Open Access

Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis

  • Authors:
    • Tingting Long
    • Zijing Liu
    • Xing Zhou
    • Shuang Yu
    • Hui Tian
    • Yixi Bao
  • View Affiliations

  • Published online on: January 18, 2019     https://doi.org/10.3892/mmr.2019.9878
  • Pages: 2029-2040
  • Copyright: © Long et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Lung cancer is the leading cause of cancer‑associated mortality worldwide. The aim of the present study was to identify the differentially expressed genes (DEGs) and enriched pathways in lung cancer by bioinformatics analysis, and to provide potential targets for diagnosis and treatment. Valid microarray data of 31 pairs of lung cancer tissues and matched normal samples (GSE19804) were obtained from the Gene Expression Omnibus database. Significance analysis of the gene expression profile was used to identify DEGs between cancer tissues and normal tissues, and a total of 1,970 DEGs, which were significantly enriched in biological processes, were screened. Through the Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, 77 KEGG pathways associated with lung cancer were identified, among which the Toll‑like receptor pathway was observed to be important. Protein‑protein interaction network analysis extracted 1,770 nodes and 10,667 edges, and identified 10 genes with key roles in lung cancer with highest degrees, hub centrality and betweenness. Additionally, the module analysis of protein‑protein interactions revealed that ‘chemokine signaling pathway’, ‘cell cycle’ and ‘pathways in cancer’ had a close association with lung cancer. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the development and progression of lung cancer, and certain genes (including advanced glycosylation end‑product specific receptor and epidermal growth factor receptor) may be used as candidate target molecules to diagnose, monitor and treat lung cancer.

References

1 

Cancer Genome Atlas Research Network: Comprehensive molecular profiling of lung adenocarcinoma. Nature. 511:543–550. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, et al: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet. 389:1907–1918. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Wang LQ, Zhao LH and Qiao YZ: Identification of potential therapeutic targets for lung cancer by bioinformatics analysis. Mol Med Rep. 13:1975–1982. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Aran V, Victorino AP, Thuler LC and Ferreira CG: Colorectal cancer: Epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 15:195–203. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Zhang M, Gao C, Yang Y, Li G, Dong J, Ai Y, Ma Q and Li W: MiR-424 promotes non-small cell lung cancer progression and metastasis through regulating the tumor suppressor gene TNFAIP1. Cell Physiol Biochem. 42:211–221. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Singleton KR, Hinz TK, Kleczko EK, Marek LA, Kwak J, Harp T, Kim J, Tan AC and Heasley LE: Kinome RNAi screens reveal synergistic targeting of MTOR and FGFR1 pathways for treatment of lung cancer and HNSCC. Cancer Res. 75:4398–4406. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Liang B, Li C and Zhao J: Identification of key pathways and genes in colorectal cancer using bioinformatics analysis. Med Oncol. 33:1112016. View Article : Google Scholar : PubMed/NCBI

9 

Descotes F, Dessen P, Bringuier PP, Decaussin M, Martin PM, Adams M, Villers A, Lechevallier E, Rebillard X, Rodriguez-Lafrasse C, et al: Microarray gene expression profiling and analysis of bladder cancer supports the sub-classification of T1 tumours into T1a and T1b stages. BJU Int. 113:333–342. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Sakashita H, Inoue H, Akamine S, Ishida T, Inase N, Shirao K, Mori M and Mimori K: Identification of the NEDD4L gene as a prognostic marker by integrated microarray analysis of copy number and gene expression profiling in non-small cell lung cancer. Ann Surg Oncol. 20 Suppl 3:S590–S598. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Yu L, Wang L and Chen S: Dual character of Toll-like receptor signaling: Pro-tumorigenic effects and anti-tumor functions. Biochim Biophys Acta 1835. 144–154. 2013.

12 

Pinto A, Morello S and Sorrentino R: Lung cancer and Toll-like receptors. Cancer Immunol Immunother. 60:1211–1220. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Lu TP, Tsai MH, Lee JM, Hsu CP, Chen PC, Lin CW, Shih JY, Yang PC, Hsiao CK, Lai LC and Chuang EY: Identification of a novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women. Cancer Epidemiol Biomarkers Prev. 19:2590–2597. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Hu WP, Zeng YY, Zuo YH and Zhang J: Identification of novel candidate genes involved in the progression of emphysema by bioinformatic methods. Int J Chron Obstruct Pulmon Dis. 13:3733–3747. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Gautier L, Cope L, Bolstad BM and Irizarry RA: Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Hardcastle TJ: Generalised empirical Bayesian methods for discovery of differential data in high-throughput biology. Bioinformatics. 32:195–202. 2016.PubMed/NCBI

17 

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35:W169–W175. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C and Jensen LJ: STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41:D808–D815. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Bader GD and Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI

20 

Carter SL, Eklund AC, Kohane IS, Harris LN and Szallasi Z: A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 38:1043–1048. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Dela Cruz CS, Tanoue LT and Matthay RA: Lung cancer: Epidemiology, etiology, and prevention. Clin Chest Med. 32:605–644. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Wang GZ, Cheng X, Li XC, Liu YQ, Wang XQ, Shi X, Wang ZY, Guo YQ, Wen ZS, Huang YC and Zhou GB: Tobacco smoke induces production of chemokine CCL20 to promote lung cancer. Cancer Lett. 363:60–70. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Masuda K, Kuwano Y, Nishida K and Rokutan K: Application of DNA microarray technology to gerontological studies. Methods Mol Biol 1048. 285–308. 2013. View Article : Google Scholar

24 

Chew SK, Lu D, Campos LS, Scott KL, Saci A, Wang J, Collinson A, Raine K, Hinton J, Teague JW, et al: Polygenic in vivo validation of cancer mutations using transposons. Genome Biol. 15:4552014. View Article : Google Scholar : PubMed/NCBI

25 

Zhu X, Zhou L, Li R, Shen Q, Cheng H, Shen Z and Zhu H: AGER promotes proliferation and migration in cervical cancer. Biosci Rep. 38:BSR201713292018. View Article : Google Scholar : PubMed/NCBI

26 

Kang R, Tang D, Lotze MT and Zeh HJ III: AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy. 8:989–991. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Pan Z, Liu L, Nie W, Miggin S, Qiu F, Cao Y, Chen J, Yang B, Zhou Y, Lu J and Yang L: Long non-coding RNA AGER-1 functionally upregulates the innate immunity gene AGER and approximates its anti-tumor effect in lung cancer. Mol Carcinog. 57:305–318. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Yamaguchi K, Iwamoto H, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Ohshimo S, Fujitaka K, Hamada H and Hattori N: AGER rs2070600 polymorphism elevates neutrophil-lymphocyte ratio and mortality in metastatic lung adenocarcinoma. Oncotarget. 8:94382–94392. 2017.PubMed/NCBI

29 

Wang X, Cui E, Zeng H, Hua F, Wang B, Mao W and Feng X: RAGE genetic polymorphisms are associated with risk, chemotherapy response and prognosis in patients with advanced NSCLC. PLoS One. 7:e437342012. View Article : Google Scholar : PubMed/NCBI

30 

Evan GI and Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature. 411:342–348. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Kolch W, Halasz M, Granovskaya M and Kholodenko BN: The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer. 15:515–527. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Lv M and Wang L: Comprehensive analysis of genes, pathways, and TFs in nonsmoking Taiwan females with lung cancer. Exp Lung Res. 41:74–83. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Ajona D, Pajares MJ, Corrales L, Perez-Gracia JL, Agorreta J, Lozano MD, Torre W, Massion PP, de-Torres JP, Jantus-Lewintre E, et al: Investigation of complement activation product c4d as a diagnostic and prognostic biomarker for lung cancer. J Natl Cancer Inst. 105:1385–1393. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Fonseca FL, Azzalis LA, Feder D, Nogoceke E, Junqueira VB, Valenti VE and de Abreu LC: Adhesion molecules affected by treatment of lung cancer cells with epidermal growth factor. Lung. 189:383–389. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Wang H, Zhu Y, Zhao M, Wu C, Zhang P, Tang L, Zhang H, Chen X, Yang Y and Liu G: miRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin β1 and matrix metalloproteinase 2 (MMP2). PLoS One. 8:e701922013. View Article : Google Scholar : PubMed/NCBI

36 

Ungewiss C, Rizvi ZH, Roybal JD, Peng DH, Gold KA, Shin DH, Creighton CJ and Gibbons DL: The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci Rep. 6:186522016. View Article : Google Scholar : PubMed/NCBI

37 

Rakoff-Nahoum S and Medzhitov R: Toll-like receptors and cancer. Nat Rev Cancer. 9:57–63. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Kawai T and Akira S: The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol. 11:373–384. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Chen R, Alvero AB, Silasi DA, Steffensen KD and Mor G: Cancers take their Toll-the function and regulation of Toll-like receptors in cancer cells. Oncogene. 27:225–233. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Huang B, Zhao J, Unkeless JC, Feng ZH and Xiong H: TLR signaling by tumor and immune cells: A double-edged sword. Oncogene. 27:218–224. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Li D, Jin Y, Sun Y, Lei J and Liu C: Knockdown of toll-like receptor 4 inhibits human NSCLC cancer cell growth and inflammatory cytokine secretion in vitro, in vivo. Int J Oncol. 45:813–821. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Jo U, Park KH, Whang YM, Sung JS, Won NH, Park JK and Kim YH: EGFR endocytosis is a novel therapeutic target in lung cancer with wild-type EGFR. Oncotarget. 5:1265–1278. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Sequist LV and Lynch TJ: EGFR tyrosine kinase inhibitors in lung cancer: An evolving story. Annu Rev Med. 59:429–442. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Fang S and Wang Z: EGFR mutations as a prognostic and predictive marker in non-small-cell lung cancer. Drug Des Devel Ther. 8:1595–1611. 2014.PubMed/NCBI

45 

Moschini I, Dell'Anna C, Losardo PL, Bordi P, D'Abbiero N and Tiseo M: Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors. Future Oncol. 11:2329–2342. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Li Y, Yang Z, Li W, Xu S, Wang T, Wang T, Niu M, Zhang S, Jia L and Li S: TOPK promotes lung cancer resistance to EGFR tyrosine kinase inhibitors by phosphorylating and activating c-Jun. Oncotarget. 7:6748–6764. 2016.PubMed/NCBI

47 

Durchdewald M, Angel P and Hess J: The transcription factor Fos: A Janus-type regulator in health and disease. Histol Histopathol. 24:1451–1461. 2009.PubMed/NCBI

48 

Ataie-Kachoie P, Pourgholami MH and Morris DL: Inhibition of the IL-6 signaling pathway: A strategy to combat chronic inflammatory diseases and cancer. Cytokine Growth Factor Rev. 24:163–173. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Kumari N, Dwarakanath BS, Das A and Bhatt AN: Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37:11553–11572. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Nilsson MB, Langley RR and Fidler IJ: Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res. 65:10794–10800. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Heikkilä K, Ebrahim S and Lawlor DA: Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer. 44:937–945. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Tai MC, Kajino T, Nakatochi M, Arima C, Shimada Y, Suzuki M, Miyoshi H, Yatabe Y, Yanagisawa K and Takahashi T: miR-342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer. Carcinogenesis. 36:1464–1473. 2015.PubMed/NCBI

53 

Gabay M, Li Y and Felsher DW: MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 4:a0142412014. View Article : Google Scholar : PubMed/NCBI

54 

Sica A, Allavena P and Mantovani A: Cancer related inflammation: The macrophage connection. Cancer Lett. 267:204–215. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Yu Q, Guo Q, Chen L and Liu S: Clinicopathological significance and potential drug targeting of CDH1 in lung cancer: A meta-analysis and literature review. Drug Des Devel Ther. 9:2171–2178. 2015.PubMed/NCBI

56 

Thomas SM and Brugge JS: Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 13:513–609. 1997. View Article : Google Scholar : PubMed/NCBI

57 

Zhen Y, Liu J, Huang Y, Wang Y, Li W and Wu J: miR-133b inhibits cell growth, migration, and invasion by targeting MMP9 in non-small cell lung cancer. Oncol Res. 25:1109–1116. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Zhang C, Elkahloun AG, Robertson M, Gills JJ, Tsurutani J, Shih JH, Fukuoka J, Hollander MC, Harris CC, Travis WD, et al: Loss of cytoplasmic CDK1 predicts poor survival in human lung cancer and confers chemotherapeutic resistance. PLoS One. 6:e238492011. View Article : Google Scholar : PubMed/NCBI

59 

Liu X, Su L and Liu X: Loss of CDH1 up-regulates epidermal growth factor receptor via phosphorylation of YBX1 in non-small cell lung cancer cells. FEBS Lett. 587:3995–4000. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Behrens C, Lin HY, Lee JJ, Raso MG, Hong WK, Wistuba II and Lotan R: Immunohistochemical expression of basic fibroblast growth factor and fibroblast growth factor receptors 1 and 2 in the pathogenesis of lung cancer. Clin Cancer Res. 14:6014–6022. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Ribatti D, Vacca A, Rusnati M and Presta M: The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies. Cytokine Growth Factor Rev. 18:327–334. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Zhang L, Yu M, Deng J, Lv X, Liu J, Xiao Y, Yang W, Zhang Y and Li C: Chemokine signaling pathway involved in CCL2 expression in patients with rheumatoid arthritis. Yonsei Med J. 56:1134–1142. 2015. View Article : Google Scholar : PubMed/NCBI

63 

González-Motos V, Jürgens C, Ritter B, Kropp KA, Durán V, Larsen O, Binz A, Ouwendijk WJD, Lenac Rovis T, Jonjic S, et al: Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathog. 13:e10063462017. View Article : Google Scholar : PubMed/NCBI

64 

Griffith JW, Sokol CL and Luster AD: Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol. 32:659–702. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Franciszkiewicz K, Boissonnas A, Boutet M, Combadière C and Mami-Chouaib F: Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immunonse. Cancer Res. 72:6325–6332. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Hsiao CJ, Hsiao G, Chen WL, Wang SW, Chiang CP, Liu LY, Guh JH, Lee TH and Chung CL: Cephalochromin induces G0/G1 cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by inflicting mitochondrial disruption. J Nat Prod. 77:758–765. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Shcherba M, Liang Y, Fernandes D, Perez-Soler R and Cheng H: Cell cycle inhibitors for the treatment of NSCLC. Expert Opin Pharmacother. 15:991–1004. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

March 2019
Volume 19 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Long, T., Liu, Z., Zhou, X., Yu, S., Tian, H., & Bao, Y. (2019). Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis. Molecular Medicine Reports, 19, 2029-2040. https://doi.org/10.3892/mmr.2019.9878
MLA
Long, T., Liu, Z., Zhou, X., Yu, S., Tian, H., Bao, Y."Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis". Molecular Medicine Reports 19.3 (2019): 2029-2040.
Chicago
Long, T., Liu, Z., Zhou, X., Yu, S., Tian, H., Bao, Y."Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis". Molecular Medicine Reports 19, no. 3 (2019): 2029-2040. https://doi.org/10.3892/mmr.2019.9878