1
|
García-García J and Ramos C: Influenza, an
existing public health problem. Salud Publica Mex. 48:244–267.
2006.(In Spanish). PubMed/NCBI
|
2
|
Bauer TT, Ewig S, Rodloff AC and Muller
EE: Acute respiratory distress syndrome and pneumonia: A
comprehensive review of clinical data. Clin Infect Dis. 43:748–756.
2006. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Bai GR, Chittaganpitch M, Kanai Y, Li YG,
Auwanit W, Ikuta K and Sawanpanyalert P: Amantadine- and
oseltamivir-resistant variants of influenza A viruses in Thailand.
Biochem Biophys Res Commun. 390:897–901. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Terán-Cabanillas E, Montalvo-Corral M,
Silva-Campa E, Caire-Juvera G, Moya-Camarena SY and Hernández J:
Production of interferon α and β, pro-inflammatory cytokines and
the expression of suppressor of cytokine signaling (SOCS) in obese
subjects infected with influenza A/H1N1. Clin Nutr. 33:922–926.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang F, Sun X, Zhu Y and Qin W:
Downregulation of miR-146a inhibits influenza A virus replication
by enhancing the type I interferon response in vitro and in vivo.
Biomed Pharmacother. 111:740–750. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kandel R and Hartshorn KL: Novel
strategies for prevention and treatment of influenza. Expert Opin
Ther Targets. 9:1–22. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Beigel J and Bray M: Current and future
antiviral therapy of severe seasonal and avian influenza. Antiviral
Res. 78:91–102. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Moazed D: Small RNAs in transcriptional
gene silencing and genome defence. Nature. 457:413–420. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Baltimore D, Boldin MP, O'Connell RM, Rao
DS and Taganov KD: MicroRNAs: New regulators of immune cell
development and function. Nat Immunol. 9:839–845. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
O'Neill LA, Sheedy FJ and McCoy CE:
MicroRNAs: The fine-tuners of toll-like receptor signalling. Nat
Rev Immunol. 11:163–175. 2011. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Yarbrough ML, Zhang K, Sakthivel R, Forst
CV, Posner BA, Barber GN, White MA and Fontoura BM:
Primate-specific miR-576-3p sets host defense signalling threshold.
Nat Commun. 5:49632014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jopling CL, Schutz S and Sarnow P:
Position-dependent function for a tandem microRNA miR-122-binding
site located in the hepatitis C virus RNA genome. Cell Host
Microbe. 4:77–85. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lagos D, Pollara G, Henderson S, Gratrix
F, Fabani M, Milne RS, Gotch F and Boshoff C: miR-132 regulates
antiviral innate immunity through suppression of the p300
transcriptional co-activator. Nat Cell Biol. 12:513–519. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Su RC, Sivro A, Kimani J, Jaoko W, Plummer
FA and Ball TB: Epigenetic control of IRF1 responses in HIV-exposed
seronegative versus HIV-susceptible individuals. Blood.
117:2649–2657. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hu Y, Jiang L, Lai W, Qin Y, Zhang T, Wang
S and Ye X: MicroRNA-33a disturbs influenza A virus replication by
targeting ARCN1 and inhibiting viral ribonucleoprotein activity. J
Gen Virol. 97:27–38. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hayman A, Comely S, Lackenby A, Murphy S,
McCauley J, Goodbourn S and Barclay W: Variation in the ability of
human influenza A viruses to induce and inhibit the IFN-beta
pathway. Virology. 347:52–64. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yan Y, Tan KS, Li C, Tran T, Chao SS,
Sugrue RJ, Shi L, Chow VT and Wang DY: Human nasal epithelial cells
derived from multiple subjects exhibit differential responses to
H3N2 influenza virus infection in vitro. J Allergy Clin Immunol.
138:276–281.e15. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Terrier O, Textoris J, Carron C, Marcel V,
Bourdon JC and Rosa-Calatrava M: Host microRNA molecular signatures
associated with human H1N1 and H3N2 influenza A viruses reveal an
unanticipated antiviral activity for miR-146a. J Gen Virol.
94:985–995. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lin CC and Shieh DE: The anti-inflammatory
activity of Scutellaria rivularis extracts and its active
components, baicalin, baicalein and wogonin. Am J Chin Med.
24:31–36. 1996. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou QM, Wang S, Zhang H, Lu YY, Wang XF,
Motoo Y and Su SB: The combination of baicalin and baicalein
enhances apoptosis via the ERK/p38 MAPK pathway in human breast
cancer cells. Acta Pharmacol Sin. 30:1648–1658. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li CT, Zhang WP, Fang SH, Lu YB, Zhang LH,
Qi LL, Huang XQ, Huang XJ and Wei EQ: Baicalin attenuates
oxygen-glucose deprivation-induced injury by inhibiting oxidative
stress-mediated 5-lipoxygenase activation in PC12 cells. Acta
Pharmacol Sin. 31:137–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu G, Dou J, Zhang L, Guo Q and Zhou C:
Inhibitory effects of baicalein on the influenza virus in vivo is
determined by baicalin in the serum. Biol Pharm Bull. 33:238–243.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhu HY, Han L, Shi XL, Wang BL, Huang H,
Wang X, Chen DF, Ju DW and Feng MQ: Baicalin inhibits autophagy
induced by influenza A virus H3N2. Antiviral Res. 113:62–70. 2015.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Chu M, Xu L, Zhang MB, Chu ZY and Wang YD:
Role of baicalin in anti-influenza virus a as a potent inducer of
IFN-gamma. Biomed Res Int. 2015:2636302015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ding Y, Dou J, Teng Z, Yu J, Wang T, Lu N,
Wang H and Zhou C: Antiviral activity of baicalin against influenza
A (H1N1/H3N2) virus in cell culture and in mice and its inhibition
of neuraminidase. Arch Virol. 159:3269–3278. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee YR, Yeh SF, Ruan XM, Zhang H, Hsu SD,
Huang HD, Hsieh CC, Lin YS, Yeh TM, Liu HS and Gan DD: Honeysuckle
aqueous extract and induced let-7a suppress dengue virus type 2
replication and pathogenesis. J Ethnopharmacol. 198:109–121. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Shibata C, Ohno M, Otsuka M, Kishikawa T,
Goto K, Muroyama R, Kato N, Yoshikawa T, Takata A and Koike K: The
flavonoid apigenin inhibits hepatitis C virus replication by
decreasing mature microRNA122 levels. Virology. 462:42–48. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang L, Zhang R, Chen J, Wu Q and Kuang Z:
Baicalin protects against TNF-α-induced injury by down-regulating
miR-191a that targets the tight junction protein ZO-1 in IEC-6
cells. Biol Pharm Bull. 40:435–443. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang J, Masika J, Zhou J, Wang J, Zhu M,
Luo H, Hu X, Zhang L, Tang M, Gao L, et al: Traditional Chinese
medicine baicalin suppresses mESCs proliferation through inhibition
of miR-294 expression. Cell Physiol Biochem. 35:1868–1876. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu Y, Zhou B, Wu D, Yin Z and Luo D:
Baicalin modulates microRNA expression in UVB irradiated mouse
skin. J Biomed Res. 26:125–134. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Takaoka A, Hayakawa S, Yanai H, Stoiber D,
Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K and
Taniguchi T: Integration of interferon-alpha/beta signalling to p53
responses in tumour suppression and antiviral defence. Nature.
424:516–523. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu XX, Yu DD, Chen MJ, Sun T, Li G, Huang
WJ, Nie H, Wang C, Zhang YX, Gong Q and Ren BX: Hesperidin
ameliorates lipopolysaccharide-induced acute lung injury in mice by
inhibiting HMGB1 release. Int Immunopharmacol. 25:370–376. 2015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu S, He L, Li Y, Wang T, Feng L, Jiang L,
Zhang P and Huang X: miR-146a facilitates replication of dengue
virus by dampening interferon induction by targeting TRAF6. J
Infect. 67:329–341. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yoshida R, Takaesu G, Yoshida H, Okamoto
F, Yoshioka T, Choi Y, Akira S, Kawai T, Yoshimura A and Kobayashi
T: TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase
antiviral pathway. J Biol Chem. 283:36211–36220. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wan Q, Wang H, Han X, Lin Y and Yang Y, Gu
L, Zhao J, Wang L, Huang L, Li Y and Yang Y: Baicalin inhibits
TLR7/MYD88 signaling pathway activation to suppress lung
inflammation in mice infected with influenza A virus. Biomed Rep.
2:437–441. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nayak MK, Agrawal AS, Bose S, Naskar S,
Bhowmick R, Chakrabarti S, Sarkar S and Chawla-Sarkar M: Antiviral
activity of baicalin against influenza virus H1N1-pdm09 is due to
modulation of NS1-mediated cellular innate immune responses. J
Antimicrob Chemother. 69:1298–1310. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Taganov KD, Boldin MP, Chang KJ and
Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an
inhibitor targeted to signaling proteins of innate immune
responses. Proc Natl Acad Sci USA. 103:12481–12486. 2006.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Farzan SF, Karagas MR, Christensen BC, Li
Z, Kuriger JK and Nelson HH; New Hampshire Skin Cancer Study, :
RNASEL and MIR146A SNP-SNP interaction as a susceptibility factor
for non-melanoma skin cancer. PLoS One. 9:e936022014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Khorrami S, Zavaran Hosseini A, Mowla SJ,
Soleimani M, Rakhshani N and Malekzadeh R: MicroRNA-146a induces
immune suppression and drug-resistant colorectal cancer cells.
Tumour Biol. 39:10104283176983652017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pu J, Wu S, Xie H, Li Y, Yang Z, Wu X and
Huang X: miR-146a inhibits dengue-virus-induced autophagy by
targeting TRAF6. Arch Virol. 162:3645–3659. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Deng M, Du G, Zhao J and Du X: miR-146a
negatively regulates the induction of proinflammatory cytokines in
response to Japanese encephalitis virus infection in microglial
cells. Arch Virol. 162:1495–1505. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bandiera S, Pernot S, El Saghire H, Durand
SC, Thumann C, Crouchet E, Ye T, Fofana I, Oudot MA, Barths J, et
al: Hepatitis C Virus-induced upregulation of MicroRNA miR-146a-5p
in hepatocytes promotes viral infection and deregulates metabolic
pathways associated with liver disease pathogenesis. J Virol.
90:6387–6400. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Deng Y, Yan Y, Tan KS, Liu J, Chow VT, Tao
ZZ and Wang DY: MicroRNA-146a induction during influenza H3N2 virus
infection targets and regulates TRAF6 levels in human nasal
epithelial cells (hNECs). Exp Cell Res. 352:184–192. 2017.
View Article : Google Scholar : PubMed/NCBI
|