, Mogler C,
Isacke CM and Augustin HG: Endosialin-expressing pericytes promote
metastatic dissemination. Cancer Res. 76:5313–5325. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Di Benedetto P, Liakouli V, Ruscitti P,
Berardicurti O, Carubbi F, Panzera N, Di Bartolomeo S, Guggino G,
Ciccia F, Triolo G, et al: Blocking CD248 molecules in perivascular
stromal cells of patients with systemic sclerosis strongly inhibits
their differentiation toward myofibroblasts and proliferation: A
new potential target for antifibrotic therapy. Arthritis Res Ther.
20:2232018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tomkowicz B, Rybinski K, Nicolaides NC,
Grasso L and Zhou Y: Endosialin/TEM-1/CD248 regulates pericyte
proliferation through PDGF receptor signaling. Cancer Biol Ther.
9:908–915. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rybinski K, Imtiyaz HZ, Mittica B,
Drozdowski B, Fulmer J, Furuuchi K, Fernando S, Henry M, Chao Q,
Kline B, et al: Targeting endosialin/CD248 through
antibody-mediated internalization results in impaired pericyte
maturation and dysfunctional tumour microvasculature. Oncotarget.
22:25429–25440. 2015.
|
|
28
|
Suresh Babu S, Valdez Y, Xu A, O'Byrne AM,
Calvo F, Lei V and Conway EM: TGFβ-mediated suppression of CD248 in
non-cancer cells via canonical Smad-dependent signaling pathways is
uncoupled in cancer cells. BMC Cancer. 14:1132014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bartis D, Crowley LE, D'Souza VK,
Borthwick L, Fisher AJ, Croft AP, Pongrácz JE, Thompson R, Langman
G, Buckley CD and Thickett DR: Role of CD248 as a potential
severity marker in idiopathic pulmonary fibrosis. BMC Pulm Med.
16:512016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mogler C, Wieland M, König C, Hu J, Runge
A, Korn C, Besemfelder E, Breitkopf-Heinlein K, Komljenovic D,
Dooley S, et al: Hepatic stellate cell-expressed endosialin
balances fibrogenesis and hepatocyte proliferation during liver
damage. EMBO Mol Med. 7:332–338. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mogler C, König C, Wieland M, Runge A,
Besemfelder E, Komljenovic D, Longerich T, Schirmacher P and
Augustin HG: Hepatic stellate cells limit hepatocellular carcinoma
progression through the orphan receptor endosialin. EMBO Mol Med.
9:741–749. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Smith SW, Croft AP, Morris HL, Naylor AJ,
Huso DL, Isacke CM, Savage CO and Buckley CD: Genetic deletion of
the stromal cell marker CD248 (Endosialin) protects against the
development of renal fibrosis. Nephron. 131:265–277. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wilhelm A, Aldridge V, Haldar D, Naylor
AJ, Weston CJ, Hedegaard D, Garg A, Fear J, Reynolds GM, Croft AP,
et al: CD248/endosialin critically regulates hepatic stellate cell
proliferation during chronic liver injury via a PDGF-regulated
mechanism. Gut. 65:1175–1185. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Smith SW, Eardley KS, Croft AP, Nwosu J,
Howie AJ, Cockwell P, Isacke CM, Buckley CD and Savage CO: CD248+
stromal cells are associated with progressive chronic kidney
disease. Kidney Int. 80:199–207. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rettig WJ, Garin-Chesa P, Healey JH, Su
SL, Jaffe EA and Old LJ: Identification of endosialin, a cell
surface glycoprotein of vascular endothelial cells in human cancer.
Proc Natl Acad Sci USA. 89:10832–10836. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Brady J, Neal J, Sadakar N and Gasque P:
Human endosialin (tumor endothelial marker 1) is abundantly
expressed in highly malignant and invasive brain tumors. J
Neuropathol Exp Neurol. 63:1274–1283. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
St Croix B, Rago C, Velculescu V, Traverso
G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C,
Vogelstein B and Kinzler KW: Genes expressed in human tumor
endothelium. Science. 289:1197–1202. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
MacFadyen JR, Haworth O, Roberston D,
Hardie D, Webster MT, Morris HR, Panico M, Sutton-Smith M, Dell A,
van der Geer P, et al: Endosialin (TEM1, CD248) is a marker of
stromal fibroblasts and is not selectively expressed on tumour
endothelium. FEBS Lett. 579:2569–2575. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Naylor AJ, Azzam E, Smith S, Croft A,
Poyser C, Duffield JS, Huso DL, Gay S, Ospelt C, Cooper MS, et al:
The mesenchymal stem cell marker CD248 (Endosialin) is a negative
regulator of bone formation in mice. Arthritis Rheum. 64:3334–3343.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Christian S, Ahorn H, Koehler A,
Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ and Lenter
MC: Molecular cloning and characterization of endosialin, a C-type
lectin-like cell surface receptor of tumour endothelium. J Biol
Chem. 276:7408–7414. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Valdez Y, Maia M and Conway EM: CD248:
Reviewing its role in health and disease. Curr Drug Targets.
13:432–439. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Carson-Walter EB, Watkins DN, Nanda A,
Vogelstein B, Kinzler KW and St Croix B: Cell surface tumour
endothelial markers are conserved in mice and humans. Cancer Res.
61:6649–6655. 2001.PubMed/NCBI
|
|
43
|
Maia M, de Vriese A, Janssens T, Moons M,
van Landuyt K, Tavernier J, Lories RJ and Conway EM: CD248 and its
cytoplasmic domain: A therapeutic target for arthritis. Arthritis
Rheum. 62:3595–3606. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gardiol D: PDZ-containing proteins as
targets in human pathologies. FEBS J. 279:35292012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
O'Shannessy DJ, Smith MF, Somers EB,
Jackson SM, Albone E, Tomkowicz B, Cheng X, Park Y, Fernando D,
Milinichik A, et al: Novel antibody probes for the characterization
of endosialin/TEM-1. Oncotarget. 7:69420–69435. 2016.PubMed/NCBI
|
|
46
|
Khan KA, Naylor AJ, Khan A, Noy PJ,
Mambretti M, Lodhia P, Athwal J, Korzystka A, Buckley CD and
Willcox BE: Multimerin-2 is a ligand for group 14 family C-type
lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte
interface. Oncogene. 36:6097–7008. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Andreuzzi E, Colladel R, Pellicani R,
Tarticchio G, Cannizzaro R, Spessotto P, Bussolati B, Brossa A, De
Paoli P, Canzonieri V, et al: The angiostatic molecule Multimerin 2
is processed by MMP-9 to allow sprouting angiogenesis. Matrix Biol.
64:40–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Colladel R, Pellicani R, Andreuzzi E,
Paulitti A, Tarticchio G, Todaro F, Colombatti A and Mongiat M:
MULTIMERIN2 binds VEGF-A primarily via the carbohydrate chains
exerting an angiostatic function and impairing tumor growth.
Oncotarget. 7:2022–2037. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lorenzon E, Colladel R, Andreuzzi E,
Marastoni S, Todaro F, Schiappacassi M, Ligresti G, Colombatti A
and Mongiat M: MULTIMERIN2 impairs tumor angiogenesis and growth by
interfering with VEGF-A/VEGFR2 pathway. Oncogene. 31:3136–3147.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Galvagni F, Nardi F, Spiga O, Trezza A,
Tarticchio G, Pellicani R, Andreuzzi E, Caldi E, Toti P and Tosi
GM: Dissecting the CD93-Multimerin 2 interaction involved in cell
adhesion and migration of the activated endothelium. Matrix Biol.
64:112–127. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Opavsky R, Haviernik P, Jurkovicova D,
Garin MT, Copeland NG, Gilbert DJ, Jenkins NA, Bies J, Garfield S
and Pastorekova S: Molecular characterization of the mouse
Tem1/endosialin gene regulated by cell density in vitro and
expressed in normal tissues in vivo. Biol Chem. 276:38795–38807.
2001. View Article : Google Scholar
|
|
52
|
Rupp C, Dolznig H, Puri C, Sommergruber W,
Kerjaschki D, Rettig WJ and Garin-Chesa P: Mouse endosialin, a
C-type lectin-like cell surface receptor: Expression during
embryonic development and induction in experimental cancer
neoangiogenesis. Cancer Immun. 6:102006.PubMed/NCBI
|
|
53
|
MacFadyen J, Savage K, Wienke D and Isacke
CM: Endosialin is expressed on stromal fibroblasts and CNS
pericytes in mouse embryos and is downregulated during development.
Gene Expr Patterns. 7:363–369. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lax S, Hou TZ, Jenkinson E, Salmon M,
MacFadyen JR, Isacke CM, Anderson G, Cunningham AF and Buckley CD:
CD248/Endosialin is dynamically expressed on a subset of stromal
cells during lymphoid tissue development, splenic remodeling and
repair. FEBS Lett. 581:3550–3556. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Croft AP, Naylor AJ, Marshall JL, Hardie
DL, Zimmermann B, Turner J, Desanti G, Adams H, Yemm AI,
Müller-Ladner U, et al: Rheumatoid synovial fibroblasts
differentiate into distinct subsets in the presence of cytokines
and cartilage. Arthritis Res Ther. 18:2702016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rahimi RA and Leof EB: TGF-beta signaling:
A tale of two responses. J Cell Biochem. 102:593–608. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Schiemann WP: Targeted TGF-beta
chemotherapies: Friend or foe in treating human malignancies? Exp
Rev Anticancer Ther. 7:609–611. 2007. View Article : Google Scholar
|
|
58
|
Tian M and Schiemann WP: The TGF-beta
paradox in human cancer: An update. Future Oncol. 5:259–271. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Murray LA, Argentieri RL, Farrell FX,
Bracht M, Sheng H, Whitaker B, Beck H, Tsui P, Cochlin K, Evanoff
HL, et al: Hyper-responsiveness of IPF/UIP fibroblasts: Interplay
between TGFbeta1, IL-13 and CCL2. Int J Biochem Cell Biol.
40:2174–2182. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Langenkamp E, Zhang L, Lugano R, Huang H,
Elhassan TE, Georganaki M, Bazzar W, Lööf J, Trendelenburg G,
Essand M, et al: Elevated expression of the C-type lectin CD93 in
the glioblastoma vasculature regulates cytoskeletal rearrangements
that enhance vessel function and reduce host survival. Cancer Res.
75:4504–4516. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Simonavicius N, Ashenden M, van Weverwijk
A, Lax S, Huso DL, Buckley CD, Huijbers IJ, Yarwood H and Isacke
CM: Pericytes promote selective vessel regression to regulate
vascular patterning. Blood. 120:1516–1527. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Rouleau C, Curiel M, Weber W, Smale R,
Kurtzberg L, Mascarello J, Berger C, Wallar G, Bagley R, Honma N,
et al: Endosialin protein expression and therapeutic target
potential in human solid tumors: Sarcoma versus carcinoma. Clin
Cancer Res. 14:7223–7236. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Brett E, Zielins ER, Chin M, Januszyk M,
Blackshear CP, Findlay M, Momeni A, Gurtner GC, Longaker MT and Wan
DC: Isolation of CD248-expressing stromal vascular fraction for
targeted improvement of wound healing. Wound Repair Regen.
25:414–422. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Naylor AJ, McGettrick HM, Maynard WD, May
P, Barone F, Croft AP, Egginton S and Buckley CD: A differential
role for CD248 (Endosialin) in PDGF-mediated skeletal muscle
angiogenesis. PLoS One. 22:e1071462014. View Article : Google Scholar
|
|
65
|
Facciponte JG, Ugel S, De Sanctis F, Li C,
Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G and
Facciabene A: Tumor endothelial marker 1-specific DNA vaccination
targets tumor vasculature. J Clin Invest. 124:1497–1511. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tlsty TD and Hein PW: Know thy neighbor:
Stromal cells can contribute oncogenic signals. Curr Opin Genet
Dev. 11:54–59. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bissell MJ, Kenny PA and Radisky DC:
Microenvironmental regulators of tissue structure and function also
regulate tumor induction and progression: The role of extracellular
matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol.
70:343–356. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bhowmick NA, Neilson EG and Moses HL:
Stromal fibroblasts in cancer initiation and progression. Nature.
432:332–337. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yang F, Tuxhorn JA, Ressler SJ, McAlhany
SJ, Dang TD and Rowley DR: Stromal expression of connective tissue
growth factor promotes angiogenesis and prostate cancer
tumorigenesis. Cancer Res. 65:8887–8895. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kucerova L, Zmajkovic J, Toro L, Skolekova
S, Demkova L and Matuskova M: Tumor-driven molecular changes in
human mesenchymal stromal cells. Cancer Microenviron. 8:1–14. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nagy JA, Chang SH, Dvorak AM and Dvorak
HF: Why are tumour blood vessels abnormal and why is it important
to know? Br J Cancer. 100:865–869. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kiyohara E, Donovan N, Takeshima L, Huang
S, Wilmott JS, Scolyer RA, Jones P, Somers EB, O'Shannessy DJ and
Hoon DS: Endosialin expression in metastatic melanoma tumor
microenvironment vasculature: Potential therapeutic implications.
Cancer Microenviron. 8:111–118. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ohradanova A, Gradin K, Barathova M,
Zatovicova M, Holotnakova T, Kopacek J, Parkkila S, Poellinger L,
Pastorekova S and Pastorek J: Hypoxia upregulates expression of
human endosialin gene via hypoxia-inducible factor 2. Br J Cancer.
99:1348–1356. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jain RK: Molecular regulation of vessel
maturation. Nat Med. 9:685–693. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tian Y, Deng H, Han L, Hu S and Qi X:
Hypoxia-inducible factor may induce the development of liver
fibrosis in budd-chiari syndrome by regulating CD248/endosialin
Expression: A Hypothesis. J Transl Int Med. 6:66–69. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lin SL, Chang FC, Schrimpf C, Chen YT, Wu
CF, Wu VC, Chiang WC, Kuhnert F, Kuo CJ, Chen YM, et al: Targeting
endothelium-pericyte cross talk by inhibiting VEGF receptor
signaling attenuates kidney microvascular rarefaction and fibrosis.
Am J Pathol. 178:911–923. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zanivan S, Maione F, Hein MY,
Hernandez-Fernaud JR, Ostasiewicz P, Giraudo E and Mann M:
SILAC-based proteomics of human primary endothelial cell
morphogenesis unveils tumor angiogenic markers. Mol Cell
Proteomics. 12:3599–3611. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wynn TA: Fibrotic disease and the
T(H)1/T(H)2 paradigm. Nat Rev Immunol. 4:583–594. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Fraticelli P, Gabrielli B, Pomponio G,
Valentini G, Bosello S, Riboldi P, Gerosa M, Faggioli P, Giacomelli
R, Del Papa N, et al: Imatinib in Scleroderma Italian Study Group.
Low-dose oral imatinib in the treatment of systemic sclerosis
interstitial lung disease unresponsive to cyclophosphamide: A phase
II pilot study. Arthritis Res Ther. 16:R1442014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Rosenbloom J, Macarak E, Piera-Velazquez S
and Jimenez SA: Human fibrotic diseases: Current challenges in
fibrosis research. Methods Mol Biol. 1627:1–23. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Giacomelli R, Afeltra A, Alunno A,
Bartoloni-Bocci E, Berardicurti O, Bombardieri M, Bortoluzzi A,
Caporali R, Caso F, Cervera R, et al: Guidelines for biomarkers in
autoimmune rheumatic diseases-evidence based analysis. Autoimmun
Rev. 18:93–106. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Krieg T, Abraham D and Lafyatis R:
Fibrosis in connective tissue disease: The role of the
myofibroblast and fibroblast-epithelial cell interactions.
Arthritis Res Ther. 9 (Suppl 2):S42007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cipriani P, Di Benedetto P, Ruscitti P,
Liakouli V, Berardicurti O, Carubbi F, Ciccia F, Guggino G,
Zazzeroni F, Alesse E, et al: Perivascular cells in diffuse
cutaneous systemic sclerosis overexpress activated ADAM12 and are
involved in myofibroblast transdifferentiation and development of
fibrosis. J Rheumatol. 43:1340–1349. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cipriani P, Di Benedetto P, Ruscitti P,
Verzella D, Fischietti M, Zazzeroni F, Liakouli V, Carubbi F,
Berardicurti O, Alesse E and Giacomelli R: Macitentan inhibits the
transforming growth factor-β profibrotic action, blocking the
signaling mediated by the ETR/TβRI complex in systemic sclerosis
dermal fibroblasts. Arthritis Res Ther. 17:2472015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sato M, Suzuki S and Senoo H: Hepatic
stellate cells: Unique characteristics in cell biology and
phenotype. Cell Struct Funct. 28:105–112. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lin SL, Kisseleva T, Brenner DA and
Duffield JS: Pericytes and perivascular fibroblasts are the primary
source of collagen-producing cells in obstructive fibrosis of the
kidney. Am J Pathol. 173:1617–1627. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cipriani P, Di Benedetto P, Ruscitti P,
Campese AF, Liakouli V, Carubbi F, Pantano I, Berardicurt O,
Screpanti I and Giacomelli R: Impaired endothelium-mesenchymal stem
cells cross-talk in systemic sclerosis: A link between vascular and
fibrotic features. Arthritis Res Ther. 16:4422014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cipriani P, Marrelli A, Di Benedetto P,
Liakouli V, Carubbi F, Ruscitti P, Alvaro S, Pantano I, Campese AF,
Grazioli P, et al: Scleroderma mesenchymal stem cells display a
different phenotype from healthy controls; implications for
regenerative medicine. Angiogenesis. 16:595–607. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Dulauroy S, Di Carlo SE, Langa F, Eberl G
and Peduto L: Lineage tracing and genetic ablation of ADAM12(+)
perivascular cells identify a major source of profibrotic cells
during acute tissue injury. Nat Med. 18:1262–1270. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chang-Panesso M and Humphreys BD:
CD248/Endosialin: A novel pericyte target in renal fibrosis.
Nephron. 131:262–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL,
Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, et al: Platelet-derived
growth factor receptor signalling activates pericyte-myofibroblast
transition in obstructive and post-ischemic kidney fibrosis. Kidney
Int. 80:1170–1181. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cipriani P, Di Benedetto P, Dietrich H,
Ruscitti P, Liakouli V, Carubbi F, Pantano I, Berardicurti O, Sgonc
R and Giacomelli R: Searching for a good model for systemic
sclerosis: The molecular profile and vascular changes occurring in
UCD-200 chickens strongly resemble the early phase of human
systemic sclerosis. Arch Med Sci. 12:828–843. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Boor P, Ostendorf T and Floege J: PDGF and
the progression of renal disease. Nephrol Dial Transplant. 29
(Suppl 1):i45–i54. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hinz B, Phan SH, Thannickal VJ, Prunotto
M, Desmoulière A, Varga J, De Wever O, Mareel M and Gabbiani G:
Recent developments in myofibroblast biology: Paradigms for
connective tissue remodeling. Am J Pathol. 180:1340–1355. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
De Wever O, Demetter P, Mareel M and
Bracke M: Stromal myofibroblasts are drivers of invasive cancer
growth. Int J Cancer. 123:2229–2238. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Cirri P and Chiarugi P:
Cancer-associated-fibroblasts and tumour cells: A diabolic liaison
driving cancer progression. Cancer Metastasis Rev. 31:195–208.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kalluri R and Zeisberg M: Fibroblasts in
cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Thiery JP: Epithelial-mesenchymal
transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Cruz-Solbes AS and Youker K: Epithelial to
mesenchymal transition (EMT) and endothelial to mesenchymal
transition (EndMT): Role and implications in kidney fibrosis.
Results Probl Cell Differ. 60:345–372. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Chapman HA: Epithelial-mesenchymal
interactions in pulmonary fibrosis. Annu Rev Physiol. 73:413–435.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Piera-Velazquez S, Li Z and Jimenez SA:
Role of endothelial-mesenchymal transition (EndoMT) in the
pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Coen M, Gabbiani G and Bochaton-Piallat
ML: Myofibroblast-mediated adventitial remodeling: An
underestimated player in arterial pathology. Arterioscler Thromb
Vasc Biol. 31:2391–2396. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lim H and Moon A: Inflammatory fibroblasts
in cancer. Arch Pharm Res. 39:1021–1031. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Orimo A, Gupta PB, Sgroi DC,
Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL
and Weinberg RA: Stromal fibroblasts present in invasive human
breast carcinomas promote tumor growth and angiogenesis through
elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Padua D, Zhang XH, Wang Q, Nadal C, Gerald
WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung
metastasis seeding through angiopoietin-like 4. Cell. 133:66–77.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier
C and Brown RA: Myofibroblasts and mechano-regulation of connective
tissue remodelling. Nat Rev Mol Cell Biol. 3:349–363. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Hinz B: The myofibroblast: Paradigm for a
mechanically active cell. J Biomech. 43:146–155. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Otranto M, Sarrazy V, Bonté F, Hinz B,
Gabbiani G and Desmoulière A: The role of the myofibroblast in
tumor stroma remodeling. Cell Adh Migr. 6:203–219. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liao Z, Tan ZW, Zhu P and Tan NS:
Cancer-associated fibroblasts in tumor microenvironment-Accomplices
in tumor malignancy. Cell Immunol. 2018.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ireland LV and Mielgo A: Macrophages and
fibroblasts, key players in cancer chemoresistance. Front Cell Dev
Biol. 6:1312018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Farmer P, Bonnefoi H, Anderle P, Cameron
D, Wirapati P, Becette V, André S, Piccart M, Campone M, Brain E,
et al: A stroma-related gene signature predicts resistance to
neoadjuvant chemotherapy in breast cancer. Nat Med. 15:68–74. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Pandol S, Edderkaoui M, Gukovsky I, Lugea
A and Gukovskaya A: Desmoplasia of pancreatic ductal
adenocarcinoma. Clin Gastroenterol Hepatol 7 (11 Suppl). S44–S47.
2009. View Article : Google Scholar
|
|
113
|
DuFort CC, Delgiorno KE and Hingorani SR:
Mounting pressure in the microenvironment: Fluids, solids, and
cells in pancreatic ductal adenocarcinoma. Gastroenterology.
150:1545–1557.e2. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Christian S, Winkler R, Helfrich I, Boos
AM, Besemfelder E, Schadendorf D and Augustin HG: Endosialin (Tem1)
is a marker of tumor-associated myofibroblasts and tumor
vessel-associated mural cells. Am J Pathol. 172:486–494. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Fujii S, Fujihara A, Natori K, Abe A,
Kuboki Y, Higuchi Y, Aizawa M, Kuwata T, Kinoshita T, Yasui W and
Ochiai A: TEM1 expression in cancer-associated fibroblasts is
correlated with a poor prognosis in patients with gastric cancer.
Cancer Med. 4:1667–1678. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Diaz LA Jr, Coughlin CM, Weil SC, Fishel
J, Gounder MM, Lawrence S, Azad N, O'Shannessy DJ, Grasso L,
Wustner J, et al: A first-in-human phase I study of MORAb-004, a
monoclonal antibody to endosialin in patients with advanced solid
tumors. Clin Cancer Res. 21:1281–1288. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Norris RE, Fox E, Reid JM, Ralya A, Liu
XW, Minard C and Weigel BJ: Phase 1 trial of ontuxizumab
(MORAb-004) in children with relapsed or refractory solid tumors: A
report from the Children's Oncology Group Phase 1 Pilot Consortium
(ADVL1213). Pediatr Blood Cancer. 65:e269442018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
D'Angelo SP, Hamid OA, Tarhini A,
Schadendorf D, Chmielowski B, Collichio FA, Pavlick AC, Lewis KD,
Weil SC, Heyburn J, et al: A phase 2 study of ontuxizumab, a
monoclonal antibody targeting endosialin, in metastatic melanoma.
Invest New Drugs. 36:103–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Grothey A, Strosberg JR, Renfro LA,
Hurwitz HI, Marshall JL, Safran H, Guarino MJ, Kim GP, Hecht JR,
Weil SC, et al: A randomized, double-blind, placebo-controlled
phase II study of the efficacy and safety of monotherapy
ontuxizumab (MORAb-004) plus best supportive care in patients with
chemorefractory metastatic colorectal cancer. Clin Cancer Res.
24:316–325. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Rouleau C, Gianolio DA, Smale R, Roth SD,
Krumbholz R, Harper J, Munroe KJ, Green TL, Horten BC, Schmid SM
and Teicher BA: Anti-endosialin antibody-drug conjugate: Potential
in sarcoma and other malignancies. Mol Cancer Ther. 14:2081–2089.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Lee S: What tumor vessels can tell us.
Pigment Cell Melanoma Res. 23:309–311. 2010. View Article : Google Scholar : PubMed/NCBI
|