Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2019 Volume 20 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2019 Volume 20 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review)

  • Authors:
    • Mihaela Georgiana Mușat
    • George Mihai Nițulescu
    • Marius Surleac
    • Aristidis Tsatsakis
    • Demetrios A. Spandidos
    • Denisa Margină
  • View Affiliations / Copyright

    Affiliations: Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania, National Institute for Infectious Diseases ‘Matei Bals’, 021105 Bucharest, Romania, Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
    Copyright: © Mușat et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4749-4762
    |
    Published online on: October 30, 2019
       https://doi.org/10.3892/mmr.2019.10777
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Transposases are ubiquitous mobile genetic elements responsible for genome development, driving rearrangements, such as insertions, deletions and translocations. Across species evolution, some transposases are tamed by their host and are made part of complex cellular systems. The proliferation of retroviruses is also dependent on transposase related enzymes termed integrases. Recombination‑activating gene protein (RAG)1 and metnase are just two examples of transposase domestication and together with retroviral integrases (INs), they belong to the DDE polynucleotidyl transferases superfamily. They share mechanistic and structural features linked to the RNase H‑like fold, harboring a DDE(D) metal dependent catalytic motif. Recent antiretroviral compounds target the catalytic domain of integrase, but they also have the potential of inhibiting other related enzymes. In this review, we report the activity of different classes of integrase inhibitors on various DDE transposases. Computational simulations are useful to predict the extent of off‑target activity and have been employed to study the interactions between RAG1 recombinase and compounds from three different pharmacologic classes. We demonstrate that strand‑transfer inhibitors display a higher affinity towards the RAG1 RNase H domain, as suggested by experimental data compared to allosteric inhibitors. While interference with RAG1 and 2 recombination is associated with a negative impact on immune function, the inhibition of metnase or HTLV‑1 integrase opens the way for the development of novel therapies for refractory cancers.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Pace JK II and Feschotte C: The evolutionary history of human DNA transposons: Evidence for intense activity in the primate lineage. Genome Res. 17:422–432. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Jangam D, Feschotte C and Betrán E: Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet. 33:817–831. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Lee SH, Oshige M, Durant ST, Rasila KK, Williamson EA, Ramsey H, Kwan L, Nickoloff JA and Hromas R: The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci USA. 102:18075–18080. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Hickman AB and Dyda F: DNA Transposition at Work. Chem Rev. 116:12758–12784. 2016. View Article : Google Scholar : PubMed/NCBI

5 

McCLINTOCK B: The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA. 36:344–355. 1950. View Article : Google Scholar : PubMed/NCBI

6 

Chandler M, de la Cruz F, Dyda F, Hickman AB, Moncalian G and Ton-Hoang B: Breaking and joining single-stranded DNA: The HUH endonuclease superfamily. Nat Rev Microbiol. 11:525–538. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al: A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 8:973–982. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Yuan YW and Wessler SR: The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA. 108:7884–7889. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Lacroix C, Giovannini D, Combe A, Bargieri DY, Späth S, Panchal D, Tawk L, Thiberge S, Carvalho TG, Barale JC, et al: FLP/FRT-mediated conditional mutagenesis in pre-erythrocytic stages of Plasmodium berghei. Nat Protoc. 6:1412–1428. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Ye J, Hong J and Ye F: Reprogramming rat embryonic fibroblasts into induced pluripotent stem cells using transposon vectors and their chondrogenic differentiation in vitro. Mol Med Rep. 11:989–994. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Rice PA and Baker TA: Comparative architecture of transposase and integrase complexes. Nat Struct Biol. 8:302–307. 2001. View Article : Google Scholar

12 

Schatz DG and Ji Y: Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol. 11:251–263. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Dai Y, Wong B, Yen Y-M, Oettinger MA, Kwon J and Johnson RC: Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Mol Cell Biol. 25:4413–4425. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Nishana M, Nilavar NM, Kumari R, Pandey M and Raghavan SC: HIV integrase inhibitor, Elvitegravir, impairs RAG functions and inhibits V(D)J recombination. Cell Death Dis. 8:e28522017. View Article : Google Scholar : PubMed/NCBI

15 

Seegulam ME and Ratner L: Integrase inhibitors effective against human T-cell leukemia virus type 1. Antimicrob Agents Chemother. 55:2011–2017. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Nadal M, Mas PJ, Blanco AG, Arnan C, Solà M, Hart DJ and Coll M: Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc Natl Acad Sci USA. 107:16078–16083. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Trott O and Olson AJ: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 31:455–461. 2010.PubMed/NCBI

18 

Kim MS, Lapkouski M, Yang W and Gellert M: Crystal structure of the V(D)J recombinase RAG1-RAG2. Nature. 518:507–511. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Avogadro, . Avogadro: an open-source molecular builder and visualization tool. Version 1.0.3. http://AvogadroOpenmoleculesNet/2012

20 

DeLano WL: The PyMOL Molecular Graphics System, Version 1.8Schrödinger LLC; New York, NY: 2002

21 

Kim MS, Chuenchor W, Chen X, Cui Y, Zhang X, Zhou ZH, Gellert M and Yang W: Cracking the DNA Code for V(D)J Recombination. Mol Cell. 70:358–370.e4. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Ma Y, Pannicke U, Schwarz K and Lieber MR: Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 108:781–794. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Ru H, Chambers MG, Fu TM, Tong AB, Liao M and Wu H: Molecular Mechanism of V(D)J Recombination from Synaptic RAG1-RAG2 Complex Structures. Cell. 163:1138–1152. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Grazini U, Zanardi F, Citterio E, Casola S, Goding CR and McBlane F: The RING domain of RAG1 ubiquitylates histone H3: A novel activity in chromatin-mediated regulation of V(D)J joining. Mol Cell. 37:282–293. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Matthews AGW, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, et al: RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. 450:1106–1110. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, et al: Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell. 166:102–114. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, et al: Transposon molecular domestication and the evolution of the RAG recombinase. Nature. 569:79–84. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Kang YH, Son CY, Lee CH and Ryu CJ: Aberrant V(D)J cleavages in T cell receptor β enhancer- and p53-deficient lymphoma cells. Oncol Rep. 23:1463–1468. 2010.PubMed/NCBI

29 

Lewis SM, Agard E, Suh S and Czyzyk L: Cryptic signals and the fidelity of V(D)J joining. Mol Cell Biol. 17:3125–3136. 1997. View Article : Google Scholar : PubMed/NCBI

30 

Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, Alexandrov LB, Van Loo P, Cooke SL, Marshall J, et al: RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 46:116–125. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Messier TL, O'Neill JP, Hou SM, Nicklas JA and Finette BA: In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J. 22:1381–1388. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Reddy YVR, Perkins EJ and Ramsden DA: Genomic instability due to V(D)J recombination-associated transposition. Genes Dev. 20:1575–1582. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Li Z, Wu S, Wang J, Li W, Lin Y, Ji C, Xue J and Chen J: Evaluation of the interactions of HIV-1 integrase with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. Int J Mol Med. 30:1053–1060. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Gupta K, Turkki V, Sherrill-Mix S, Hwang Y, Eilers G, Taylor L, McDanal C, Wang P, Temelkoff D, Nolte RT, et al: Structural Basis for Inhibitor-Induced Aggregation of HIV Integrase. PLoS Biol. 14:e10025842016. View Article : Google Scholar : PubMed/NCBI

35 

Lusic M and Siliciano RF: Nuclear landscape of HIV-1 infection and integration. Nat Rev Microbiol. 15:69–82. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Chen JC-H, Krucinski J, Miercke LJW, Finer-Moore JS, Tang AH, Leavitt AD and Stroud RM: Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding. Proc Natl Acad Sci USA. 97:8233–8238. 2000. View Article : Google Scholar : PubMed/NCBI

37 

Yang W, Hendrickson WA, Crouch RJ and Satow Y: Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science. 249:1398–1405. 1990. View Article : Google Scholar : PubMed/NCBI

38 

Venanzi Rullo E, Ceccarelli M, Condorelli F, Facciolà A, Visalli G, D'Aleo F, Paolucci I, Cacopardo B, Pinzone MR, Di Rosa M, et al: Investigational drugs in HIV: Pros and cons of entry and fusion inhibitors (Review). Mol Med Rep. 19:1987–1995. 2019.PubMed/NCBI

39 

Wai JS, Egbertson MS, Payne LS, Fisher TE, Embrey MW, Tran LO, Melamed JY, Langford HM, Guare JP Jr, Zhuang L, et al: 4-Aryl-2,4-dioxobutanoic acid inhibitors of HIV-1 integrase and viral replication in cells. J Med Chem. 43:4923–4926. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C and Miller MD: Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 287:646–650. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, Fiore F, Gardelli C, Gonzalez Paz O, Hazuda DJ, et al: Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem. 51:5843–5855. 2008. View Article : Google Scholar : PubMed/NCBI

42 

U.S. Food & Drug Administration, . HIV Timeline and History of Approvals. https://www.fda.gov/patients/hivaids/hiv-timeline-and-history-approvalsAugust 1–2018

43 

Di Santo R: Inhibiting the HIV integration process: Past, present, and the future. J Med Chem. 57:539–566. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, et al: Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem. 49:1506–1508. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Lee JSF, Calmy A, Andrieux-Meyer I and Ford N: Review of the safety, efficacy, and pharmacokinetics of elvitegravir with an emphasis on resource-limited settings. HIV AIDS (Auckl). 4:5–15. 2012.PubMed/NCBI

46 

Barnhart M and Shelton JD: ARVs: The next generation. Going boldly together to new frontiers of HIV treatment. Glob Health Sci Pract. 3:1–11. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Johns BA, Kawasuji T, Weatherhead JG, Taishi T, Temelkoff DP, Yoshida H, Akiyama T, Taoda Y, Murai H, Kiyama R, et al: Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744). J Med Chem. 56:5901–5916. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Hare S, Gupta SS, Valkov E, Engelman A and Cherepanov P: Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 464:232–236. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Hare S, Smith SJ, Métifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH and Cherepanov P: Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol. 80:565–572. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, Tomberlin GH, Carter HL III, Broderick T, Sigethy S, et al: Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother. 55:4552–4559. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Yoshinaga T, Kobayashi M, Seki T, Miki S, Wakasa-Morimoto C, Suyama-Kagitani A, Kawauchi-Miki S, Taishi T, Kawasuji T, Johns BA, et al: Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob Agents Chemother. 59:397–406. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Tsiang M, Jones GS, Goldsmith J, Mulato A, Hansen D, Kan E, Tsai L, Bam RA, Stepan G, Stray KM, et al: Antiviral activity of bictegravir (GS-9883), a novel potent HIV-1 integrase strand transfer inhibitor with an improved resistance profile. Antimicrob Agents Chemother. 60:7086–7097. 2016.PubMed/NCBI

53 

Mekouar K, Mouscadet JF, Desmaële D, Subra F, Leh H, Savouré D, Auclair C and d'Angelo J: Styrylquinoline derivatives: A new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J Med Chem. 41:2846–2857. 1998. View Article : Google Scholar : PubMed/NCBI

54 

Deprez E, Barbe S, Kolaski M, Leh H, Zouhiri F, Auclair C, Brochon JC, Le Bret M and Mouscadet JF: Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Mol Pharmacol. 65:85–98. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Han Y-S, Xiao W-L, Quashie PK, Mesplède T, Xu H, Deprez E, Delelis O, Pu JX, Sun HD and Wainberg MA: Development of a fluorescence-based HIV-1 integrase DNA binding assay for identification of novel HIV-1 integrase inhibitors. Antiviral Res. 98:441–448. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Bonnenfant S, Thomas CM, Vita C, Subra F, Deprez E, Zouhiri F, Desmaële D, D'Angelo J, Mouscadet JF and Leh H: Styrylquinolines, integrase inhibitors acting prior to integration: A new mechanism of action for anti-integrase agents. J Virol. 78:5728–5736. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Passos DO, Li M, Yang R, Rebensburg SV, Ghirlando R, Jeon Y, Shkriabai N, Kvaratskhelia M, Craigie R and Lyumkis D: Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science. 355:89–92. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Quashie PK, Han YS, Hassounah S, Mesplède T and Wainberg MA: Structural studies of the HIV-1 integrase protein: Compound screening and characterization of a DNA-binding inhibitor. PLoS One. 10:e01283102015. View Article : Google Scholar : PubMed/NCBI

59 

Shkriabai N, Patil SS, Hess S, Budihas SR, Craigie R, Burke TR Jr, Le Grice SF and Kvaratskhelia M: Identification of an inhibitor-binding site to HIV-1 integrase with affinity acetylation and mass spectrometry. Proc Natl Acad Sci USA. 101:6894–6899. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Du L, Zhao YX, Yang LM, Zheng YT, Tang Y, Shen X and Jiang HL: Symmetrical 1-pyrrolidineacetamide showing anti-HIV activity through a new binding site on HIV-1 integrase. Acta Pharmacol Sin. 29:1261–1267. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Ge H, Si Y and Roeder RG: Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 17:6723–6729. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z and Engelborghs Y: LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem. 278:33528–33539. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Llano M, Delgado S, Vanegas M and Poeschla EM: Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J Biol Chem. 279:55570–55577. 2004. View Article : Google Scholar : PubMed/NCBI

64 

De Rijck J, Vandekerckhove L, Gijsbers R, Hombrouck A, Hendrix J, Vercammen J, Engelborghs Y, Christ F and Debyser Z: Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J Virol. 80:11498–11509. 2006. View Article : Google Scholar : PubMed/NCBI

65 

Cherepanov P, Ambrosio ALB, Rahman S, Ellenberger T and Engelman A: Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA. 102:17308–17313. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Du L, Zhao Y, Chen J, Yang L, Zheng Y, Tang Y, Shen X and Jiang H: D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75. Biochem Biophys Res Commun. 375:139–144. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, et al: Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol. 6:442–448. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Fader LD, Malenfant E, Parisien M, Carson R, Bilodeau F, Landry S, Pesant M, Brochu C, Morin S, Chabot C, et al: Discovery of BI 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. ACS Med Chem Lett. 5:422–427. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y, et al: New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem. 287:21189–21203. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Melek M, Jones JM, O'Dea MH, Pais G, Burke TR Jr, Pommier Y, Neamati N and Gellert M: Effect of HIV integrase inhibitors on the RAG1/2 recombinase. Proc Natl Acad Sci USA. 99:134–137. 2002. View Article : Google Scholar : PubMed/NCBI

71 

Goldgur Y, Craigie R, Cohen GH, Fujiwara T, Yoshinaga T, Fujishita T, Sugimoto H, Endo T, Murai H and Davies DR: Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: A platform for antiviral drug design. Proc Natl Acad Sci USA. 96:13040–13043. 1999. View Article : Google Scholar : PubMed/NCBI

72 

de Miguel R, Montejano R, Stella-Ascariz N and Arribas JR: A safety evaluation of raltegravir for the treatment of HIV. Expert Opin Drug Saf. 17:217–223. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Huhn GD, Badri S, Vibhakar S, Tverdek F, Crank C, Lubelchek R, Max B, Simon D, Sha B, Adeyemi O, et al: Early development of non-hodgkin lymphoma following initiation of newer class antiretroviral therapy among HIV-infected patients - implications for immune reconstitution. AIDS Res Ther. 7:442010. View Article : Google Scholar : PubMed/NCBI

74 

Steigbigel RT, Cooper DA, Kumar PN, Eron JE, Schechter M, Markowitz M, Loutfy MR, Lennox JL, Gatell JM, Rockstroh JK, et al BENCHMRK Study Teams, : Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med. 359:339–354. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Barbaro G and Barbarini G: HIV infection and cancer in the era of highly active antiretroviral therapy (Review). Oncol Rep. 17:1121–1126. 2007.PubMed/NCBI

76 

Gillead Sciences: sNDA 207561/S-014. Genvoya (elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide). Clinical and Cross-Discipline Team Leader Review.

77 

Huye LE, Purugganan MM, Jiang M-M and Roth DB: Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol Cell Biol. 22:3460–3473. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Davies DR, Goryshin IY, Reznikoff WS and Rayment I: Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science. 289:77–85. 2000. View Article : Google Scholar : PubMed/NCBI

79 

Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM and Reznikoff WS: Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors. Antimicrob Agents Chemother. 49:2035–2043. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Czyz A, Stillmock KA, Hazuda DJ and Reznikoff WS: Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors. Biochemistry. 46:10776–10789. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Koh Y, Matreyek KA and Engelman A: Differential sensitivities of retroviruses to integrase strand transfer inhibitors. J Virol. 85:3677–3682. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Beck-Engeser GB, Eilat D, Harrer T, Jäck HM and Wabl M: Early onset of autoimmune disease by the retroviral integrase inhibitor raltegravir. Proc Natl Acad Sci USA. 106:20865–20870. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Stetson DB, Ko JS, Heidmann T and Medzhitov R: Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 134:587–598. 2008. View Article : Google Scholar : PubMed/NCBI

84 

Wolkowicz UM, Morris ER, Robson M, Trubitsyna M and Richardson JM: Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir. ACS Chem Biol. 9:743–751. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Shaheen M, Williamson E, Nickoloff J, Lee SH and Hromas R: Metnase/SETMAR: A domesticated primate transposase that enhances DNA repair, replication, and decatenation. Genetica. 138:559–566. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Williamson EA, Damiani L, Leitao A, Hu C, Hathaway H, Oprea T, Sklar L, Shaheen M, Bauman J, Wang W, et al: Targeting the transposase domain of the DNA repair component Metnase to enhance chemotherapy. Cancer Res. 72:6200–6208. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Marino-Merlo F, Mastino A, Grelli S, Hermine O, Bazarbachi A and Macchi B: Future Perspectives on Drug Targeting in Adult T Cell Leukemia-Lymphoma. Front Microbiol. 9:9252018. View Article : Google Scholar : PubMed/NCBI

88 

Rabaaoui S, Zouhiri F, Lançon A, Leh H, d'Angelo J and Wattel E: Inhibitors of strand transfer that prevent integration and inhibit human T-cell leukemia virus type 1 early replication. Antimicrob Agents Chemother. 52:3532–3541. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, Watanabe Y, Ohata Y, Doi S, Sato M, et al: Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 82:764–774. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Passos DO, Li M, Yang R, Rebensburg SV, Ghirlando R, Jeon Y, Shkriabai N, Kvaratskhelia M, Craigie R and Lyumkis D: Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science. 355:89–92. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mușat MG, Nițulescu GM, Surleac M, Tsatsakis A, Spandidos DA and Margină D: HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review). Mol Med Rep 20: 4749-4762, 2019.
APA
Mușat, M.G., Nițulescu, G.M., Surleac, M., Tsatsakis, A., Spandidos, D.A., & Margină, D. (2019). HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review). Molecular Medicine Reports, 20, 4749-4762. https://doi.org/10.3892/mmr.2019.10777
MLA
Mușat, M. G., Nițulescu, G. M., Surleac, M., Tsatsakis, A., Spandidos, D. A., Margină, D."HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review)". Molecular Medicine Reports 20.6 (2019): 4749-4762.
Chicago
Mușat, M. G., Nițulescu, G. M., Surleac, M., Tsatsakis, A., Spandidos, D. A., Margină, D."HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review)". Molecular Medicine Reports 20, no. 6 (2019): 4749-4762. https://doi.org/10.3892/mmr.2019.10777
Copy and paste a formatted citation
x
Spandidos Publications style
Mușat MG, Nițulescu GM, Surleac M, Tsatsakis A, Spandidos DA and Margină D: HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review). Mol Med Rep 20: 4749-4762, 2019.
APA
Mușat, M.G., Nițulescu, G.M., Surleac, M., Tsatsakis, A., Spandidos, D.A., & Margină, D. (2019). HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review). Molecular Medicine Reports, 20, 4749-4762. https://doi.org/10.3892/mmr.2019.10777
MLA
Mușat, M. G., Nițulescu, G. M., Surleac, M., Tsatsakis, A., Spandidos, D. A., Margină, D."HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review)". Molecular Medicine Reports 20.6 (2019): 4749-4762.
Chicago
Mușat, M. G., Nițulescu, G. M., Surleac, M., Tsatsakis, A., Spandidos, D. A., Margină, D."HIV‑1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAG‑mediated recombination (Review)". Molecular Medicine Reports 20, no. 6 (2019): 4749-4762. https://doi.org/10.3892/mmr.2019.10777
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team