Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2019 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2019 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review)

  • Authors:
    • Paola Di Benedetto
    • Piero Ruscitti
    • Vasiliki Liakouli
    • Francesco Del Galdo
    • Roberto Giacomelli
    • Paola Cipriani
  • View Affiliations / Copyright

    Affiliations: Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy, Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK
  • Pages: 1488-1498
    |
    Published online on: June 26, 2019
       https://doi.org/10.3892/mmr.2019.10429
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Fibrosis is characterized by excessive extracellular matrix (ECM) deposition, and is the pathological outcome of tissue injury in a number of disorders. Accumulation of the ECM may disrupt the structure and function of native tissues and organs, including the lungs, heart, liver and skin, resulting in significant morbidity and mortality. On this basis, multiple lines of evidence have focused on the molecular pathways and cellular mechanisms involved in fibrosis, which has led to the development of novel antifibrotic therapies. CD248 is one of several proteins identified to be localized to the stromal compartment in cancers and fibroproliferative disease, and may serve a key role in myofibroblast generation and accumulation. Numerous studies have supported the contribution of CD248 to tumour growth and fibrosis, stimulating interest in this molecule as a therapeutic target. In addition, it has been revealed that CD248 may be involved in pathological angiogenesis. The present review describes the current understanding of the structure and function of CD248 during angiogenesis and fibrosis, supporting the hypothesis that blocking CD248 signalling may prevent both myofibroblast generation and microvascular alterations during tissue fibrosis.
View Figures

Figure 1

Figure 2

View References

1 

Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Pu KM, Sava P and Gonzalez AL: Microvascular targets for anti-fibrotic therapeutics. Yale J Biol Med. 86:537–554. 2013.PubMed/NCBI

3 

Wynn TA: Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 117:524–529. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Sziksz E, Pap D, Lippai R, Béres NJ, Fekete A, Szabó AJ and Vannay A: Fibrosis related inflammatory mediators: Role of the IL-10 cytokine family. Mediators Inflamm. 2015:7646412015. View Article : Google Scholar : PubMed/NCBI

5 

Giacomelli R, Afeltra A, Alunno A, Baldini C, Bartoloni-Bocci E, Berardicurti O, Carubbi F, Cauli A, Cervera R, Ciccia F, et al: International consensus: What else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritides, systemic sclerosis, systemic lupus erythematosus, antiphospholipid syndrome and Sjogren's syndrome)? The unmet needs and the clinical grey zone in autoimmune disease management. Autoimmun Rev. 16:911–924. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Cox TR and Erler JT: Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cance. Dis Models Mech. 4:165–178. 2011. View Article : Google Scholar

7 

Gabbiani G: The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 200:500–503. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML and Gabbiani G: The myofibroblast: One function, multiple origins. Am J Pathol. 170:1807–1816. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Cipriani P, Marrelli A, Liakouli V, Di Benedetto P and Giacomelli R: Cellular players in angiogenesis during the course of systemic sclerosis. Autoimmun Rev. 10:641–646. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Desmouliere A, Darby IA and Gabbiani G: Normal and pathologic soft tissue remodeling: Role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest. 83:1689–1707. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Virag JI and Murry CE: Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 163:2433–2440. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Phan SH: The myofibroblast in pulmonary fibrosis. Chest. 122:286S–289S. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Cipriani P, Di Benedetto P, Ruscitti P, Capece D, Zazzeroni F, Liakouli V, Pantano I, Berardicurti O, Carubbi F, Pecetti G, et al: The Endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and May Be blocked by macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol. 42:1808–1816. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Liakouli V, Cipriani P, Di Benedetto P, Ruscitti P, Carubbi F, Berardicurti O, Panzera N and Giacomelli R: The role of extracellular matrix components in angiogenesis and fibrosis: Possible implication for systemic sclerosis. Mod Rheumatol. 15:1–11. 2018.

15 

Sacchetti C, Bai Y, Stanford SM, Di Benedetto P, Cipriani P, Santelli E, Piera-Velazquez S, Chernitskiy V, Kiosses WB, Ceponis A, et al: PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis. Nat Commun. 8:10602017. View Article : Google Scholar : PubMed/NCBI

16 

Abe R, Donnelly SC, Peng T, Bucala R and Metz CN: Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 166:7556–7562. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Leaf IA and Duffield JS: What can target kidney fibrosis? Nephrol Dial Transplant. 32 (Suppl 1):i89–i97. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Magro CM, Ross P, Marsh CB, Allen JN, Liff D, Knight DA, Waldman WJ and Cowden DJ: The role of anti-endothelial cell antibody-mediated microvascular injury in the evolution of pulmonary fibrosis in the setting of collagen vascular disease. Am J Clin Pathol. 127:237–247. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Ruart M, Chavarria L, Campreciós G, Suárez-Herrera N, Montironi C, Guixé-Muntet S, Bosch J, Friedman SL, Garcia-Pagán JC and Hernández-Gea V: Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol. 70:458–469. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Lax S, Hardie D, Wilson A, Douglas M, Anderson G, Huso D, Isacke CM and Buckley CD: The pericyte and stromal marker CD248 (endosialin) is required for efficient lymph node expansion. Eur J Immunol. 40:1884–1889. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Bagley RG, Honma N, Weber W, Boutin P, Rouleau C, Shankara S, Kataoka S, Ishida I, Roberts BL and Teicher BA: Endosialin/TEM1/CD248 is a pericyte marker of embryonic and tumour neovascularisation. Microvasc Res. 76:180–188. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Kontsekova S, Polcicova K, Takacova M and Pastorekova S: Endosialin: Molecular and functional links to tumour angiogenesis. Neoplasma. 63:183–192. 2016.PubMed/NCBI

23 

Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C, Vogelstein B, St Croix B, Kinzler KW and Huso DL: Tumor endothelial marker 1 (TEM1) functions in the growth and progression of abdominal tumours. Proc Natl Acad Sci USA. 103:3351–3356. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Viski C, König C, Kijewska M, Mogler C, Isacke CM and Augustin HG: Endosialin-expressing pericytes promote metastatic dissemination. Cancer Res. 76:5313–5325. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Di Benedetto P, Liakouli V, Ruscitti P, Berardicurti O, Carubbi F, Panzera N, Di Bartolomeo S, Guggino G, Ciccia F, Triolo G, et al: Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibroblasts and proliferation: A new potential target for antifibrotic therapy. Arthritis Res Ther. 20:2232018. View Article : Google Scholar : PubMed/NCBI

26 

Tomkowicz B, Rybinski K, Nicolaides NC, Grasso L and Zhou Y: Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling. Cancer Biol Ther. 9:908–915. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Rybinski K, Imtiyaz HZ, Mittica B, Drozdowski B, Fulmer J, Furuuchi K, Fernando S, Henry M, Chao Q, Kline B, et al: Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumour microvasculature. Oncotarget. 22:25429–25440. 2015.

28 

Suresh Babu S, Valdez Y, Xu A, O'Byrne AM, Calvo F, Lei V and Conway EM: TGFβ-mediated suppression of CD248 in non-cancer cells via canonical Smad-dependent signaling pathways is uncoupled in cancer cells. BMC Cancer. 14:1132014. View Article : Google Scholar : PubMed/NCBI

29 

Bartis D, Crowley LE, D'Souza VK, Borthwick L, Fisher AJ, Croft AP, Pongrácz JE, Thompson R, Langman G, Buckley CD and Thickett DR: Role of CD248 as a potential severity marker in idiopathic pulmonary fibrosis. BMC Pulm Med. 16:512016. View Article : Google Scholar : PubMed/NCBI

30 

Mogler C, Wieland M, König C, Hu J, Runge A, Korn C, Besemfelder E, Breitkopf-Heinlein K, Komljenovic D, Dooley S, et al: Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Mol Med. 7:332–338. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Mogler C, König C, Wieland M, Runge A, Besemfelder E, Komljenovic D, Longerich T, Schirmacher P and Augustin HG: Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin. EMBO Mol Med. 9:741–749. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Smith SW, Croft AP, Morris HL, Naylor AJ, Huso DL, Isacke CM, Savage CO and Buckley CD: Genetic deletion of the stromal cell marker CD248 (Endosialin) protects against the development of renal fibrosis. Nephron. 131:265–277. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Wilhelm A, Aldridge V, Haldar D, Naylor AJ, Weston CJ, Hedegaard D, Garg A, Fear J, Reynolds GM, Croft AP, et al: CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut. 65:1175–1185. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Smith SW, Eardley KS, Croft AP, Nwosu J, Howie AJ, Cockwell P, Isacke CM, Buckley CD and Savage CO: CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney Int. 80:199–207. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA and Old LJ: Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA. 89:10832–10836. 1992. View Article : Google Scholar : PubMed/NCBI

36 

Brady J, Neal J, Sadakar N and Gasque P: Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors. J Neuropathol Exp Neurol. 63:1274–1283. 2004. View Article : Google Scholar : PubMed/NCBI

37 

St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B and Kinzler KW: Genes expressed in human tumor endothelium. Science. 289:1197–1202. 2000. View Article : Google Scholar : PubMed/NCBI

38 

MacFadyen JR, Haworth O, Roberston D, Hardie D, Webster MT, Morris HR, Panico M, Sutton-Smith M, Dell A, van der Geer P, et al: Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett. 579:2569–2575. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Naylor AJ, Azzam E, Smith S, Croft A, Poyser C, Duffield JS, Huso DL, Gay S, Ospelt C, Cooper MS, et al: The mesenchymal stem cell marker CD248 (Endosialin) is a negative regulator of bone formation in mice. Arthritis Rheum. 64:3334–3343. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ and Lenter MC: Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumour endothelium. J Biol Chem. 276:7408–7414. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Valdez Y, Maia M and Conway EM: CD248: Reviewing its role in health and disease. Curr Drug Targets. 13:432–439. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW and St Croix B: Cell surface tumour endothelial markers are conserved in mice and humans. Cancer Res. 61:6649–6655. 2001.PubMed/NCBI

43 

Maia M, de Vriese A, Janssens T, Moons M, van Landuyt K, Tavernier J, Lories RJ and Conway EM: CD248 and its cytoplasmic domain: A therapeutic target for arthritis. Arthritis Rheum. 62:3595–3606. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Gardiol D: PDZ-containing proteins as targets in human pathologies. FEBS J. 279:35292012. View Article : Google Scholar : PubMed/NCBI

45 

O'Shannessy DJ, Smith MF, Somers EB, Jackson SM, Albone E, Tomkowicz B, Cheng X, Park Y, Fernando D, Milinichik A, et al: Novel antibody probes for the characterization of endosialin/TEM-1. Oncotarget. 7:69420–69435. 2016.PubMed/NCBI

46 

Khan KA, Naylor AJ, Khan A, Noy PJ, Mambretti M, Lodhia P, Athwal J, Korzystka A, Buckley CD and Willcox BE: Multimerin-2 is a ligand for group 14 family C-type lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte interface. Oncogene. 36:6097–7008. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Andreuzzi E, Colladel R, Pellicani R, Tarticchio G, Cannizzaro R, Spessotto P, Bussolati B, Brossa A, De Paoli P, Canzonieri V, et al: The angiostatic molecule Multimerin 2 is processed by MMP-9 to allow sprouting angiogenesis. Matrix Biol. 64:40–53. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Colladel R, Pellicani R, Andreuzzi E, Paulitti A, Tarticchio G, Todaro F, Colombatti A and Mongiat M: MULTIMERIN2 binds VEGF-A primarily via the carbohydrate chains exerting an angiostatic function and impairing tumor growth. Oncotarget. 7:2022–2037. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Lorenzon E, Colladel R, Andreuzzi E, Marastoni S, Todaro F, Schiappacassi M, Ligresti G, Colombatti A and Mongiat M: MULTIMERIN2 impairs tumor angiogenesis and growth by interfering with VEGF-A/VEGFR2 pathway. Oncogene. 31:3136–3147. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Galvagni F, Nardi F, Spiga O, Trezza A, Tarticchio G, Pellicani R, Andreuzzi E, Caldi E, Toti P and Tosi GM: Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol. 64:112–127. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Opavsky R, Haviernik P, Jurkovicova D, Garin MT, Copeland NG, Gilbert DJ, Jenkins NA, Bies J, Garfield S and Pastorekova S: Molecular characterization of the mouse Tem1/endosialin gene regulated by cell density in vitro and expressed in normal tissues in vivo. Biol Chem. 276:38795–38807. 2001. View Article : Google Scholar

52 

Rupp C, Dolznig H, Puri C, Sommergruber W, Kerjaschki D, Rettig WJ and Garin-Chesa P: Mouse endosialin, a C-type lectin-like cell surface receptor: Expression during embryonic development and induction in experimental cancer neoangiogenesis. Cancer Immun. 6:102006.PubMed/NCBI

53 

MacFadyen J, Savage K, Wienke D and Isacke CM: Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene Expr Patterns. 7:363–369. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Lax S, Hou TZ, Jenkinson E, Salmon M, MacFadyen JR, Isacke CM, Anderson G, Cunningham AF and Buckley CD: CD248/Endosialin is dynamically expressed on a subset of stromal cells during lymphoid tissue development, splenic remodeling and repair. FEBS Lett. 581:3550–3556. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Croft AP, Naylor AJ, Marshall JL, Hardie DL, Zimmermann B, Turner J, Desanti G, Adams H, Yemm AI, Müller-Ladner U, et al: Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage. Arthritis Res Ther. 18:2702016. View Article : Google Scholar : PubMed/NCBI

56 

Rahimi RA and Leof EB: TGF-beta signaling: A tale of two responses. J Cell Biochem. 102:593–608. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Schiemann WP: Targeted TGF-beta chemotherapies: Friend or foe in treating human malignancies? Exp Rev Anticancer Ther. 7:609–611. 2007. View Article : Google Scholar

58 

Tian M and Schiemann WP: The TGF-beta paradox in human cancer: An update. Future Oncol. 5:259–271. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Murray LA, Argentieri RL, Farrell FX, Bracht M, Sheng H, Whitaker B, Beck H, Tsui P, Cochlin K, Evanoff HL, et al: Hyper-responsiveness of IPF/UIP fibroblasts: Interplay between TGFbeta1, IL-13 and CCL2. Int J Biochem Cell Biol. 40:2174–2182. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Langenkamp E, Zhang L, Lugano R, Huang H, Elhassan TE, Georganaki M, Bazzar W, Lööf J, Trendelenburg G, Essand M, et al: Elevated expression of the C-type lectin CD93 in the glioblastoma vasculature regulates cytoskeletal rearrangements that enhance vessel function and reduce host survival. Cancer Res. 75:4504–4516. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Simonavicius N, Ashenden M, van Weverwijk A, Lax S, Huso DL, Buckley CD, Huijbers IJ, Yarwood H and Isacke CM: Pericytes promote selective vessel regression to regulate vascular patterning. Blood. 120:1516–1527. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Rouleau C, Curiel M, Weber W, Smale R, Kurtzberg L, Mascarello J, Berger C, Wallar G, Bagley R, Honma N, et al: Endosialin protein expression and therapeutic target potential in human solid tumors: Sarcoma versus carcinoma. Clin Cancer Res. 14:7223–7236. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Brett E, Zielins ER, Chin M, Januszyk M, Blackshear CP, Findlay M, Momeni A, Gurtner GC, Longaker MT and Wan DC: Isolation of CD248-expressing stromal vascular fraction for targeted improvement of wound healing. Wound Repair Regen. 25:414–422. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Naylor AJ, McGettrick HM, Maynard WD, May P, Barone F, Croft AP, Egginton S and Buckley CD: A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS One. 22:e1071462014. View Article : Google Scholar

65 

Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G and Facciabene A: Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest. 124:1497–1511. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Tlsty TD and Hein PW: Know thy neighbor: Stromal cells can contribute oncogenic signals. Curr Opin Genet Dev. 11:54–59. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Bissell MJ, Kenny PA and Radisky DC: Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: The role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol. 70:343–356. 2005. View Article : Google Scholar : PubMed/NCBI

68 

Bhowmick NA, Neilson EG and Moses HL: Stromal fibroblasts in cancer initiation and progression. Nature. 432:332–337. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD and Rowley DR: Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 65:8887–8895. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Kucerova L, Zmajkovic J, Toro L, Skolekova S, Demkova L and Matuskova M: Tumor-driven molecular changes in human mesenchymal stromal cells. Cancer Microenviron. 8:1–14. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Nagy JA, Chang SH, Dvorak AM and Dvorak HF: Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer. 100:865–869. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Kiyohara E, Donovan N, Takeshima L, Huang S, Wilmott JS, Scolyer RA, Jones P, Somers EB, O'Shannessy DJ and Hoon DS: Endosialin expression in metastatic melanoma tumor microenvironment vasculature: Potential therapeutic implications. Cancer Microenviron. 8:111–118. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Ohradanova A, Gradin K, Barathova M, Zatovicova M, Holotnakova T, Kopacek J, Parkkila S, Poellinger L, Pastorekova S and Pastorek J: Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2. Br J Cancer. 99:1348–1356. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Jain RK: Molecular regulation of vessel maturation. Nat Med. 9:685–693. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Tian Y, Deng H, Han L, Hu S and Qi X: Hypoxia-inducible factor may induce the development of liver fibrosis in budd-chiari syndrome by regulating CD248/endosialin Expression: A Hypothesis. J Transl Int Med. 6:66–69. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, Chiang WC, Kuhnert F, Kuo CJ, Chen YM, et al: Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol. 178:911–923. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Zanivan S, Maione F, Hein MY, Hernandez-Fernaud JR, Ostasiewicz P, Giraudo E and Mann M: SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics. 12:3599–3611. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Wynn TA: Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 4:583–594. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Fraticelli P, Gabrielli B, Pomponio G, Valentini G, Bosello S, Riboldi P, Gerosa M, Faggioli P, Giacomelli R, Del Papa N, et al: Imatinib in Scleroderma Italian Study Group. Low-dose oral imatinib in the treatment of systemic sclerosis interstitial lung disease unresponsive to cyclophosphamide: A phase II pilot study. Arthritis Res Ther. 16:R1442014. View Article : Google Scholar : PubMed/NCBI

80 

Rosenbloom J, Macarak E, Piera-Velazquez S and Jimenez SA: Human fibrotic diseases: Current challenges in fibrosis research. Methods Mol Biol. 1627:1–23. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Giacomelli R, Afeltra A, Alunno A, Bartoloni-Bocci E, Berardicurti O, Bombardieri M, Bortoluzzi A, Caporali R, Caso F, Cervera R, et al: Guidelines for biomarkers in autoimmune rheumatic diseases-evidence based analysis. Autoimmun Rev. 18:93–106. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Krieg T, Abraham D and Lafyatis R: Fibrosis in connective tissue disease: The role of the myofibroblast and fibroblast-epithelial cell interactions. Arthritis Res Ther. 9 (Suppl 2):S42007. View Article : Google Scholar : PubMed/NCBI

83 

Cipriani P, Di Benedetto P, Ruscitti P, Liakouli V, Berardicurti O, Carubbi F, Ciccia F, Guggino G, Zazzeroni F, Alesse E, et al: Perivascular cells in diffuse cutaneous systemic sclerosis overexpress activated ADAM12 and are involved in myofibroblast transdifferentiation and development of fibrosis. J Rheumatol. 43:1340–1349. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Cipriani P, Di Benedetto P, Ruscitti P, Verzella D, Fischietti M, Zazzeroni F, Liakouli V, Carubbi F, Berardicurti O, Alesse E and Giacomelli R: Macitentan inhibits the transforming growth factor-β profibrotic action, blocking the signaling mediated by the ETR/TβRI complex in systemic sclerosis dermal fibroblasts. Arthritis Res Ther. 17:2472015. View Article : Google Scholar : PubMed/NCBI

85 

Sato M, Suzuki S and Senoo H: Hepatic stellate cells: Unique characteristics in cell biology and phenotype. Cell Struct Funct. 28:105–112. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Lin SL, Kisseleva T, Brenner DA and Duffield JS: Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 173:1617–1627. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Cipriani P, Di Benedetto P, Ruscitti P, Campese AF, Liakouli V, Carubbi F, Pantano I, Berardicurt O, Screpanti I and Giacomelli R: Impaired endothelium-mesenchymal stem cells cross-talk in systemic sclerosis: A link between vascular and fibrotic features. Arthritis Res Ther. 16:4422014. View Article : Google Scholar : PubMed/NCBI

88 

Cipriani P, Marrelli A, Di Benedetto P, Liakouli V, Carubbi F, Ruscitti P, Alvaro S, Pantano I, Campese AF, Grazioli P, et al: Scleroderma mesenchymal stem cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis. 16:595–607. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Dulauroy S, Di Carlo SE, Langa F, Eberl G and Peduto L: Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 18:1262–1270. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Chang-Panesso M and Humphreys BD: CD248/Endosialin: A novel pericyte target in renal fibrosis. Nephron. 131:262–264. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL, Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, et al: Platelet-derived growth factor receptor signalling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80:1170–1181. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Cipriani P, Di Benedetto P, Dietrich H, Ruscitti P, Liakouli V, Carubbi F, Pantano I, Berardicurti O, Sgonc R and Giacomelli R: Searching for a good model for systemic sclerosis: The molecular profile and vascular changes occurring in UCD-200 chickens strongly resemble the early phase of human systemic sclerosis. Arch Med Sci. 12:828–843. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Boor P, Ostendorf T and Floege J: PDGF and the progression of renal disease. Nephrol Dial Transplant. 29 (Suppl 1):i45–i54. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M and Gabbiani G: Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. Am J Pathol. 180:1340–1355. 2012. View Article : Google Scholar : PubMed/NCBI

95 

De Wever O, Demetter P, Mareel M and Bracke M: Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 123:2229–2238. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Cirri P and Chiarugi P: Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 31:195–208. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Kalluri R and Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI

99 

Cruz-Solbes AS and Youker K: Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): Role and implications in kidney fibrosis. Results Probl Cell Differ. 60:345–372. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Chapman HA: Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol. 73:413–435. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Piera-Velazquez S, Li Z and Jimenez SA: Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Coen M, Gabbiani G and Bochaton-Piallat ML: Myofibroblast-mediated adventitial remodeling: An underestimated player in arterial pathology. Arterioscler Thromb Vasc Biol. 31:2391–2396. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Lim H and Moon A: Inflammatory fibroblasts in cancer. Arch Pharm Res. 39:1021–1031. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL and Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar : PubMed/NCBI

105 

Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C and Brown RA: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 3:349–363. 2002. View Article : Google Scholar : PubMed/NCBI

107 

Hinz B: The myofibroblast: Paradigm for a mechanically active cell. J Biomech. 43:146–155. 2010. View Article : Google Scholar : PubMed/NCBI

108 

Otranto M, Sarrazy V, Bonté F, Hinz B, Gabbiani G and Desmoulière A: The role of the myofibroblast in tumor stroma remodeling. Cell Adh Migr. 6:203–219. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Liao Z, Tan ZW, Zhu P and Tan NS: Cancer-associated fibroblasts in tumor microenvironment-Accomplices in tumor malignancy. Cell Immunol. 2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

110 

Ireland LV and Mielgo A: Macrophages and fibroblasts, key players in cancer chemoresistance. Front Cell Dev Biol. 6:1312018. View Article : Google Scholar : PubMed/NCBI

111 

Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, André S, Piccart M, Campone M, Brain E, et al: A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 15:68–74. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Pandol S, Edderkaoui M, Gukovsky I, Lugea A and Gukovskaya A: Desmoplasia of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 7 (11 Suppl). S44–S47. 2009. View Article : Google Scholar

113 

DuFort CC, Delgiorno KE and Hingorani SR: Mounting pressure in the microenvironment: Fluids, solids, and cells in pancreatic ductal adenocarcinoma. Gastroenterology. 150:1545–1557.e2. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Christian S, Winkler R, Helfrich I, Boos AM, Besemfelder E, Schadendorf D and Augustin HG: Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol. 172:486–494. 2008. View Article : Google Scholar : PubMed/NCBI

115 

Fujii S, Fujihara A, Natori K, Abe A, Kuboki Y, Higuchi Y, Aizawa M, Kuwata T, Kinoshita T, Yasui W and Ochiai A: TEM1 expression in cancer-associated fibroblasts is correlated with a poor prognosis in patients with gastric cancer. Cancer Med. 4:1667–1678. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Diaz LA Jr, Coughlin CM, Weil SC, Fishel J, Gounder MM, Lawrence S, Azad N, O'Shannessy DJ, Grasso L, Wustner J, et al: A first-in-human phase I study of MORAb-004, a monoclonal antibody to endosialin in patients with advanced solid tumors. Clin Cancer Res. 21:1281–1288. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Norris RE, Fox E, Reid JM, Ralya A, Liu XW, Minard C and Weigel BJ: Phase 1 trial of ontuxizumab (MORAb-004) in children with relapsed or refractory solid tumors: A report from the Children's Oncology Group Phase 1 Pilot Consortium (ADVL1213). Pediatr Blood Cancer. 65:e269442018. View Article : Google Scholar : PubMed/NCBI

118 

D'Angelo SP, Hamid OA, Tarhini A, Schadendorf D, Chmielowski B, Collichio FA, Pavlick AC, Lewis KD, Weil SC, Heyburn J, et al: A phase 2 study of ontuxizumab, a monoclonal antibody targeting endosialin, in metastatic melanoma. Invest New Drugs. 36:103–113. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Grothey A, Strosberg JR, Renfro LA, Hurwitz HI, Marshall JL, Safran H, Guarino MJ, Kim GP, Hecht JR, Weil SC, et al: A randomized, double-blind, placebo-controlled phase II study of the efficacy and safety of monotherapy ontuxizumab (MORAb-004) plus best supportive care in patients with chemorefractory metastatic colorectal cancer. Clin Cancer Res. 24:316–325. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Rouleau C, Gianolio DA, Smale R, Roth SD, Krumbholz R, Harper J, Munroe KJ, Green TL, Horten BC, Schmid SM and Teicher BA: Anti-endosialin antibody-drug conjugate: Potential in sarcoma and other malignancies. Mol Cancer Ther. 14:2081–2089. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Lee S: What tumor vessels can tell us. Pigment Cell Melanoma Res. 23:309–311. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Di Benedetto P, Ruscitti P, Liakouli V, Del Galdo F, Giacomelli R and Cipriani P: Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review). Mol Med Rep 20: 1488-1498, 2019.
APA
Di Benedetto, P., Ruscitti, P., Liakouli, V., Del Galdo, F., Giacomelli, R., & Cipriani, P. (2019). Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review). Molecular Medicine Reports, 20, 1488-1498. https://doi.org/10.3892/mmr.2019.10429
MLA
Di Benedetto, P., Ruscitti, P., Liakouli, V., Del Galdo, F., Giacomelli, R., Cipriani, P."Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review)". Molecular Medicine Reports 20.2 (2019): 1488-1498.
Chicago
Di Benedetto, P., Ruscitti, P., Liakouli, V., Del Galdo, F., Giacomelli, R., Cipriani, P."Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review)". Molecular Medicine Reports 20, no. 2 (2019): 1488-1498. https://doi.org/10.3892/mmr.2019.10429
Copy and paste a formatted citation
x
Spandidos Publications style
Di Benedetto P, Ruscitti P, Liakouli V, Del Galdo F, Giacomelli R and Cipriani P: Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review). Mol Med Rep 20: 1488-1498, 2019.
APA
Di Benedetto, P., Ruscitti, P., Liakouli, V., Del Galdo, F., Giacomelli, R., & Cipriani, P. (2019). Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review). Molecular Medicine Reports, 20, 1488-1498. https://doi.org/10.3892/mmr.2019.10429
MLA
Di Benedetto, P., Ruscitti, P., Liakouli, V., Del Galdo, F., Giacomelli, R., Cipriani, P."Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review)". Molecular Medicine Reports 20.2 (2019): 1488-1498.
Chicago
Di Benedetto, P., Ruscitti, P., Liakouli, V., Del Galdo, F., Giacomelli, R., Cipriani, P."Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review)". Molecular Medicine Reports 20, no. 2 (2019): 1488-1498. https://doi.org/10.3892/mmr.2019.10429
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team