Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2019 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2019 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress

  • Authors:
    • Yao Wang
    • Qian Chen
    • Chunxia Shi
    • Fangzhou Jiao
    • Zuojiong Gong
  • View Affiliations / Copyright

    Affiliations: Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4081-4090
    |
    Published online on: September 10, 2019
       https://doi.org/10.3892/mmr.2019.10660
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present study aimed to investigate the anti‑ferroptosis effects of the HMGB1 inhibitor glycyrrhizin (GLY). The present study used a cell and animal model of acute liver failure (ALF), induced using tumor necrosis factor‑α, lipopolysaccharide and D‑galactosamine, to investigate the effects of GLY. The expression of glutathione peroxidase 4 (GPX4) and high mobility group protein B1 (HMGB1), heme oxygenase‑1 (HO‑1) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were detected were detected by western blotting in L02 hepatocytes and mouse liver. The expression of GPX4 and HMGB1 in L02 hepatocytes and mouse liver was detected by immunofluorescence. The pathological changes to liver tissues were determined by hematoxylin and eosin staining. The levels of lactate dehydrogenase (LDH), Fe2+, reactive oxygen species (ROS) and glutathione (GSH) were tested using kits. Compared with the normal group, the degree of liver damage and liver function in the model animal group was severe. The protein levels of HMGB1 in L02 cells and liver tissues were significantly increased. The expression of NRF2, HO‑1 and GPX4 was significantly decreased. The levels of LDH, Fe2+, malondialdehyde (MDA) and ROS were increased, whereas the level of GSH was decreased. Treatment with GLY reduced the degree of liver damage, the expression of HMGB1 was decreased, and the levels of Nrf2, HO‑1 and GPX4 were increased. The levels of LDH, Fe2+, MDA, ROS were decreased, while the level of GSH was increased by GLY treatment. The results of the present study indicated that HMGB1 is involved in the process of ferroptosis. The HMGB1 inhibitor GLY significantly reduced the degree of ferroptosis during ALF by inhibiting oxidative stress.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bernal W, Auzinger G, Dhawan A and Wendon J: Acute liver failure. Lancet. 376:190–201. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Liu Y, Wang Y, Chen Q, Jiao F, Wang L and Gong Z: HDAC2 inhibitor CAY10683 reduces intestinal epithelial cell apoptosis by inhibiting mitochondrial apoptosis pathway in acute liver failure. Histol Histopathol. 29:181202019.

3 

Wang Y, Chen H, Chen Q, Jiao FZ, Zhang WB and Gong ZJ: The protective mechanism of CAY10683 on intestinal mucosal barrier in acute liver failure through LPS/TLR4/MyD88 pathway. Mediators Inflamm. 13:78596012018.

4 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Wei L, Ren F, Zhang X, Wen T, Shi H, Zheng S, Zhang J, Chen Y, Han Y and Duan Z: Oxidative stress promotes D-GalN/LPS-induced acute hepatotoxicity by increasing glycogen synthase kinase 3β activity. Inflamm Res. 63:485–494. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Mishra D, Jain N, Rajoriya V and Jain AK: Glycyrrhizin conjugated chitosan nanoparticles for hepatocyte-targeted delivery of lamivudine. J Pharm Pharmacol. 66:1082–1093. 2014.PubMed/NCBI

7 

Nazari S, Rameshrad M and Hosseinzadeh H: Toxicological effects of glycyrrhiza glabra (Licorice): A review. Phytother Res. 31:1635–1650. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Michaelis M, Geiler J, Naczk P, Sithisarn P, Leutz A, Doerr HW and Cinatl J Jr: Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus-infected cells and inhibits virus replication and pro-inflammatory gene expression. PLoS One. 6:e197052011. View Article : Google Scholar : PubMed/NCBI

9 

Ojha S, Javed H, Azimullah S, Abul Khair SB and Haque ME: Glycyrrhizic acid attenuates neuroinflammation and oxidative stress in rotenone model of parkinson's disease. Neurotox Res. 29:275–287. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Wang XR, Hao HG and Chu L: Glycyrrhizin inhibits LPS-induced inflammatory mediator production in endometrial epithelial cells. Microb Pathog. 109:110–113. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Zhou Y, Tong X, Ren S, Wang X, Chen J, Mu Y, Sun M, Chen G, Zhang H and Liu P: Synergistic anti-liver fibrosis actions of total astragalus saponins and glycyrrhizic acid via TGF-β1/Smads signaling pathway modulation. J Ethnopharmacol. 190:83–90. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Lin CC and Wang PH: Intravenous glycyrrhizin improved serum transaminases rapidly in a chronic hepatitis B patient with acute exacerbation. J Formosan Med Assoc. 114:188–189. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Kong ZH, Chen X, Hua HP, Liang L and Liu LJ: The oral pretreatment of glycyrrhizin prevents surgery-induced cognitive impairment in aged mice by reducing neuroinflammation and alzheimer's-related pathology via HMGB1 inhibition. J Mol Neurosci. 63:385–395. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V and Van Breusegem F: ROS signaling: The new wave? Trends Plant Sci. 16:300–309. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, Giordano G, Cucci MA, Graf M and Gentile F: Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants (Basel). 30:82018.

17 

Levine WG: Glutathione and hepatic mixed-function oxidase activity. Drug Metab Rev. 14:909–930. 1983. View Article : Google Scholar : PubMed/NCBI

18 

Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, Ren X, An Y, Wu Y, Sun W, et al: DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 131:356–369. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Proneth B and Conrad M: Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 26:14–24. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Latunde-Dada GO: Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochimica Biophysica Acta Gen Subj. 1861:1893–1900. 2017. View Article : Google Scholar

21 

Hamesch K, Borkham-Kamphorst E, Strnad P and Weiskirchen R: Lipopolysaccharide-induced inflammatory liver injury in mice. Lab Anim. 49:37–46. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Maes M, Vinken M and Jaeschke H: Experimental models of hepatotoxicity related to acute liver failure. Toxicol Appl Pharmacol. 290:86–97. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Zhuo T, Zhou S, Zhang W, Lambertucci C and Volpini R: Synthesis and ability of new ligands for G protein-coupled receptors 17 (GPR17). Med Sci Monit. 23:953–959. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Song J, Lu C, Zhao W and Shao X: Melatonin attenuates TNF-α-mediated hepatocytes damage via inhibiting mitochondrial stress and activating the Akt-Sirt3 signaling pathway. J Cell Physiol. 234:20969–20979. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Shang Y, Liu Y, Du L, Wang Y, Cheng X, Xiao W, Wang X, Jin H, Yang X, Liu S and Chen Q: Targeted expression of uncoupling protein 2 to mouse liver increases the susceptibility to lipopolysaccharide/galactosamine-induced acute liver injury. Hepatology. 50:1204–1216. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Chai FN, Zhang J, Xiang HM, Xu HS, Li YF, Ma WY, Li XG and Ye XL: Protective effect of coptisine from rhizoma coptidis on LPS/D-GalN-induced acute liver failure in mice through up-regulating expression of miR-122. Biomed Pharmacother. 98:180–190. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Yan X, Jiang Z, Bi L, Yang Y and Chen W: Salvianolic acid A attenuates TNF-α- and D-GalN-induced ER stress-mediated and mitochondrial-dependent apoptosis by modulating Bax/Bcl-2 ratio and calcium release in hepatocyte LO2 cells. Naunyn Schmiedebergs. Arch Pharmacol. 388:817–830. 2015. View Article : Google Scholar

28 

Yu H, Guo P, Xie X, Wang Y and Chen G: Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 21:648–657. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, Hosaka Y, Ichikawa A, Saito N, Kadota T, et al: Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 10:31452019. View Article : Google Scholar : PubMed/NCBI

30 

Anderson GJ and Frazer DM: Current understanding of iron homeostasis. Am J Clin Nutr. 106 (Suppl 6):1559S–1566S. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Gauss GH, Kleven MD, Sendamarai AK, Fleming MD and Lawrence CM: The crystal structure of six-transmembrane epithelial antigen of the prostate 4 (Steap4), a ferri/cuprireductase, suggests a novel interdomain flavin-binding site. J Biol Chem. 288:20668–20682. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Chen D, Eyupoglu IY and Savaskan N: Ferroptosis and cell death analysis by flow cytometry. Methods Mol Biol. 1601:71–77. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Hu J, Kholmukhamedov A, Lindsey CC, Beeson CC, Jaeschke H and Lemasters JJ: Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline. Free Radic Biol Med. 97:418–426. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Carlson BA, Tobe R, Yefremova E, Tsuji PA, Hoffmann VJ, Schweizer U, Gladyshev VN, Hatfield DL and Conrad M: Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9:22–31. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Ritchie RH, Drummond GR, Sobey CG, De Silva TM and Kemp-Harper BK: The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res. 116:57–69. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V and Kovacic JC: Oxidative stress and cardiovascular risk: Obesity, diabetes, smoking, and pollution part 3 of a 3-part series. J Am Coll Cardiol. 70:230–251. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Henchcliffe C and Beal MF: Mitochondrial biology and oxidative stress in parkinson disease pathogenesis. Nature Clin Pract Neurol. 4:600–609. 2008. View Article : Google Scholar

39 

Maiorino M, Conrad M and Ursini F: GPx4, Lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 29:61–74. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Ma Q: Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Chang CY, Kao TK, Chen WY, Ou YC, Li JR, Liao SL, Raung SL and Chen CJ: Tetramethylpyrazine inhibits neutrophil activation following permanent cerebral ischemia in rats. Biochem Biophys Res Commun. 463:421–427. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Kim SR, Ha YM, Kim YM, Park SW, Kim HJ, Chung HT and Chang KC: Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochem Pharmacol. 95:279–289. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Liu C, Zhu C, Wang G, Xu R and Zhu Y: Higenamine regulates Nrf2-HO-1-Hmgb1 axis and attenuates intestinal ischemia-reperfusion injury in mice. Inflammation Res. 64:395–403. 2015. View Article : Google Scholar

44 

Andersson U and Tracey KJ: HMGB1 is a therapeutic target for sterile inflammation and infection. Ann Rev Immunol. 29:139–162. 2011. View Article : Google Scholar

45 

Yu M, Wang HC, Ding AH, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ and Yang H: HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 26:174–179. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Yang RK, Zou XP, Tenhunen J and Tonnessen TI: HMGB1 and extracellular histones significantly contribute to systemic inflammation and multiple organ failure in acute liver failure. Mediators Inflamm. 2017:59280782017. View Article : Google Scholar : PubMed/NCBI

47 

Lv YH, Li YL, Zhang DD, Zhang AB, Guo WH and Zhu SF: HMGB1-induced asthmatic airway inflammation through GRP75-mediated enhancement of ER-mitochondrial Ca2+ transfer and ROS increased. J Cell Biochem. 119:4205–4215. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Carreno V: Review article: Management of chronic hepatitis C in patients with contraindications to anti-viral therapy. Aliment Pharmacol Ther. 39:148–162. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Milosevic N, Milanovic M, Turkulov V, Medic-Stojanoska M, Abenavoli L and Milic N: May patients with alcohol liver disease benefit from herbal medicines? Rev Recent Clin Trials. 11:227–237. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Sun X, Duan X, Wang C, Liu Z, Sun P, Huo X, Ma X, Sun H, Liu K and Meng Q: Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice. Eur J Pharmacol. 806:75–82. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Wang H, Fang ZZ, Meng R, Cao YF, Tanaka N, Krausz KW and Gonzalez FJ: Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption. Toxicology. 386:133–142. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Sil R, Ray D and Chakraborti AS: Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model. Mol Cell Biochem. 409:177–189. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Yan T, Wang H, Zhao M, Yagai T, Chai Y, Krausz KW, Xie C, Cheng X, Zhang J, Che Y, et al: Glycyrrhizin protects against acetaminophen-induced acute liver injury via alleviating tumor necrosis factor α-mediated apoptosis. Drug Metab Dispos. 44:720–731. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Zhang X, Yang H, Yue S, He G, Qu S, Zhang Z, Ma B, Ding R, Peng W, Zhang H, et al: The mTOR inhibition in concurrence with ERK1/2 activation is involved in excessive autophagy induced by glycyrrhizin in hepatocellular carcinoma. Cancer Med. 6:1941–1951. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M, Agresti A, Trisciuoglio L, Musco G and Bianchi ME: Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol. 14:431–441. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Li YJ, Wang L, Zhang B, Gao F and Yang CM: Glycyrrhizin, an HMGB1 inhibitor, exhibits neuroprotective effects in rats after lithium-pilocarpine-induced status epilepticus. J Pharm Pharmacol. 71:390–399. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Wang LW, Chen H and Gong ZJ: High mobility group box-1 protein inhibits regulatory T cell immune activity in liver failure in patients with chronic hepatitis B. Hepatobiliary Pancreat Dis Int. 9:499–507. 2010.PubMed/NCBI

58 

Abo El-Magd NF, El-Mesery M, El-Karef A and El-Shishtawy MM: Glycyrrhizin ameliorates high fat diet-induced obesity in rats by activating NrF2 pathway. Life Sci. 193:159–170. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Y, Chen Q, Shi C, Jiao F and Gong Z: Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Mol Med Rep 20: 4081-4090, 2019.
APA
Wang, Y., Chen, Q., Shi, C., Jiao, F., & Gong, Z. (2019). Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Molecular Medicine Reports, 20, 4081-4090. https://doi.org/10.3892/mmr.2019.10660
MLA
Wang, Y., Chen, Q., Shi, C., Jiao, F., Gong, Z."Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress". Molecular Medicine Reports 20.5 (2019): 4081-4090.
Chicago
Wang, Y., Chen, Q., Shi, C., Jiao, F., Gong, Z."Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress". Molecular Medicine Reports 20, no. 5 (2019): 4081-4090. https://doi.org/10.3892/mmr.2019.10660
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Y, Chen Q, Shi C, Jiao F and Gong Z: Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Mol Med Rep 20: 4081-4090, 2019.
APA
Wang, Y., Chen, Q., Shi, C., Jiao, F., & Gong, Z. (2019). Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Molecular Medicine Reports, 20, 4081-4090. https://doi.org/10.3892/mmr.2019.10660
MLA
Wang, Y., Chen, Q., Shi, C., Jiao, F., Gong, Z."Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress". Molecular Medicine Reports 20.5 (2019): 4081-4090.
Chicago
Wang, Y., Chen, Q., Shi, C., Jiao, F., Gong, Z."Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress". Molecular Medicine Reports 20, no. 5 (2019): 4081-4090. https://doi.org/10.3892/mmr.2019.10660
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team