|
1
|
Bradley TR and Metcalf D: The growth of
mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci.
44:287–299. 1966. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ichikawa Y, Pluznik DH and Sachs L: In
vitro control of the development of macrophage and granulocyte
colonies. Proc Natl Acad Sci USA. 56:488–495. 1966. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Stanley ER and Heard PM: Factors
regulating macrophage production and growth. Purification and some
properties of the colony stimulating factor from medium conditioned
by mouse L cells. J Biol Chem. 252:4305–4312. 1977.PubMed/NCBI
|
|
4
|
Burgess AW, Camakaris J and Metcalf D:
Purification and properties of colony-stimulating factor from mouse
lung-conditioned medium. J Biol Chem. 252:1998–2003.
1977.PubMed/NCBI
|
|
5
|
Nicola NA, Metcalf D, Matsumoto M and
Johnson GR: Purification of a factor inducing differentiation in
murine myelomonocytic leukemia cells. Identification as granulocyte
colony-stimulating factor. J Biol Chem. 258:9017–9023.
1983.PubMed/NCBI
|
|
6
|
Ihle JN, Keller J, Henderson L, Klein F
and Palaszynski E: Procedures for the purification of interleukin 3
to homogeneity. J Immunol. 129:2431–2436. 1982.PubMed/NCBI
|
|
7
|
Metcalf D: The colony stimulating factors.
Discovery, development, and clinical applications. Cancer.
65:2185–2195. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fukunaga R, Ishizaka-Ikeda E and Nagata S:
Purification and characterization of the receptor for murine
granulocyte colony-stimulating factor. J Biol Chem.
265:14008–14015. 1990.PubMed/NCBI
|
|
9
|
Demetri GD and Griffin JD: Granulocyte
colony-stimulating factor and its receptor. Blood. 78:2791–2808.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bendall LJ and Bradstock KF: G-CSF: From
granulopoietic stimulant to bone marrow stem cell mobilizing agent.
Cytokine Growth Factor Rev. 25:355–367. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mitchell S, Li X, Woods M, Garcia J,
Hebard-Massey K, Barron R and Samuel M: Comparative effectiveness
of granulocyte colony-stimulating factors to prevent febrile
neutropenia and related complications in cancer patients in
clinical practice: A systematic review. J Oncol Pharm Pract.
22:702–716. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kawano M, Mabuchi S, Matsumoto Y, Sasano
T, Takahashi R, Kuroda H, Kozasa K, Hashimoto K, Isobe A, Sawada K,
et al: The significance of G-CSF expression and myeloid-derived
suppressor cells in the chemoresistance of uterine cervical cancer.
Sci Rep. 5:182172015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Okazaki T, Ebihara S, Asada M, Kanda A,
Sasaki H and Yamaya M: Granulocyte colony-stimulating factor
promotes tumor angiogenesis via increasing circulating endothelial
progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int
Immunol. 18:1–9. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shojaei F, Wu X, Qu X, Kowanetz M, Yu L,
Tan M, Meng YG and Ferrara N: G-CSF-initiated myeloid cell
mobilization and angiogenesis mediate tumor refractoriness to
anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA.
106:6742–6747. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Demers M, Krause DS, Schatzberg D,
Martinod K, Voorhees JR, Fuchs TA, Scadden DT and Wagner DD:
Cancers predispose neutrophils to release extracellular DNA traps
that contribute to cancer-associated thrombosis. Proc Natl Acad Sci
USA. 109:13076–13081. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gomes T, Várady CBS, Lourenço AL, Mizurini
DM, Rondon AMR, Leal AC, Gonçalves BS, Bou-Habib DC, Medei E and
Monteiro RQ: IL-1β blockade attenuates thrombosis in a neutrophil
extracellular trap-dependent breast cancer model. Front Immunol.
10:20882019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hollmén M, Karaman S, Schwager S, Lisibach
A, Christiansen AJ, Maksimow M, Varga Z, Jalkanen S and Detmar M:
G-CSF regulates macrophage phenotype and associates with poor
overall survival in human triple-negative breast cancer.
OncoImmunology. 5:e11151772015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kanda N, Fukushige S, Murotsu T, Yoshida
MC, Tsuchiya M, Asano S, Kaziro Y and Nagata S: Human gene coding
for granulocyte-colony stimulating factor is assigned to the
q21-q22 region of chromosome 17. Somat Cell Mol Genet. 13:679–684.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tsuchiya M, Kaziro Y and Nagata S: The
chromosomal gene structure for murine granulocyte
colony-stimulating factor. Eur J Biochem. 165:7–12. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shannon MF, Pell LM, Lenardo MJ, Kuczek
ES, Occhiodoro FS, Dunn SM and Vadas MA: A novel tumor necrosis
factor-responsive transcription factor which recognizes a
regulatory element in hemopoietic growth factor genes. Mol Cell
Biol. 10:2950–2959. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nagata S, Tsuchiya M, Asano S, Yamamoto O,
Hirata Y, Kubota N, Oheda M, Nomura H and Yamazaki T: The
chromosomal gene structure and two mRNAs for human granulocyte
colony-stimulating factor. EMBO J. 5:575–581. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
He RL, Zhou J, Hanson CZ, Chen J, Cheng N
and Ye RD: Serum amyloid A induces G-CSF expression and
neutrophilia via Toll-like receptor 2. Blood. 113:429–437. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Himes SR, Coles LS, Katsikeros R, Lang RK
and Shannon MF: HTLV-1 tax activation of the GM-CSF and G-CSF
promoters requires the interaction of NF-kB with other
transcription factor families. Oncogene. 8:3189–3197.
1993.PubMed/NCBI
|
|
24
|
Nishizawa M and Nagata S: Regulatory
elements responsible for inducible expression of the granulocyte
colony-stimulating factor gene in macrophages. Mol Cell Biol.
10:2002–2011. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nagata S, Tsuchiya M, Asano S, Kaziro Y,
Yamazaki T, Yamamoto O, Hirata Y, Kubota N, Oheda M, Nomura H, et
al: Molecular cloning and expression of cDNA for human granulocyte
colony-stimulating factor. Nature. 319:415–418. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Akira S, Isshiki H, Sugita T, Tanabe O,
Kinoshita S, Nishio Y, Nakajima T, Hirano T and Kishimoto T: A
nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP
family. EMBO J. 9:1897–1906. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mitchell PJ and Tjian R: Transcriptional
regulation in mammalian cells by sequence-specific DNA binding
proteins. Science. 245:371–378. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shannon MF, Coles LS, Fielke RK, Goodall
GJ, Lagnado CA and Vadas MA: Three essential promoter elements
mediate tumour necrosis factor and interleukin-1 activation of the
granulocyte-colony stimulating factor gene. Growth Factors.
7:181–193. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hareng L, Meergans T, von Aulock S, Volk
HD and Hartung T: Cyclic AMP increases endogenous granulocyte
colony-stimulating factor formation in monocytes and THP-1
macrophages despite attenuated TNF-alpha formation. Eur J Immunol.
33:2287–2296. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nishizawa M, Tsuchiya M, Watanabe-Fukunaga
R and Nagata S: Multiple elements in the promoter of granulocyte
colony-stimulating factor gene regulate its constitutive expression
in human carcinoma cells. J Biol Chem. 265:5897–5902.
1990.PubMed/NCBI
|
|
31
|
Asano M, Nishizawa M and Nagata S: Three
individual regulatory elements of the promoter positively activate
the transcription of the murine gene encoding granulocyte
colony-stimulating factor. Gene. 107:241–246. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Brown CY, Lagnado CA and Goodall GJ: A
cytokine mRNA-destabilizing element that is structurally and
functionally distinct from A+U-rich elements. Proc Natl Acad Sci
USA. 93:13721–13725. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Arakawa T, Horan TP, Leong K, Prestrelski
SJ, Narhi LO and Hu S: Structure and activity of granulocyte
colony-stimulating factor derived from CHO cells containing cDNA
coding for alternatively spliced sequences. Arch Biochem Biophys.
316:285–289. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Souza LM, Boone TC, Gabrilove J, Lai PH,
Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK, et
al: Recombinant human granulocyte colony-stimulating factor:
Effects on normal and leukemic myeloid cells. Science. 232:61–65.
1986. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kubota N, Orita T, Hattori K, Oh-eda M,
Ochi N and Yamazaki T: Structural characterization of natural and
recombinant human granulocyte colony-stimulating factors. J
Biochem. 107:486–492. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hill CP, Osslund TD and Eisenberg D: The
structure of granulocyte-colony-stimulating factor and its
relationship to other growth factors. Proc Natl Acad Sci USA.
90:5167–5171. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Senda T, Shimazu T, Matsuda S, Kawano G,
Shimizu H, Nakamura KT and Mitsui Y: Three-dimensional crystal
structure of recombinant murine interferon-beta. EMBO J.
11:3193–3201. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cheers C, Haigh AM, Kelso A, Metcalf D,
Stanley ER and Young AM: Production of colony-stimulating factors
(CSFs) during infection: Separate determinations of macrophage-,
granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect
Immun. 56:247–251. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vellenga E, Rambaldi A, Ernst TJ,
Ostapovicz D and Griffin JD: Independent regulation of M-CSF and
G-CSF gene expression in human monocytes. Blood. 71:1529–1532.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jones CE and Chan K: Interleukin-17
stimulates the expression of interleukin-8, growth-related
oncogene-alpha, and granulocyte-colony-stimulating factor by human
airway epithelial cells. Am J Respir Cell Mol Biol. 26:748–753.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sano E, Ohashi K, Sato Y, Kashiwagi M,
Joguchi A and Naruse N: A possible role of autogenous IFN-beta for
cytokine productions in human fibroblasts. J Cell Biochem.
100:1459–1476. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jardin F, Vasse M, Debled M, Dominique S,
Courville P, Callonnec F, Buchonnet G, Thiberville L and Tilly H:
Intense paraneoplastic neutrophilic leukemoid reaction related to a
G-CSF-secreting lung sarcoma. Am J Hematol. 80:243–245. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Uemura Y, Kobayashi M, Nakata H, Kubota T,
Saito T, Bandobashi K and Taguchi H: Role of protein kinase C in
expression of granulocyte-colony stimulating factor and granulocyte
macrophage-colony stimulating factor in lung cancer cells. Int J
Mol Med. 16:873–881. 2005.PubMed/NCBI
|
|
44
|
Tachibana M, Miyakawa A, Uchida A, Murai
M, Eguchi K, Nakamura K, Kubo A and Hata JI: Granulocyte
colony-stimulating factor receptor expression on human transitional
cell carcinoma of the bladder. Br J Cancer. 75:1489–1496. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nomura H, Imazeki I, Oheda M, Kubota N,
Tamura M, Ono M, Ueyama Y and Asano S: Purification and
characterization of human granulocyte colony-stimulating factor
(G-CSF). EMBO J. 5:871–876. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chafe SC, Lou Y, Sceneay J, Vallejo M,
Hamilton MJ, McDonald PC, Bennewith KL, Möller A and Dedhar S:
Carbonic anhydrase IX promotes myeloid-derived suppressor cell
mobilization and establishment of a metastatic niche by stimulating
G-CSF production. Cancer Res. 75:996–1008. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lee CH, Lin SH, Chang SF, Chang PY, Yang
ZP and Lu SC: Extracellular signal-regulated kinase 2 mediates the
expression of granulocyte colony-stimulating factor in invasive
cancer cells. Oncol Rep. 30:419–424. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Park S, Kim ES, Noh DY, Hwang KT and Moon
A: H-Ras-specific upregulation of granulocyte colony-stimulating
factor promotes human breast cell invasion via matrix
metalloproteinase-2. Cytokine. 55:126–133. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Carvalho É, Hugo de Almeida V, Rondon AMR,
Possik PA, Viola JPB and Monteiro RQ: Protease-activated receptor 2
(PAR2) upregulates granulocyte colony stimulating factor (G-CSF)
expression in breast cancer cells. Biochem Biophys Res Commun.
504:270–276. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Samineni S, Zhang Z and Shively JE:
Carcinoembryonic antigen-related cell adhesion molecule 1
negatively regulates granulocyte colony-stimulating factor
production by breast tumor-associated macrophages that mediate
tumor angiogenesis. Int J Cancer. 133:394–407. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Welte T, Kim IS, Tian L, Gao X, Wang H, Li
J, Holdman XB, Herschkowitz JI, Pond A, Xie G, et al: Oncogenic
mTOR signalling recruits myeloid-derived suppressor cells to
promote tumour initiation. Nat Cell Biol. 18:632–644. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cosman D: The hematopoietin receptor
superfamily. Cytokine. 5:95–106. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Touw IP and van de Geijn GJ: Granulocyte
colony-stimulating factor and its receptor in normal myeloid cell
development, leukemia and related blood cell disorders. Front
Biosci. 12:800–815. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
54
|
Avalos BR: Molecular analysis of the
granulocyte colony-stimulating factor receptor. Blood. 88:761–777.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Avalos BR, Parker JM, Ware DA, Hunter MG,
Sibert KA and Druker BJ: Dissociation of the Jak kinase pathway
from G-CSF receptor signaling in neutrophils. Exp Hematol.
25:160–168. 1997.PubMed/NCBI
|
|
56
|
Pencik J, Pham HT, Schmoellerl J, Javaheri
T, Schlederer M, Culig Z, Merkel O, Moriggl R, Grebien F and Kenner
L: JAK-STAT signaling in cancer: From cytokines to non-coding
genome. Cytokine. 87:26–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fan Z, Li Y, Zhao Q, Fan L, Tan B, Zuo J,
Hua K and Ji Q: Highly expressed granulocyte colony-stimulating
factor (G-CSF) and granulocyte colony-stimulating factor receptor
(G-CSFR) in human gastric cancer leads to poor survival. Med Sci
Monit. 24:1701–1711. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dwivedi P and Greis KD: Granulocyte
colony-stimulating factor receptor signaling in severe congenital
neutropenia, chronic neutrophilic leukemia, and related
malignancies. Exp Hematol. 46:9–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fukui Y, Kawashima M, Kawaguchi K,
Takeuchi M, Hirata M, Kataoka TR, Sakurai T, Kataoka M, Kanao S,
Nakamoto Y, et al: Granulocyte-colony-stimulating factor-producing
metaplastic carcinoma of the breast with significant elevation of
serum interleukin-17 and vascular endothelial growth factor levels.
Int Cancer Conf J. 7:107–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lawicki S, Czygier M, Omyła J and
Szmitkowski M: The plasma levels of granulocyte-colony stimulating
factor (G-CSF) and macrophage-colony stimulating factor (M-CSF) in
breast cancer patients. Pol Arch Med Wewn. 116:749–755. 2006.(In
Polish). PubMed/NCBI
|
|
61
|
Ławicki S, Będkowska GE, Wojtukiewicz M
and Szmitkowski M: Hematopoietic cytokines as tumor markers in
breast malignancies. A multivariate analysis with ROC curve in
breast cancer patients. Adv Med Sci. 58:207–215. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bordbar E, Malekzadeh M, Ardekani MT,
Doroudchi M and Ghaderi A: Serum levels of G-CSF and IL-7 in
Iranian breast cancer patients. Asian Pac J Cancer Prev.
13:5307–5312. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Agresti R, Triulzi T, Sasso M, Ghirelli C,
Aiello P, Rybinska I, Campiglio M, Sfondrini L, Tagliabue E and
Bianchi F: Wound healing fluid reflects the inflammatory nature and
aggressiveness of breast tumors. Cells. 8:82019. View Article : Google Scholar
|
|
64
|
Wojtukiewicz MZ, Sierko E, Skalij P,
Kamińska M, Zimnoch L, Brekken RA and Thorpe PE: Granulocyte-colony
stimulating factor receptor, tissue factor, and VEGF-R bound VEGF
in human breast cancer in loco. Adv Clin Exp Med. 25:505–511. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cao Y, Slaney CY, Bidwell BN, Parker BS,
Johnstone CN, Rautela J, Eckhardt BL and Anderson RL: BMP4 inhibits
breast cancer metastasis by blocking myeloid-derived suppressor
cell activity. Cancer Res. 74:5091–5102. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek
T, Qu X, Yu L, Ross J, Korsisaari N, Cao T, et al:
Granulocyte-colony stimulating factor promotes lung metastasis
through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci
USA. 107:21248–21255. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Guo L, Chen G, Zhang W, Zhou L, Xiao T, Di
X, Wang Y, Feng L and Zhang K: A high-risk luminal A dominant
breast cancer subtype with increased mobility. Breast Cancer Res
Treat. 175:459–472. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Park J, Wysocki RW, Amoozgar Z, Maiorino
L, Fein MR, Jorns J, Schott AF, Kinugasa-Katayama Y, Lee Y, Won NH,
et al: Cancer cells induce metastasis-supporting neutrophil
extracellular DNA traps. Sci Transl Med. 8:361ra1382016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Demers M and Wagner DD: Neutrophil
extracellular traps: A new link to cancer-associated thrombosis and
potential implications for tumor progression. OncoImmunology.
2:e229462013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Leal AC, Mizurini DM, Gomes T, Rochael NC,
Saraiva EM, Dias MS, Werneck CC, Sielski MS, Vicente CP and
Monteiro RQ: tumor-derived exosomes induce the formation of
neutrophil extracellular traps: Implications for the establishment
of cancer-associated thrombosis. Sci Rep. 7:64382017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhao CL, Zhang GP, Xiao ZZ, Ma ZK, Lei CP,
Song SY, Feng YY, Zhao YC and Feng XS: Recombinant human
granulocyte colony-stimulating factor promotes preinvasive and
invasive estrogen receptor-positive tumor development in MMTV-erbB2
mice. J Breast Cancer. 18:126–133. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Waight JD, Hu Q, Miller A, Liu S and
Abrams SI: Tumor-derived G-CSF facilitates neoplastic growth
through a granulocytic myeloid-derived suppressor cell-dependent
mechanism. PLoS One. 6:e276902011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Espinoza-Sánchez NA, Vadillo E, Balandrán
JC, Monroy-García A, Pelayo R and Fuentes-Pananá EM: Evidence of
lateral transmission of aggressive features between different types
of breast cancer cells. Int J Oncol. 51:1482–1496. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cavalloni G, Sarotto I, Pignochino Y,
Gammaitoni L, Migliardi G, Sgro L, Piacibello W, Risio M, Aglietta
M and Leone F: Granulocyte-colony stimulating factor upregulates
ErbB2 expression on breast cancer cell lines and converts primary
resistance to trastuzumab. Anticancer Drugs. 19:689–696. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pondé N, Brandão M, El-Hachem G, Werbrouck
E and Piccart M: Treatment of advanced HER2-positive breast cancer:
2018 and beyond. Cancer Treat Rev. 67:10–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Motz GT and Coukos G: Deciphering and
reversing tumor immune suppression. Immunity. 39:61–73. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Almand B, Clark JI, Nikitina E, van Beynen
J, English NR, Knight SC, Carbone DP and Gabrilovich DI: Increased
production of immature myeloid cells in cancer patients: A
mechanism of immunosuppression in cancer. J Immunol. 166:678–689.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Aliper AM, Frieden-Korovkina VP, Buzdin A,
Roumiantsev SA and Zhavoronkov A: A role for G-CSF and GM-CSF in
nonmyeloid cancers. Cancer Med. 3:737–746. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pickup MW, Owens P, Gorska AE, Chytil A,
Ye F, Shi C, Weaver VM, Kalluri R, Moses HL and Novitskiy SV:
Development of aggressive pancreatic ductal adenocarcinomas depends
on granulocyte colony stimulating factor secretion in carcinoma
cells. Cancer Immunol Res. 5:718–729. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Diaz-Montero CM, Salem ML, Nishimura MI,
Garrett-Mayer E, Cole DJ and Montero AJ: Increased circulating
myeloid-derived suppressor cells correlate with clinical cancer
stage, metastatic tumor burden, and doxorubicin-cyclophosphamide
chemotherapy. Cancer Immunol Immunother. 58:49–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Markowitz J, Wesolowski R, Papenfuss T,
Brooks TR and Carson WE III: Myeloid-derived suppressor cells in
breast cancer. Breast Cancer Res Treat. 140:13–21. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sceneay J, Chow MT, Chen A, Halse HM, Wong
CS, Andrews DM, Sloan EK, Parker BS, Bowtell DD, Smyth MJ, et al:
Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune
suppressor cells and compromises NK cell cytotoxicity in the
premetastatic niche. Cancer Res. 72:3906–3911. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lin EY, Nguyen AV, Russell RG and Pollard
JW: Colony-stimulating factor 1 promotes progression of mammary
tumors to malignancy. J Exp Med. 193:727–740. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Aharinejad S, Paulus P, Sioud M, Hofmann
M, Zins K, Schäfer R, Stanley ER and Abraham D: Colony-stimulating
factor-1 blockade by antisense oligonucleotides and small
interfering RNAs suppresses growth of human mammary tumor
xenografts in mice. Cancer Res. 64:5378–5384. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ries CH, Cannarile MA, Hoves S, Benz J,
Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I,
et al: Targeting tumor-associated macrophages with anti-CSF-1R
antibody reveals a strategy for cancer therapy. Cancer Cell.
25:846–859. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mantovani A and Sica A: Macrophages,
innate immunity and cancer: Balance, tolerance, and diversity. Curr
Opin Immunol. 22:231–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Swierczak A, Cook AD, Lenzo JC, Restall
CM, Doherty JP, Anderson RL and Hamilton JA: The promotion of
breast cancer metastasis caused by inhibition of CSF-1R/CSF-1
signaling is blocked by targeting the G-CSF receptor. Cancer
Immunol Res. 2:765–776. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Huang J, Simpson JF, Glackin C, Riethorf
L, Wagener C and Shively JE: Expression of biliary glycoprotein
(CD66a) in normal and malignant breast epithelial cells. Anticancer
Res. 18((5A)): 3203–3212. 1998.PubMed/NCBI
|
|
91
|
Meixner A, Zenz R, Schonthaler HB, Kenner
L, Scheuch H, Penninger JM and Wagner EF: Epidermal JunB represses
G-CSF transcription and affects haematopoiesis and bone formation.
Nat Cell Biol. 10:1003–1011. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kim JS, Son Y, Bae MJ, Lee M, Lee CG, Jo
WS, Kim SD and Yang K: Administration of granulocyte
colony-stimulating factor with radiotherapy promotes tumor growth
by stimulating vascularization in tumor-bearing mice. Oncol Rep.
34:147–154. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Alshamrani MA, Al-Foheidi M and Abdulrahim
AH: Granulocyte Colony Stimulating Factor (G-CSF) Induced splenic
infarction in breast cancer patient treated with dose-dense
chemotherapy regimen. Case Rep Oncol Med.
2019:81749862019.PubMed/NCBI
|
|
94
|
Kinjo Y, Kurita T, Ueda T, Kagami S,
Matsuura Y and Yoshino K: Acute arteritis after G-CSF
administration. Int Cancer Conf J. 8:77–80. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lu X, Wu Y, Wang H and Xia L:
G-CSF-induced severe thrombocytopenia in a healthy donor: A rare
case report. Medicine (Baltimore). 98:e147862019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kim YG, Kim SR, Hwang SH, Jung JY, Kim HA
and Suh CH: Mesenteric vasculitis after G-CSF administration in a
severe neutropenic patient with systemic lupus erythematosus.
Lupus. 25:1381–1384. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li W, Zhang X, Chen Y, Xie Y, Liu J, Feng
Q, Wang Y, Yuan W and Ma J: G-CSF is a key modulator of MDSC and
could be a potential therapeutic target in colitis-associated
colorectal cancers. Protein Cell. 7:130–140. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kumar J, Fraser FW, Riley C, Ahmed N,
McCulloch DR and Ward AC: Granulocyte colony-stimulating factor
receptor signalling via Janus kinase 2/signal transducer and
activator of transcription 3 in ovarian cancer. Br J Cancer.
110:133–145. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Agarwal S, Lakoma A, Chen Z, Hicks J,
Metelitsa LS, Kim ES and Shohet JM: G-CSF Promotes Neuroblastoma
Tumorigenicity and Metastasis via STAT3-Dependent Cancer Stem Cell
Activation. Cancer Res. 75:2566–2579. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Nakata H, Uemura Y, Kobayashi M, Harada R
and Taguchi H: Cyclooxygenase-2 inhibitor NS-398 suppresses cell
growth and constitutive production of granulocyte-colony
stimulating factor and granulocyte macrophage-colony stimulating
factor in lung cancer cells. Cancer Sci. 94:173–180. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Cui YH, Suh Y, Lee HJ, Yoo KC, Uddin N,
Jeong YJ, Lee JS, Hwang SG, Nam SY, Kim MJ, et al: Radiation
promotes invasiveness of non-small-cell lung cancer cells through
granulocyte-colony-stimulating factor. Oncogene. 34:5372–5382.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ramakrishna C and Cantin EM: IFNγ inhibits
G-CSF induced neutrophil expansion and invasion of the CNS to
prevent viral encephalitis. PLoS Pathog. 14:e10068222018.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chang SF, Li HC, Huang YP, Tasi WJ, Chou
YY and Lu SC: SB203580 increases G-CSF production via a stem-loop
destabilizing element in the 3′ untranslated region in macrophages
independently of its effect on p38 MAPK activity. J Biomed Sci.
23:32016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Fujimoto A, Akifusa S, Hirofuji T and
Yamashita Y: Involvement of suppressor of cytokine signaling-1 in
globular adiponectin-induced granulocyte colony-stimulating factor
in RAW 264 cell. Mol Immunol. 48:2052–2058. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kamio N, Akifusa S, Yamaguchi N and
Yamashita Y: Induction of granulocyte colony-stimulating factor by
globular adiponectin via the MEK-ERK pathway. Mol Cell Endocrinol.
292:20–25. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang L, Yang M, Wang Q, Liu M, Liang Q,
Zhang H and Xiao X: HSF1 regulates expression of G-CSF through the
binding element for NF-IL6/CCAAT enhancer binding protein beta. Mol
Cell Biochem. 352:11–17. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Aoki Y, Hirano D, Kodama H, Nishi Y and
Nakamura M: Stimulation of G-CSF gene expression in the macrophage
cell line by contact with extracellular matrix proteins and a pre-B
leukaemia cell line. Cytokine. 10:596–602. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chou YY and Lu SC: Inhibition by rapamycin
of the lipoteichoic acid-induced granulocyte-colony stimulating
factor expression in mouse macrophages. Arch Biochem Biophys.
508:110–119. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sallerfors B and Olofsson T:
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and
granulocyte colony-stimulating factor (G-CSF) secretion by adherent
monocytes measured by quantitative immunoassays. Eur J Haematol.
49:199–207. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tajuddin T, Ryan EJ, Norris S, Hegarty JE
and O'Farrelly C: Interferon-α suppressed granulocyte colony
stimulating factor production is reversed by CL097, a TLR7/8
agonist. J Gastroenterol Hepatol. 25:1883–1890. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ichinose Y, Hara N, Ohta M, Aso H, Chikama
H, Kawasaki M, Kubota I, Shimizu T and Yagawa K: Recombinant
granulocyte colony-stimulating factor and lipopolysaccharide
maintain the phenotype of and superoxide anion generation by
neutrophils. Infect Immun. 58:1647–1652. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lindemann A, Riedel D, Oster W,
Ziegler-Heitbrock HW, Mertelsmann R and Herrmann F:
Granulocyte-macrophage colony-stimulating factor induces cytokine
secretion by human polymorphonuclear leukocytes. J Clin Invest.
83:1308–1312. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lu L, Srour EF, Warren DJ, Walker D,
Graham CD, Walker EB, Jansen J and Broxmeyer HE: Enhancement of
release of granulocyte- and granulocyte-macrophage
colony-stimulating factors from phytohemagglutinin-stimulated
sorted subsets of human T lymphocytes by recombinant human tumor
necrosis factor-alpha. Synergism with recombinant human IFN-gamma.
J Immunol. 141:201–207. 1988.PubMed/NCBI
|
|
114
|
Lennard Richard ML, Brandon D, Lou N, Sato
S, Caldwell T, Nowling TK, Gilkeson G and Zhang XK: Acetylation
impacts Fli-1-driven regulation of granulocyte colony stimulating
factor. Eur J Immunol. 46:2322–2332. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Rajavashisth TB, Andalibi A, Territo MC,
Berliner JA, Navab M, Fogelman AM and Lusis AJ: Induction of
endothelial cell expression of granulocyte and macrophage
colony-stimulating factors by modified low-density lipoproteins.
Nature. 344:254–257. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Seelentag WK, Mermod JJ, Montesano R and
Vassalli P: Additive effects of interleukin 1 and tumour necrosis
factor-alpha on the accumulation of the three granulocyte and
macrophage colony-stimulating factor mRNAs in human endothelial
cells. EMBO J. 6:2261–2265. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Saba S, Soong G, Greenberg S and Prince A:
Bacterial stimulation of epithelial G-CSF and GM-CSF expression
promotes PMN survival in CF airways. Am J Respir Cell Mol Biol.
27:561–567. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Suzukawa M, Koketsu R, Baba S, Igarashi S,
Nagase H, Yamaguchi M, Matsutani N, Kawamura M, Shoji S, Hebisawa
A, et al: Leptin enhances ICAM-1 expression, induces migration and
cytokine synthesis, and prolongs survival of human airway
epithelial cells. Am J Physiol Lung Cell Mol Physiol.
309:L801–L811. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Numasaki M, Takahashi H, Tomioka Y and
Sasaki H: Regulatory roles of IL-17 and IL-17F in G-CSF production
by lung microvascular endothelial cells stimulated with IL-1beta
and/or TNF-alpha. Immunol Lett. 95:97–104. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Witowski J, Ksiazek K, Warnecke C, Kuźlan
M, Korybalska K, Tayama H, Wiśniewska-Elnur J, Pawlaczyk K,
Trómińska J, Breborowicz A, et al: Role of mesothelial cell-derived
granulocyte colony-stimulating factor in interleukin-17-induced
neutrophil accumulation in the peritoneum. Kidney Int. 71:514–525.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Demetri GD, Zenzie BW, Rheinwald JG and
Griffin JD: Expression of colony-stimulating factor genes by normal
human mesothelial cells and human malignant mesothelioma cells
lines in vitro. Blood. 74:940–946. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Carr MJ, Li Y, Rezakhanlou AM and Ghahary
A: Keratinocyte-releasable factors stimulate the expression of
granulocyte colony-stimulating factor in human dermal fibroblasts.
J Cell Biochem. 118:308–317. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ramachandran R, Morice AH and Compton SJ:
Proteinase-activated receptor2 agonists upregulate granulocyte
colony-stimulating factor, IL-8, and VCAM-1 expression in human
bronchial fibroblasts. Am J Respir Cell Mol Biol. 35:133–141. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Koeffler HP, Gasson J, Ranyard J, Souza L,
Shepard M and Munker R: Recombinant human TNF alpha stimulates
production of granulocyte colony-stimulating factor. Blood.
70:55–59. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Seelentag W, Mermod JJ and Vassalli P:
Interleukin 1 and tumor necrosis factor-alpha additively increase
the levels of granulocyte-macrophage and granulocyte
colony-stimulating factor (CSF) mRNA in human fibroblasts. Eur J
Immunol. 19:209–212. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zgheib A, Lamy S and Annabi B:
Epigallocatechin gallate targeting of membrane type 1 matrix
metalloproteinase-mediated Src and Janus kinase/signal transducers
and activators of transcription 3 signaling inhibits transcription
of colony-stimulating factors 2 and 3 in mesenchymal stromal cells.
J Biol Chem. 288:13378–13386. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Fibbe WE, van Damme J, Billiau A, Goselink
HM, Voogt PJ, van Eeden G, Ralph P, Altrock BW and Falkenburg JH:
Interleukin 1 induces human marrow stromal cells in long-term
culture to produce granulocyte colony-stimulating factor and
macrophage colony-stimulating factor. Blood. 71:430–435. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Tesio M, Oser GM, Baccelli I, Blanco-Bose
W, Wu H, Göthert JR, Kogan SC and Trumpp A: Pten loss in the bone
marrow leads to G-CSF-mediated HSC mobilization. J Exp Med.
210:2337–2349. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Grace MB, Singh VK, Rhee JG, Jackson WE
III, Kao TC and Whitnall MH: 5-AED enhances survival of irradiated
mice in a G-CSF-dependent manner, stimulates innate immune cell
function, reduces radiation-induced DNA damage and induces genes
that modulate cell cycle progression and apoptosis. J Radiat Res
(Tokyo). 53:840–853. 2012. View Article : Google Scholar
|
|
130
|
Kimura A, Kinjyo I, Matsumura Y, Mori H,
Mashima R, Harada M, Chien KR, Yasukawa H and Yoshimura A: SOCS3 is
a physiological negative regulator for granulopoiesis and
granulocyte colony-stimulating factor receptor signaling. J Biol
Chem. 279:6905–6910. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Smith A, Witte E, McGee D, Knott J, Narang
K and Racicot K: Cortisol inhibits CSF2 and CSF3 via DNA
methylation and inhibits invasion in first-trimester trophoblast
cells. Am J Reprod Immunol. 78:e127412017. View Article : Google Scholar
|
|
132
|
Ordelheide AM, Gommer N, Böhm A, Hermann
C, Thielker I, Machicao F, Fritsche A, Stefan N, Häring HU and
Staiger H: Granulocyte colony-stimulating factor (G-CSF): A
saturated fatty acid-induced myokine with insulin-desensitizing
properties in humans. Mol Metab. 5:305–316. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Hudock KM, Liu Y, Mei J, Marino RC, Hale
JE, Dai N and Worthen GS: Delayed resolution of lung inflammation
in Il-1rn-/- mice reflects elevated IL-17A/granulocyte
colony-stimulating factor expression. Am J Respir Cell Mol Biol.
47:436–444. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Soria-Castro I, Krzyzanowska A, Pelaéz ML,
Regadera J, Ferrer G, Montoliu L, Rodríguez-Ramos R, Fernández M
and Alemany S: Cot/tpl2 (MAP3K8) mediates myeloperoxidase activity
and hypernociception following peripheral inflammation. J Biol
Chem. 285:33805–33815. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Janelle MF, Doucet A, Bouchard D,
Bourbonnais Y and Tremblay GM: Increased local levels of
granulocyte colony-stimulating factor are associated with the
beneficial effect of pre-elafin (SKALP/trappin-2/WAP3) in
experimental emphysema. Biol Chem. 387:903–909. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Bohannon JK, Luan L, Hernandez A, Afzal A,
Guo Y, Patil NK, Fensterheim B and Sherwood ER: Role of G-CSF in
monophosphoryl lipid A-mediated augmentation of neutrophil
functions after burn injury. J Leukoc Biol. 99:629–640. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Ellis GS, Carlson DE, Hester L, He JR,
Bagby GJ, Singh IS and Hasday JD: G-CSF, but not corticosterone,
mediates circulating neutrophilia induced by febrile-range
hyperthermia. J Appl Physiol. 98:1799–1804. 2005. View Article : Google Scholar : PubMed/NCBI
|