Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2019 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2019 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach

Corrigendum in: /10.3892/mmr.2021.12308
  • Authors:
    • Maciej Brązert
    • Wiesława Kranc
    • Piotr Celichowski
    • Katarzyna Ożegowska
    • Joanna Budna‑Tukan
    • Michal Jeseta
    • Leszek Pawelczyk
    • Małgorzata Bruska
    • Maciej Zabel
    • Michał Nowicki
    • Bartosz Kempisty
  • View Affiliations / Copyright

    Affiliations: Department of Gynecology, Obstetrics and Gynecological Oncology, Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 60‑535 Poznan, Poland, Department of Anatomy, Poznan University of Medical Sciences, 60‑781 Poznan, Poland, Department of Histology and Embryology, Poznan University of Medical Sciences, 60‑781 Poznan, Poland, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic, Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50‑368 Wroclaw, Poland
    Copyright: © Brązert et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4403-4414
    |
    Published online on: September 26, 2019
       https://doi.org/10.3892/mmr.2019.10709
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Under physiological conditions, human ovarian granulosa cells (GCs), are responsible for a number of processes associated with folliculogenesis and oogenesis. The primary functions of GCs in the individual phases of follicle growth are: Hormone production in response to follicle stimulating hormone (FSH), induction of ovarian follicle atresia through specific molecular markers and production of nexus cellular connections for communication with the oocyte. In recent years, interest in obtaining stem cells from particular tissues, including the ovary, has increased. Special attention has been paid to the novel properties of GCs during long‑term in vitro culture. It has been demonstrated that the usually recycled material in the form of follicular fluid can be a source of cells with stem‑like properties. The study group consisted of patients enrolled in the in vitro fertilization procedure. Total RNA was isolated from GCs at 4 time points (after 1, 7, 15 and 30 days of culture) and was used for microarray expression analysis (Affymetrix® Human HgU 219 Array). The expression of 22,480 transcripts was examined. The selection of significantly altered genes was based on a P‑value <0.05 and expression higher than two‑fold. The leucine rich repeat containing 17, collagen type I α1 chain, bone morphogenetic protein 4, twist family bHLH transcription factor 1, insulin like growth factor binding protein 5, GLI family zinc finger 2 and collagen triple helix repeat containing genes exhibited the highest changes in expression. Reverse‑transcription‑quantitative PCR was performed to validate the results obtained in the analysis of expression microarrays. The direction of expression changes was validated in the majority of cases. The presented results indicated that GCs have the potential of cells that can differentiate towards osteoblasts in long‑term in vitro culture conditions. Increased expression of genes associated with the osteogenesis process suggests a potential for uninduced change of GC properties towards the osteoblast phenotype. The present study, therefore, suggests that GCs may become an excellent starting material in obtaining stable osteoblast cultures. GCs differentiated towards osteoblasts may be used in regenerative and reconstructive medicine in the future.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Zhang H, Vollmer M, De Geyter M, Litzistorf Y, Ladewig A, Dürrenberger M, Guggenheim R, Miny P, Holzgreve W and De Geyter C: Characterization of an immortalized human granulosa cell line (COV434). Mol Hum Reprod. 6:146–153. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Brůcková L, Soukup T, Moos J, Moosová M, Pavelková J, Rezábek K, Vísek B and Mokrý J: The cultivation of human granulosa cells. Acta Medica (Hradec Kralove). 51:165–172. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B and Jaśkowski JM: Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med J Cell Biol. 6:33–38. 2018. View Article : Google Scholar

4 

Kranc W, Jankowski M, Budna J, Celichowski P, Khozmi R, Bryja A, Borys S, Dyszkiewicz-Konwińska M, Jeseta M, Magas M, et al: Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro-signaling pathway activation approach. Med J Cell Biol. 6:18–26. 2018. View Article : Google Scholar

5 

Rybska M, Knap S, Jankowski M, Jeseta M, Bukowska D, Antosik P, Nowicki M, Zabel M, Kempisty B and Jaśkowski JM: Cytoplasmic and nuclear maturation of oocytes in mammals-living in the shadow of cells developmental capability. Med J Cell Biol. 1:13–17. 2018. View Article : Google Scholar

6 

Kempisty B, Ziółkowska A, Piotrowska H, Ciesiółka S, Antosik P, Bukowska D, Zawierucha P, Woźna M, Jaśkowski JM, Brüssow KP, et al: Short-term cultivation of porcine cumulus cells influences the cyclin-dependent kinase 4 (Cdk4) and connexin 43 (Cx43) protein expression-a real-time cell proliferation approach. J Reprod Dev. 59:339–345. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Ciesiółka S, Budna J, Jopek K, Bryja A, Kranc W, Chachuła A, Borys S, Dyszkiewicz Konwińska M, Ziółkowska A, Antosik P, et al: Influence of estradiol-17beta on progesterone and estrogen receptor mRNA expression in porcine follicular granulosa cells during short-term, in vitro real-time cell proliferation. Biomed Res Int. 2016:84310182016. View Article : Google Scholar : PubMed/NCBI

8 

Spanel-Borowski K and Sterzik K: Ultrastructure of human preovulatory granulosa cells in follicular fluid aspirates. Arch Gynecol. 240:137–146. 1987. View Article : Google Scholar : PubMed/NCBI

9 

Neubourg DD, Robins A, Fishel S and Gibbon L: Flow cytometric analysis of granulosa cells from follicular fluid after follicular stimulation. Hum Reprod. 11:2211–2214. 1996. View Article : Google Scholar : PubMed/NCBI

10 

Ratajczak MZ and Suszyńska M: Quo vadis regenerative medicine? Acta Haematol Pol. 44:161–170. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Weiss DJ: Concise review: Current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 32:16–25. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Desai TJ, Brownfield DG and Krasnow MA: Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 507:190–194. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Matthews VB and Yeoh GC: Liver stem cells. IUBMB Life. 57:549–553. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Murtaugh LC and Kopinke D: Pancreatic Stem CellsStemBook [Internet]. Harvard Stem Cell Institute; Cambridge, MA: 2008, View Article : Google Scholar

15 

Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC and Jung JS: Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 14:311–324. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Pereira LO, Rubini MR, Silva JR, Oliveira DM, Silva ICR, Poças-Fonseca MJ and Azevedo RB: Comparison of stem cell properties of cells isolated from normal and inflamed dental pulps. Int Endod J. 45:1080–1090. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Karahuseyinoglu S, Kocaefe C, Balci D, Erdemli E and Can A: Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells. 26:682–691. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Malekshah AK, Moghaddam AE and Daraka SM: Comparison of conditioned medium and direct co-culture of human granulosa cells on mouse embryo development. Indian J Exp Biol. 44:189–192. 2006.PubMed/NCBI

19 

Kern S, Eichler H, Stoeve J, Klüter H and Bieback K: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 24:1294–1301. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J and Brigham KL: Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 33:145–152. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A and Zhang H: The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 27:210–219. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Brevini TA, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G and Gandolfi F: Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev Rev. 10:633–642. 2014. View Article : Google Scholar

23 

Aghadavod E, Zarghami N, Farzadi L, Zare M, Barzegari A, Movassaghpour AA and Nouri M: Isolation of granulosa cells from follicular fluid; applications in biomedical and molecular biology experiments. Adv Biomed Res. 4:2502015. View Article : Google Scholar : PubMed/NCBI

24 

Kranc W, Brązert M, Budna J, Celichowski P, Bryja A, Nawrocki MJ, Ożegowska K, Jankowski M Chermuła B, Dyszkiewicz-Konwińska M, et al: Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem Cell Biol. 151:125–143. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Kranc W, Brązert M, Ożegowska K, Nawrocki MJ, Budna J, Celichowski P, Dyszkiewicz-Konwińska M, Jankowski M, Jeseta M, Pawelczyk L, et al: Expression profile of genes regulating steroid biosynthesis and metabolism in human ovarian granulosa cells-A primary culture approach. Int J Mol Sci. 18(pii): E26732017. View Article : Google Scholar : PubMed/NCBI

26 

Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G and Gianaroli L; ESHRE working group on Poor Ovarian Response Definition, : ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteria. Hum Reprod. 26:1616–1624. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Chomczynski P and Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162:156–159. 1987. View Article : Google Scholar : PubMed/NCBI

28 

Kranc W, Brązert M, Ożegowska K, Budna-Tukan J, Celichowski P, Jankowski M, Bryja A, Nawrocki MJ, Popis M, Jeseta M and Pawelczyk L: Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Med J Cell Biol. 6:91–100. 2018. View Article : Google Scholar

29 

Bryja A, Dyszkiewicz-Konwińska M, Jankowski M, Celichowski P, Stefańska K, Chamier-Gliszczyńska A, Popis M, Mehr K, Bukowska D, Antosik P, et al: Ion homeostasis and transport are regulated by genes differentially expressed in porcine buccal pouch mucosal cells during long-term culture in vitro-a microarray approach. Med J Cell Biol. 6:75–82. 2018. View Article : Google Scholar

30 

Chamier-Gliszczyńska A, Brązert M, Sujka-Kordowska P, Popis M, Ożegowska K, Stefańska K, Kocherova I, Celichowski P, Kulus M, Bukowska D, et al: Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture-a transcriptomic study. Med J Cell Biol. 6:163–173. 2018. View Article : Google Scholar

31 

Stefańska K, Chamier-Gliszczyńska A, Jankowski M, Celichowski P, Kulus M, Rojewska M, Antosik P, Bukowska D, Bruska M, Nowicki M, et al: Epithelium morphogenesis and oviduct development are regulated by significant increase of expression of genes after long-term in vitro primary culture - a microarray assays. Med J Cell Biol. 6:195–204. 2018. View Article : Google Scholar

32 

Nawrocki MJ, Celichowski P, Jankowski M, Kranc W, Bryja A, Borys-Wójcik S, Jeseta M, Antosik P, Bukowska D, Brusk M, et al: Ontology groups representing angiogenesis and blood vessels development are highly up-regulated during porcine oviductal epithelial cells long-term real-time proliferation-a primary cell culture approach. Med J Cell Biol. 6:186–194. 2018. View Article : Google Scholar

33 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID Bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35((Web Server Issue)): W169–W175. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Rahman MS, Akhtar N, Jamil HM, Banik RS and Asaduzzaman SM: TGF-b/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res. 3:150052015. View Article : Google Scholar : PubMed/NCBI

36 

Zuo C, Huang Y, Bajis R, Sahih M, Li YP, Dai K and Zhang X: Osteoblastogenesis regulation signals in bone remodeling. Osteoporos Int. 23:1653–1663. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, Deng JM, Zhang Z, Martin JF, Behringer RR, Nakamura T and de Crombrugghe B: Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci USA. 102:14665–14670. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD and MacDougald OA: Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 102:3324–3329. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Cao Y, Zhou Z, de Crombrugghe B, Nakashima K, Guan H, Duan X, Jia SF and Kleinerman ES: Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res. 65:1124–1128. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Sánchez-Duffhues G, Hiepen C, Knaus P and ten Dijke P: Bone morphogenetic protein signaling in bone homeostasis. Bone. 80:43–59. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Yuasa M, Yamada T, Taniyama T, Masaoka T, Xuetao W, Yoshii T, Horie M, Yasuda H, Uemura T, Okawa A and Sotome S: Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PLoS One. 10:e01164622015. View Article : Google Scholar : PubMed/NCBI

42 

Włodarski KH, Galus R, Brodzikowska A and Włodarski PK: Sclerostin, an osteocytes-derived bone-forming inhibitor. Pol Orthop Traumatol. 78:151–154. 2013.PubMed/NCBI

43 

Włodarski K and Włodarski P: Leptin as a modulator of osteogenesis. Ortop Traumatol Rehabil. 11:1–6. 2009.PubMed/NCBI

44 

Kossowska-Tomaszczuk K and De Geyter C: Cells with stem cell characteristics in somatic compartments of the ovary. Biomed Res Int. 2013:3108592013. View Article : Google Scholar : PubMed/NCBI

45 

Kossowska-Tomaszczuk K, Pelczar P, Güven S, Kowalski J, Volpi E, De Geyter C and Scherberich A: A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng Part A. 16:2063–2073. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Chamberlain G, Fox J, Ashton B and Middleton J: Concise Review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 25:2739–2749. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Kim T, Kim K, Lee SH, So HS, Lee J, Kim N and Choi Y: Identification of LRRc17 as a negative regulator of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast differentiation. J Biol Chem. 284:15308–15316. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Coveney C, Boocock DJ, Rees RC, Deen S and Ball GR: Data mining of gene arrays for biomarkers of survival in ovarian cancer. Microarrays (Basel). 4:324–338. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Saito M and Marumo K: Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 21:195–214. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Harland ML, Morris SE and Rodgers RJ: Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics. 15:402014. View Article : Google Scholar : PubMed/NCBI

51 

Zhao Y and Luck MR: Gene expression and protein distribution of collagen, fibronectin and laminin in bovine follicles and corpora lutea. J Reprod Fertil. 104:115–123. 1995. View Article : Google Scholar : PubMed/NCBI

52 

Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI and Reddi AH: Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem. 264:13377–13380. 1989.PubMed/NCBI

53 

Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V and Tabin CJ: Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2:e2162006. View Article : Google Scholar : PubMed/NCBI

54 

Bayne RA, Donnachie DJ, Kinnell HL, Childs AJ and Anderson RA: BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2. Mol Hum Reprod. 22:622–633. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Chang SF, Chang TK, Peng HH, Yeh YT, Lee DY, Yeh CR, Zhou J, Cheng CK, Chang CA and Chiu JJ: BMP-4 induction of arrest and differentiation of osteoblast-like cells via p21 CIP1 and p27 KIP1 regulation. Mol Endocrinol. 23:1827–1838. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Fujii M, Takeda K, Imamura T, Aoki H, Sampath TK, Enomoto S, Kawabata M, Kato M, Ichijo H and Miyazono K: Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell. 10:3801–3813. 1999. View Article : Google Scholar : PubMed/NCBI

57 

Yamaguchi A, Komori T and Suda T: Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 21:393–411. 2000. View Article : Google Scholar : PubMed/NCBI

58 

Tanwar PS and Mcfarlane JR: Dynamic expression of bone morphogenetic protein 4 in reproductive organs of female mice. Reproduction. 142:573–579. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Glister C, Kemp CF and Knight PG: Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: Actions of BMP-4, −6 and −7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction. 127:239–254. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Dooley CA, Attia GR, Rainey WE, Moore DR and Carr BR: Bone morphogenetic protein inhibits ovarian androgen production. J Clin Endocrinol Metab. 85:3331–3337. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Moore RK, Otsuka F and Shimasaki S: Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 278:304–310. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Harvey NT, Hughes JN, Lonic A, Yap C, Long C, Rathjen PD and Rathjen J: Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci. 123:1796–1804. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Kim JH, Skates SJ, Uede T, Wong KK, Schorge JO, Feltmate CM, Berkowitz RS, Cramer DW and Mok SC: Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA. 287:1671–1679. 2002. View Article : Google Scholar : PubMed/NCBI

64 

Skinner MK, Schmidt M, Savenkova MI, Sadler-Riggleman I and Nilsson EE: Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol Reprod Dev. 75:1457–1472. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F, Prokesch A, Paar C, Scheideler M, Windhager R, Preisegger KH and Trajanoski Z: Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics. 8:702007. View Article : Google Scholar : PubMed/NCBI

66 

Bilousova G, Jun DH, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR and Majka SM: Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells. 29:206–216. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Zhao M, Qiao M, Harris SE, Chen D, Oyajobi BO and Mundy GR: The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol Cell Biol. 26:6197–6208. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Thrailkill KM, Quarles LD, Nagase H, Suzuki K, Serra DM and Fowlkes JL: Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentiation. Endocrinology. 136:3527–3533. 1995. View Article : Google Scholar : PubMed/NCBI

69 

Peruzzi B, Cappariello A, Del Fattore A, Rucci N, De Benedetti F and Teti A: c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nat Commun. 3:6302012. View Article : Google Scholar : PubMed/NCBI

70 

Liu XJ and Ling N: Regulation of IGFBP-4 and −5 expression in rat granulosa cells. Adv Exp Med Biol. 343:367–376. 1994. View Article : Google Scholar

71 

Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, et al: A twist code determines the onset of osteoblast differentiation. Dev Cell. 6:423–435. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Wang C, Gu W, Sun B, Zhang Y, Ji Y, Xu X and Wen Y: CTHRC1 promotes osteogenic differentiation of periodontal ligament stem cells by regulating TAZ. J Mol Histol. 48:311–319. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Brązert M, Kranc W, Celichowski P, Ożegowska K, Budna‑Tukan J, Jeseta M, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Nowicki M, et al: Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach Corrigendum in /10.3892/mmr.2021.12308. Mol Med Rep 20: 4403-4414, 2019.
APA
Brązert, M., Kranc, W., Celichowski, P., Ożegowska, K., Budna‑Tukan, J., Jeseta, M. ... Kempisty, B. (2019). Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach Corrigendum in /10.3892/mmr.2021.12308. Molecular Medicine Reports, 20, 4403-4414. https://doi.org/10.3892/mmr.2019.10709
MLA
Brązert, M., Kranc, W., Celichowski, P., Ożegowska, K., Budna‑Tukan, J., Jeseta, M., Pawelczyk, L., Bruska, M., Zabel, M., Nowicki, M., Kempisty, B."Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach Corrigendum in /10.3892/mmr.2021.12308". Molecular Medicine Reports 20.5 (2019): 4403-4414.
Chicago
Brązert, M., Kranc, W., Celichowski, P., Ożegowska, K., Budna‑Tukan, J., Jeseta, M., Pawelczyk, L., Bruska, M., Zabel, M., Nowicki, M., Kempisty, B."Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach Corrigendum in /10.3892/mmr.2021.12308". Molecular Medicine Reports 20, no. 5 (2019): 4403-4414. https://doi.org/10.3892/mmr.2019.10709
Copy and paste a formatted citation
x
Spandidos Publications style
Brązert M, Kranc W, Celichowski P, Ożegowska K, Budna‑Tukan J, Jeseta M, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Nowicki M, et al: Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach Corrigendum in /10.3892/mmr.2021.12308. Mol Med Rep 20: 4403-4414, 2019.
APA
Brązert, M., Kranc, W., Celichowski, P., Ożegowska, K., Budna‑Tukan, J., Jeseta, M. ... Kempisty, B. (2019). Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach Corrigendum in /10.3892/mmr.2021.12308. Molecular Medicine Reports, 20, 4403-4414. https://doi.org/10.3892/mmr.2019.10709
MLA
Brązert, M., Kranc, W., Celichowski, P., Ożegowska, K., Budna‑Tukan, J., Jeseta, M., Pawelczyk, L., Bruska, M., Zabel, M., Nowicki, M., Kempisty, B."Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach Corrigendum in /10.3892/mmr.2021.12308". Molecular Medicine Reports 20.5 (2019): 4403-4414.
Chicago
Brązert, M., Kranc, W., Celichowski, P., Ożegowska, K., Budna‑Tukan, J., Jeseta, M., Pawelczyk, L., Bruska, M., Zabel, M., Nowicki, M., Kempisty, B."Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach Corrigendum in /10.3892/mmr.2021.12308". Molecular Medicine Reports 20, no. 5 (2019): 4403-4414. https://doi.org/10.3892/mmr.2019.10709
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team