Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2020 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2020 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II

  • Authors:
    • Huijun Cheng
    • Jiaoxia Li
    • Qiyan Wu
    • Xiaodong Zheng
    • Yongqiang Gao
    • Qiaofen Yang
    • Ningxi Sun
    • Meiqiong He
    • Youjun Zhou
  • View Affiliations / Copyright

    Affiliations: Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
    Copyright: © Cheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 806-814
    |
    Published online on: December 11, 2019
       https://doi.org/10.3892/mmr.2019.10877
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Angiotensin II (Ang II) is an important bioactive peptide in the renin‑angiotensin system, and it can contribute to cell proliferation and cardiac hypertrophy. Dysfunctions in transient receptor potential canonical (TRPC) channels are involved in many types of cardiovascular diseases. The aim of the present study was to investigate the role of the TRPC channel inhibitor SKF‑96365 in cardiomyocyte hypertrophy induced by Ang II and the potential mechanisms of SKF‑96365. H9c2 cells were treated with different concentrations of Ang II. The expression levels of cardiomyocyte hypertrophy markers and TRPC channel‑related proteins were also determined. The morphology and surface area of the H9c2 cells, the expression of hypertrophic markers and TRPC channel‑related proteins and the [3H] leucine incorporation rate were detected in the Ang II‑treated H9c2 cells following treatment with the TRPC channel inhibitor SKF‑96365. The intracellular Ca2+ concentration was tested by flow cytometry. The present results suggested that the surface area of H9c2 cells treated with Ang II was significantly increased compared with untreated H9c2 cells. The fluorescence intensity of α‑actinin, the expression of hypertrophic markers and TRPC‑related proteins, the [3H] leucine incorporation rate and the intracellular Ca2+ concentration were all markedly increased in the Ang II‑treated H9c2 cells but decreased following SKF‑96365 treatment. The present results suggested that Ang II induced cardiomyocyte hypertrophy in H9c2 cells and that the TRPC pathway may be involved in this process. Therefore, SKF‑96365 can inhibit cardiomyocyte hypertrophy induced by Ang II by suppressing the TRPC pathway. The present results indicated that TRPC may be a therapeutic target for the development of novel drugs to treat cardiac hypertrophy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Messerli FH, Aristizabal D and Soria F: Reduction of left ventricular hypertrophy: How beneficial. Am Heart J. 125:1520–1524. 1993. View Article : Google Scholar : PubMed/NCBI

2 

Oka T, Akazawa H, Naito AT and Komuro I: Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circ Res. 114:565–571. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O and Coffman TM: Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA. 92:3521–3525. 1995. View Article : Google Scholar : PubMed/NCBI

4 

Sadoshima J, Xu Y, Slayter HS and Izumo S: Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 75:977–984. 1993. View Article : Google Scholar : PubMed/NCBI

5 

Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K and Iwao H: Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension. 25:1252–1259. 1995. View Article : Google Scholar : PubMed/NCBI

6 

Mollmann H, Schmidt-Schweda S, Nef H, Möllmann S, Burstin JV, Klose S, Elsässer A and Holubarsch CJ: Contractile effects of angiotensin and endothelin in failing and non-failing human hearts. Int J Cardiol. 114:34–40. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Fabris B, Candido R, Bortoletto M, Zentilin L, Sandri M, Fior F, Toffoli B, Stebel M, Bardelli M, Belgrado D, et al: Dose and time-dependent apoptotic effects by angiotensin II infusion on left ventricular cardiomyocytes. J Hypertens. 25:1481–1490. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Guo H, Liu B, Hou L, The E, Li G, Wang D, Jie Q, Che W and Wei Y: The role of mAKAPβ in the process of cardiomyocyte hypertrophy induced by angiotensin II. Int J Mol Med. 35:1159–1168. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Bai Y, Sun X, Chu Q, Li A, Qin Y, Li Y, Yue E, Wang H, Li G, Zahra SM, et al: Caspase-1 regulates Ang II-induced cardiomyocyte hypertrophy via up-regulation of IL-1β. Biosci Rep. Apr 27–2018.(Epub ahead of print). View Article : Google Scholar

10 

Kimes BW and Brandt BL: Properties of a clonal muscle cell line from rat heart. Exp Cell Res. 98:367–381. 1976. View Article : Google Scholar : PubMed/NCBI

11 

Cosens DJ and Manning A: Abnormal electroretinogram from a Drosophila mutant. Nature. 224:285–287. 1969. View Article : Google Scholar : PubMed/NCBI

12 

Pak WL, Grossfield J and Arnold KS: Mutants of the visual pathway of Drosophila melanogaster. Nature. 227:518–520. 1970. View Article : Google Scholar : PubMed/NCBI

13 

Hotta Y and Benzer S: Genetic dissection of the Drosophila nervous system by means of mosaics. Proc Natl Acad Sci USA. 67:1156–1163. 1970. View Article : Google Scholar : PubMed/NCBI

14 

Nilius B and Szallasi A: Transient receptor potential channels as drug targets: From the science of basic research to the art of medicine. Pharmacol Rev. 66:676–814. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, et al: A unified nomenclature for the superfamily of TRP cation channels. Mol Cell. 9:229–231. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Jiang Y, Huang H, Liu P, Wei H, Zhao H, Feng Y, Wang W and Niu W: Expression and localization of TRPC proteins in rat ventricular myocytes at various developmental stages. Cell Tissue Res. 355:201–212. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Mu YP, Lin DC, Yan FR, Jiao HX, Gui LX and Lin MJ: Alterations in caveolin-1 expression and receptor-operated Ca2+ entry in the aortas of rats with pulmonary hypertension. Cell Physiol Biochem. 39:438–452. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Huynh KW, Cohen MR, Chakrapani S, Holdaway HA, Stewart PL and Moiseenkova-Bell VY: Structural insight into the assembly of TRPV channels. Structure. 22:260–268. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Tai Y, Yang S, Liu Y and Shao W: TRPC Channels in Health and Disease. Adv Exp Med Biol. 976:35–45. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Kwon J, An H, Sa M, Won J, Shin JI and Lee CJ: Orai1 and orai3 in combination with stim1 mediate the majority of store-operated calcium entry in astrocytes. Exp Neurobiol. 26:42–54. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Li N, Si B, Ju JF, Zhu M, You F, Wang D, Ren J, Ning YS, Zhang FQ, Dong K, et al: Nicotine induces cardiomyocyte hypertrophy through trpc3-mediated Ca2+ NFAT signalling pathway. Can J Cardiol. 32:1260.e1–1260.e10. 2016. View Article : Google Scholar

22 

Antigny F, Sabourin J, Sauc S, Bernheim L, Koenig S and Frieden M: TRPC1 and TRPC4 channels functionally interact with STIM1L to promote myogenesis and maintain fast repetitive Ca2+ release in human myotubes. Biochim Biophys Acta Mol Cell Res. 1864:806–813. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Ambudkar IS, de Souza LB and Ong HL: TRPC1, Orai1, and STIM1 in SOCE: Friends in tight spaces. Cell Calcium. 63:33–39. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Pecoraro M, Pinto A and Popolo A: Mitochondria and cardiovascular disease: A Brief Account. Crit Rev Eukaryot Gene Expr. 29:295–304. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Yue Z, Xie J, Yu AS, Stock J, Du J and Yue L: Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol. 308:H157–182. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Eder P: Cardiac Remodeling and Disease: SOCE and TRPC Signaling in Cardiac Pathology. Adv Exp Med Biol. 993:505–521. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Falcón D, Galeano-Otero I, Calderón-Sánchez E, Del Toro R, Martín-Bórnez M, Rosado JA, Hmadcha A and Smani T: TRP Channels: Current perspectives in the adverse cardiac remodeling. Front Physiol. 10:1592019. View Article : Google Scholar : PubMed/NCBI

28 

Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T and Ito H: Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol. 42:498–507. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Sunggip C, Shimoda K, Oda S, Tanaka T, Nishiyama K, Mangmool S, Nishimura A, Numaga-Tomita T and Nishida M: TRPC5-eNOS axis negatively regulates ATP-induced cardiomyocyte hypertrophy. Front Pharmacol. 9:5232018. View Article : Google Scholar : PubMed/NCBI

30 

Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA and Olson EN: TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest. 116:3114–3126. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y and Makino N: Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem. 294:205–215. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Lyon RC, Zanella F, Omens JH and Sheikh F: Mechanotransduction in cardiac hypertrophy and failure. Circ Res. 116:1462–1476. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Hou J and Kang YJ: Regression of pathological cardiac hypertrophy: Signaling pathways and therapeutic targets. Pharmacol Ther. 135:337–354. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Li H: TRP Channel Classification. Adv Exp Med Biol. 976:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Sawamura S, Shirakawa H, Nakagawa T, Mori Y and Kaneko S: Frontiers in Neuroscience TRP Channels in the Brain: What Are They There For? Neurobiology of TRP Channels. Emir TLR: 2nd. CRC Press/Taylor & Francis; Boca Raton, FL: pp. 295–322. 2017, View Article : Google Scholar

36 

Caterina MJ and Pang Z: TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals (Basel). 9(pii): E772016. View Article : Google Scholar : PubMed/NCBI

37 

Pedersen SF, Owsianik G and Nilius B: TRP channels: An overview. Cell Calcium. 38:233–252. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Lee HC, Yoon SY, Lykke-Hartmann K, Fissore RA and Carvacho I: TRPV3 channels mediate Ca2+ influx induced by 2-APB in mouse eggs. Cell Calcium. 59:21–31. 2016. View Article : Google Scholar : PubMed/NCBI

39 

El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N and Capiod T: Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology. 47:2068–2077. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Song MY and Yuan JX: Introduction to TRP channels: Structure, function, and regulation. Adv Exp Med Biol. 661:99–108. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Greka A, Navarro B, Oancea E, Duggan A and Clapham DE: TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci. 6:837–845. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Lepage PK and Boulay G: Molecular determinants of TRP channel assembly. Biochem Soc Trans. 35:81–83. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Qi H, Ren J, E M, Zhang Q, Cao Y, Ba L, Song C, Shi P, Fu B and Sun H: MiR-103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV3 channel in rat hearts. J Cell Mol Med. 23:1926–1939. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Wang Z, Xu Y, Wang M, Ye J, Liu J, Jiang H, Ye D and Wan J: TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice. EBioMedicine. 36:54–62. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, et al: TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res. 105:1023–1030. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, et al: Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res. 106:1849–1860. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Watanabe H, Iino K, Ohba T and Ito H: Possible involvement of TRP channels in cardiac hypertrophy and arrhythmia. Curr Top Med Chem. 13:283–294. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Eder P and Molkentin JD: TRPC channels as effectors of cardiac hypertrophy. Circ Res. 108:265–272. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Ding J, Xiao Y, Lu D, Du YR, Cui XY and Chen J: Effects of SKF-96365, a TRPC inhibitor, on melittin-induced inward current and intracellular Ca2+ rise in primary sensory cells. Neurosci Bull. 27:135–142. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh BK, McCarthy SA, Moores KE and Rink TJ: SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 271:515–522. 1990. View Article : Google Scholar : PubMed/NCBI

51 

Chen KH, Liu H, Yang L, Jin MW and Li GR: SKF-96365 strongly inhibits voltage-gated sodium current in rat ventricular myocytes. Pflugers Arch. 467:1227–1236. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Hartman JC: The role of bradykinin and nitric oxide in the cardioprotective action of ACE inhibitors. Ann Thorac Surg. 60:789–792. 1995. View Article : Google Scholar : PubMed/NCBI

53 

Weber KT, Brilla CG and Janicki JS: Myocardial fibrosis: Functional significance and regulatory factors. Cardiovasc Res. 27:341–348. 1993. View Article : Google Scholar : PubMed/NCBI

54 

Rohini A, Agrawal N, Koyani CN and Singh R: Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res. 61:269–280. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T and Kurose H: TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 25:5305–5316. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, et al: Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation. 126:2051–2064. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Gao H, Wang F, Wang W, Makarewich CA, Zhang H, Kubo H, Berretta RM, Barr LA, Molkentin JD and Houser SR: Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling. J Mol Cell Cardiol. 53:657–667. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Singh A, Hildebrand ME, Garcia E and Snutch TP: The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol. 160:1464–1475. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cheng H, Li J, Wu Q, Zheng X, Gao Y, Yang Q, Sun N, He M and Zhou Y: Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II. Mol Med Rep 21: 806-814, 2020.
APA
Cheng, H., Li, J., Wu, Q., Zheng, X., Gao, Y., Yang, Q. ... Zhou, Y. (2020). Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II. Molecular Medicine Reports, 21, 806-814. https://doi.org/10.3892/mmr.2019.10877
MLA
Cheng, H., Li, J., Wu, Q., Zheng, X., Gao, Y., Yang, Q., Sun, N., He, M., Zhou, Y."Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II". Molecular Medicine Reports 21.2 (2020): 806-814.
Chicago
Cheng, H., Li, J., Wu, Q., Zheng, X., Gao, Y., Yang, Q., Sun, N., He, M., Zhou, Y."Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II". Molecular Medicine Reports 21, no. 2 (2020): 806-814. https://doi.org/10.3892/mmr.2019.10877
Copy and paste a formatted citation
x
Spandidos Publications style
Cheng H, Li J, Wu Q, Zheng X, Gao Y, Yang Q, Sun N, He M and Zhou Y: Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II. Mol Med Rep 21: 806-814, 2020.
APA
Cheng, H., Li, J., Wu, Q., Zheng, X., Gao, Y., Yang, Q. ... Zhou, Y. (2020). Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II. Molecular Medicine Reports, 21, 806-814. https://doi.org/10.3892/mmr.2019.10877
MLA
Cheng, H., Li, J., Wu, Q., Zheng, X., Gao, Y., Yang, Q., Sun, N., He, M., Zhou, Y."Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II". Molecular Medicine Reports 21.2 (2020): 806-814.
Chicago
Cheng, H., Li, J., Wu, Q., Zheng, X., Gao, Y., Yang, Q., Sun, N., He, M., Zhou, Y."Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II". Molecular Medicine Reports 21, no. 2 (2020): 806-814. https://doi.org/10.3892/mmr.2019.10877
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team