Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2020 Volume 21 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2020 Volume 21 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review)

  • Authors:
    • Wen Kang
    • Yue Cheng
    • Xi Wang
    • Fang Zhou
    • Chenliang Zhou
    • Long Wang
    • Liang Zhong
  • View Affiliations / Copyright

    Affiliations: Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China, Department of Anesthesiology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei 430060, P.R. China
    Copyright: © Kang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2311-2320
    |
    Published online on: March 20, 2020
       https://doi.org/10.3892/mmr.2020.11034
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Neuregulin-1 (NRG-1) is a type of epidermal growth factor‑like protein primarily distributed in the nervous and cardiovascular systems. When sepsis occurs, the incidence of cardiac dysfunction in myocardial injury is high and the mechanism is complicated. It directly causes myocardial cell damage, whilst also causing damage to the structure and function of myocardial cells, weakening of endothelial function and coronary microcirculation, autonomic dysfunction, and activation of myocardial inhibitory factors. Studies investigating NRG‑1 have been performed using a variety of methods, including in vitro models, and animal and human clinical trials; however, the results are not consistent. NRG‑1/ErbBs signaling is involved in a variety of cardiac processes, from the development of the myocardium and cardiac conduction systems to the promotion of angiogenesis in cardiomyocytes, and in cardio‑protective effects during injury. NRG‑1 may exert a multifaceted cardiovascular protective effect by activating NRG‑1/ErbBs signaling and regulating multiple downstream signaling pathways, thereby improving myocardial cell dysfunction in sepsis, and protecting cardiomyocytes and endothelial cells. It may alleviate myocardial microvascular endothelial injury in sepsis; its anti‑inflammatory effects inhibit the production of myocardial inhibitory factors in sepsis, improve myocardial ischemia, decrease oxidative stress, regulate the disruption to the homeostasis of the autonomic nervous system, improve diastolic function, and offer protective effects at multiple target sites. As the mechanism of action of NRG‑1 intersects with the pathways involved in the pathogenesis of sepsis, it may be applicable as a treatment strategy to numerous pathological processes in sepsis.
View Figures

Figure 1

View References

1 

Kuang L, Zhu Y, Zhang J, Wu Y, Tian K, Chen X, Xue M, Tzang FC, Lau B, Wong BL, et al: A novel cross-linked haemoglobin-based oxygen carrier is beneficial to sepsis in rats. Artif Cells Nanomed Biotechnol. 47:1496–1504. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Moore JX, Donnelly JP, Griffin R, Howard G, Safford MM and Wang HE: Defining sepsis mortality clusters in the united states. Crit Care Med. 44:1380–1387. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Zaky A, Deem S, Bendjelid K and Treggiari MM: Characterization of cardiac dysfunction in sepsis: An ongoing challenge. Shock. 41:12–24. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Salvany S, Casanovas A, Tarabal O, Piedrafita L, Hernández S, Santafé M, Soto-Bernardini MC, Calderó J, Schwab MH and Esquerda JE: Localization and dynamic changes of neuregulin-1 at C-type synaptic boutons in association with motor neuron injury and repair. FASEB J. 33:7833–7851. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, et al: Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:762–774. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD and Singer M: Sepsis Definitions Task Force: Developing a new definition and assessing new clinical criteria for septic shock: For the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:775–787. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Potz BA, Sellke FW and Abid MR: Endothelial ROS and impaired myocardial oxygen consumption in sepsis-induced cardiac dysfunction. J Intensive Crit Care. 2:202016. View Article : Google Scholar : PubMed/NCBI

9 

Cimolai MC, Alvarez S, Bode C and Bugger H: Mitochondrial mechanisms in septic cardiomyopathy. Int J Mol Sci. 16:17763–17778. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Martin L, Derwall M, Thiemermann C and Schürholz T: Heart in sepsis: Molecular mechanisms, diagnosis and therapy of septic cardiomyopathy. Anaesthesist. 66:479–490. 2017.(In German). View Article : Google Scholar : PubMed/NCBI

11 

DUva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, Weisinger K, Bassat E, Rajchman D, Yifa O, et al: ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol. 17:627–638. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Brown D, Samsa LA, Ito C, Ma H, Batres K, Arnaout R, Qian L and Liu J: Neuregulin-1 is essential for nerve plexus formation during cardiac maturation. J Cell Mol Med. 22:2007–2017. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Hobai IA, Edgecomb J, LaBarge K and Colucci WS: Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock. 43:3–15. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Yutzey KE: Regenerative biology: Neuregulin 1 makes heart muscle. Nature. 520:445–446. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Zhou Q, Pan X, Wang L, Wang X and Xiong D: The protective role of neuregulin-1: A potential therapy for sepsis-induced cardiomyopathy. Eur J Pharmacol. 788:234–240. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, et al: Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 187:509–517. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Wang F, Wang H, Liu X, Yu H, Zuo B, Song Z, Wang N, Huang W and Wang G: Pharmacological postconditioning with Neuregulin-1 mimics the cardioprotective effects of ischaemic postconditioning via ErbB4-dependent activation of reperfusion injury salvage kinase pathway. Mol Med. 24:392018. View Article : Google Scholar : PubMed/NCBI

18 

Galindo CL, Kasasbeh E, Murphy A, Ryzhov S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, et al: Anti-remodeling and anti-fibrotic effects of the neuregulin-1beta glial growth factor 2 in a large animal model of heart failure. J Am Heart Assoc. 4:e5282015.

19 

Fang SJ, Li PY, Wang CM, Xin Y, Lu WW, Zhang XX, Zuo S, Ma CS, Tang CS, Nie SP, et al: Inhibition of endoplasmic reticulum stress by neuregulin-1 protects against myocardial ischemia/reperfusion injury. Peptides. 88:196–207. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Cai MX, Shi XC, Chen T, Tan ZN, Lin QQ, Du SJ and Tian ZJ: Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 149:1–9. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Formiga FR, Pelacho B, Garbayo E, Imbuluzqueta I, Díaz-Herráez P, Abizanda G, Gavira JJ, Simón-Yarza T, Albiasu E, Tamayo E, et al: Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J Control Release. 173:132–139. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Cohen JE, Purcell BP, MacArthur JW Jr, Mu A, Shudo Y, Patel JB, Brusalis CM, Trubelja A, Fairman AS, Edwards BB, et al: A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin, activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy. Circ Heart Fail. 7:619–626. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Sepúlveda M, Gonano LA, Viotti M, Morell M, Blanco P, López Alarcón M, Peroba Ramos I, Bastos Carvalho A, Medei E and Vila Petroff M: Calcium/Calmodulin protein kinase II-dependent ryanodine receptor phosphorylation mediates cardiac contractile dysfunction associated with sepsis. Crit Care Med. 45:e399–e408. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Brero A, Ramella R, Fitou A, Dati C, Alloatti G, Gallo MP and Levi R: Neuregulin-1beta1 rapidly modulates nitric oxide synthesis and calcium handling in rat cardiomyocytes. Cardiovasc Res. 88:443–452. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Candel FJ, Borges Sá M, Belda S, Bou G, Del Pozo JL, Estrada O, Ferrer R, González Del Castillo J, Julián-Jiménez A, Martín-Loeches I, et al: Current aspects in sepsis approach. Turning things around. Rev Esp Quimioter. 31:298–315. 2018.PubMed/NCBI

26 

Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P and Almansa R: Shared features of endothelial dysfunction between Sepsis and its preceding risk factors (Aging and Chronic Disease). J Clin Med. 7:4002018. View Article : Google Scholar :

27 

Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo EH and Lok J: Neuregulin1-β decreases IL-1β-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl Stroke Res. 6:116–124. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Burger D and Touyz RM: Cellular biomarkers of endothelial health: Microparticles, endothelial progenitor cells, and circulating endothelial cells. J Am Soc Hypertens. 6:85–99. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Parodi EM and Kuhn B: Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc Res. 102:194–204. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Hedhli N, Dobrucki LW, Kalinowski A, Zhuang ZW, Wu X, Russell RR III, Sinusas AJ and Russell KS: Endothelial-derived neuregulin is an important mediator of ischaemia-induced angiogenesis and arteriogenesis. Cardiovasc Res. 93:516–524. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Stefanou C, Karatzanos E, Mitsiou G, Psarra K, Angelopoulos E, Dimopoulos S, Gerovasili V, Boviatsis E, Routsi C and Nanas S: Neuromuscular electrical stimulation acutely mobilizes endothelial progenitor cells in critically ill patients with sepsis. Ann Intensive Care. 6:212016. View Article : Google Scholar : PubMed/NCBI

32 

Awada HK, Hwang MP and Wang Y: Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials. 82:94–112. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Lemmens K, Segers VF, Demolder M and De Keulenaer GW: Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. J Biol Chem. 281:19469–19477. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Wu C, Gui C, Li L, Pang Y, Tang Z and Wei J: Expression and secretion of neuregulin-1 in cardiac microvascular endothelial cells treated with angiogenic factors. Exp Ther Med. 15:3577–3581. 2018.PubMed/NCBI

35 

Fernandes CJ Jr and de Assuncao MS: Myocardial dysfunction in sepsis: A large, unsolved puzzle. Crit Care Res Pract. 2012:8964302012.PubMed/NCBI

36 

Pathan N, Franklin JL, Eleftherohorinou H, Wright VJ, Hemingway CA, Waddell SJ, Griffiths M, Dennis JL, Relman DA, Harding SE, et al: Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase. Crit Care Med. 39:1692–1711. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Pathan N, Hemingway CA, Alizadeh AA, Stephens AC, Boldrick JC, Oragui EE, McCabe C, Welch SB, Whitney A, OGara P, et al: Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 363:203–209. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Waage A, Brandtzaeg P, Halstensen A, Kierulf P and Espevik T: The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med. 169:333–338. 1989. View Article : Google Scholar : PubMed/NCBI

39 

Leblais V, Jo SH, Chakir K, Maltsev V, Zheng M, Crow MT, Wang W, Lakatta EG and Xiao RP: Phosphatidylinositol 3-kinase offsets cAMP-mediated positive inotropic effect via inhibiting Ca2+ influx in cardiomyocytes. Circ Res. 95:1183–1190. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Britsch S: The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol. 190:1–65. 2007.PubMed/NCBI

41 

Mencel M, Nash M and Jacobson C: Neuregulin upregulates microglial α7 nicotinic acetylcholine receptor expression in immortalized cell lines: Implications for regulating neuroinflammation. PLoS One. 8:e703382013. View Article : Google Scholar : PubMed/NCBI

42 

Li Y, Lein PJ, Ford GD, Liu C, Stovall KC, White TE, Bruun DA, Tewolde T, Gates AS, Distel TJ, et al: Neuregulin-1 inhibits neuroinflammatory responses in a rat model of organophosphate-nerve agent-induced delayed neuronal injury. J Neuroinflammation. 12:642015. View Article : Google Scholar : PubMed/NCBI

43 

Solomon W, Wilson NO, Anderson L, Pitts S, Patrickson J, Liu M, Ford BD and Stiles JK: Neuregulin-1 attenuates mortality associated with experimental cerebral malaria. J Neuroinflammation. 11:92014. View Article : Google Scholar : PubMed/NCBI

44 

Gholami M, Mazaheri P, Mohamadi A, Dehpour T, Safari F, Hajizadeh S, Moore KP and Mani AR: Endotoxemia is associated with partial uncoupling of cardiac pacemaker from cholinergic neural control in rats. Shock. 37:219–227. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Fernandez R, Nardocci G, Navarro C, Reyes EP, Acuña-Castillo C and Cortes PP: Neural reflex regulation of systemic inflammation: Potential new targets for sepsis therapy. Front Physiol. 5:4892014. View Article : Google Scholar : PubMed/NCBI

46 

Rosas-Ballina M, Valdés-Ferrer SI, Dancho ME, Ochani M, Katz D, Cheng KF, Olofsson PS, Chavan SS, Al-Abed Y, Tracey KJ, et al: Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation. Brain Behav Immun. 44:19–27. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Matsukawa R, Hirooka Y, Ito K, Honda N and Sunagawa K: Central neuregulin-1/ErbB signaling modulates cardiac function via sympathetic activity in pressure overload-induced heart failure. J Hypertens. 32:817–825. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Schmidt H, Müller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, Prondzinsky R, Loppnow H, Buerke M, Hoyer D, et al: Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med. 33:1994–2002. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Jabbour A, Gao L, Kwan J, Watson A, Sun L, Qiu MR, Liu X, Zhou MD, Graham RM, Hicks M, et al: A recombinant human neuregulin-1 peptide improves preservation of the rodent heart after prolonged hypothermic storage. Transplantation. 91:961–967. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Fattahi F, Kalbitz M, Malan EA, Abe E, Jajou L, Huber-Lang MS, Bosmann M, Russell MW, Zetoune FS and Ward PA: Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. FASEB J. 31:4129–4139. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Checchia PA, Schierding W, Polpitiya A, Dixon D, Macmillan S, Muenzer J, Stromberg P, Coopersmith CM, Buchman TG and Cobb JP: Myocardial transcriptional profiles in a murine model of sepsis: Evidence for the importance of age. Pediatr Crit Care Med. 9:530–535. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Zhou H, Qian J, Li C, Li J, Zhang X, Ding Z, Gao X, Han Z, Cheng Y and Liu L: Attenuation of cardiac dysfunction by HSPA12B in endotoxin-induced sepsis in mice through a PI3K-dependent mechanism. Cardiovasc Res. 89:109–118. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Cvijanovich N, Shanley TP, Lin R, Allen GL, Thomas NJ, Checchia P, Anas N, Freishtat RJ, Monaco M, Odoms K, et al: Genomics of Pediatric SIRS/Septic Shock Investigators: Validating the genomic signature of pediatric septic shock. Physiol Genomics. 34:127–134. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Preau S, Delguste F, Yu Y, Remy-Jouet I, Richard V, Saulnier F, Boulanger E and Neviere R: Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy. Antioxid Redox Signal. 24:529–542. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Ky B, Kimmel SE, Safa RN, Putt ME, Sweitzer NK, Fang JC, Sawyer DB and Cappola TP: Neuregulin-1 beta is associated with disease severity and adverse outcomes in chronic heart failure. Circulation. 120:310–317. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Odiete O, Hill MF and Sawyer DB: Neuregulin in cardiovascular development and disease. Circ Res. 111:1376–1385. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Chen XL, Xia ZF, Wei D, Han S, Ben DF and Wang GQ: Role of p38 mitogen-activated protein kinase in Kupffer cell secretion of the proinflammatory cytokines after burn trauma. Burns. 29:533–539. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Mockridge JW, Marber MS and Heads RJ: Activation of Akt during simulated ischemia/reperfusion in cardiac myocytes. Biochem Biophys Res Commun. 270:947–952. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Talmor D, Applebaum A, Rudich A, Shapira Y and Tirosh A: Activation of mitogen-activated protein kinases in human heart during cardiopulmonary bypass. Circ Res. 86:1004–1007. 2000. View Article : Google Scholar : PubMed/NCBI

60 

Dong X, Liu Y, Du M, Wang Q, Yu CT and Fan X: P38 mitogen-activated protein kinase inhibition attenuates pulmonary inflammatory response in a rat cardiopulmonary bypass model. Eur J Cardiothorac Surg. 30:77–84. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Menon R and Papaconstantinou J: p38 Mitogen activated protein kinase (MAPK): A new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert Opin Ther Targets. 20:1397–1412. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Antoon JW, Bratton MR, Guillot LM, Wadsworth S, Salvo VA, Elliott S, McLachlan JA and Burow ME: Pharmacology and anti-tumor activity of RWJ67657, a novel inhibitor of p38 mitogen activated protein kinase. Am J Cancer Res. 2:446–458. 2012.PubMed/NCBI

63 

Kim SJ, Baek KS, Park HJ, Jung YH and Lee SM: Compound 9a, a novel synthetic histone deacetylase inhibitor, protects against septic injury in mice by suppressing MAPK signalling. Br J Pharmacol. 173:1045–1057. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Su J, Cui X, Li Y, Mani H, Ferreyra GA, Danner RL, Hsu LL, Fitz Y and Eichacker PQ: SB203580, a p38 inhibitor, improved cardiac function but worsened lung injury and survival during Escherichia coli pneumonia in mice. J Trauma. 68:1317–1327. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Wang J, Zhou J, Wang Y, Yang C, Fu M, Zhang J, Han X, Li Z, Hu K and Ge J: Qiliqiangxin protects against anoxic injury in cardiac microvascular endothelial cells via NRG-1/ErbB-PI3K/Akt/mTOR pathway. J Cell Mol Med. 21:1905–1914. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Vessey DA, Li L and Kelley M: Ischemic preconditioning requires opening of pannexin-1/P2X(7) channels not only during preconditioning but again after index ischemia at full reperfusion. Mol Cell Biochem. 351:77–84. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Zhuo C, Wang Y, Wang X, Wang Y and Chen Y: Cardioprotection by ischemic postconditioning is abolished in depressed rats: Role of Akt and signal transducer and activator of transcription-3. Mol Cell Biochem. 346:39–47. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Kirabo A, Ryzhov S, Gupte M, Sengsayadeth S, Gumina RJ, Sawyer DB and Galindo CL: Neuregulin-1β induces proliferation, survival and paracrine signaling in normal human cardiac ventricular fibroblasts. J Mol Cell Cardiol. 105:59–69. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E and Ovize M: PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res. 69:178–185. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Rahman S, Li J, Bopassa JC, Umar S, Iorga A, Partownavid P and Eghbali M: Phosphorylation of GSK-3β mediates intralipid-induced cardioprotection against ischemia/reperfusion injury. Anesthesiology. 115:242–253. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Guo LW, Gao L, Rothschild J, Su B and Gelman IH: Control of protein kinase C activity, phorbol ester-induced cytoskeletal remodeling, and cell survival signals by the scaffolding protein SSeCKS/GRAVIN/AKAP12. J Biol Chem. 286:38356–38366. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Siafakas NM, Antoniou KM and Tzortzaki EG: Role of angiogenesis and vascular remodeling in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2:453–462. 2007.PubMed/NCBI

73 

Mount PF, Kemp BE and Power DA: Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol. 42:271–279. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Sawada N and Liao JK: Targeting eNOS and beyond: Emerging heterogeneity of the role of endothelial Rho proteins in stroke protection. Expert Rev Neurother. 9:1171–1186. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Rana MK and Worthylake RA: Novel mechanism for negatively regulating Rho-kinase (ROCK) signaling through Coronin1B protein in neuregulin 1 (NRG-1)-induced tumor cell motility. J Biol Chem. 287:21836–21845. 2012. View Article : Google Scholar : PubMed/NCBI

76 

van Nieuw Amerongen GP, Koolwijk P, Versteilen A and van Hinsbergh VW: Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol. 23:211–217. 2003. View Article : Google Scholar : PubMed/NCBI

77 

Anwar KN, Fazal F, Malik AB and Rahman A: RhoA/Rho-associated kinase pathway selectively regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via activation of I kappa B kinase beta and phosphorylation of RelA/p65. J Immunol. 173:6965–6972. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Chang W, Xie JF, Xu JY and Yang Y: Effect of levosimendan on mortality in severe sepsis and septic shock: A meta-analysis of randomised trials. BMJ Open. 8:e0193382018. View Article : Google Scholar : PubMed/NCBI

79 

Bonner JM and Boulianne GL: Diverse structures, functions and uses of FK506 binding proteins. Cell Signal. 38:97–105. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Bruno F, Xavier W and Ricard F: Safety and pharmacodynamic activity of a novel TREM-1 pathway inhibitory peptide in septic shock patients: Phase IIa clinical trial results. Intensive Care Med Exp. 6 (Suppl 1):1–33. 2018.

81 

Fang SJ, Wu XS, Han ZH, Zhang XX, Wang CM, Li XY, Lu LQ and Zhang JL: Neuregulin-1 preconditioning protects the heart against ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Chin Med J (Engl). 123:3597–3604. 2010.PubMed/NCBI

82 

Zhou Z, Guo F, Dou Y, Tang J and Huan J: Guanine nucleotide exchange factor-H1 signaling is involved in lipopolysaccharide-induced endothelial barrier dysfunction. Surgery. 154:621–631. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Liu X, Gu X, Li Z, Li X, Li H, Chang J, Chen P, Jin J, Xi B, Chen D, et al: Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J Am Coll Cardiol. 48:1438–1447. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Galindo CL, Kasasbeh E, Murphy A, Ryzhov S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, Song Y, et al: Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure. J Am Heart Assoc. 4:e0005282015.PubMed/NCBI

85 

Bersell K, Arab S, Haring B and Kühn B: Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 138:257–270. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Sawyer DB, Zuppinger C, Miller TA, Eppenberger HM and Suter TM: Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: Potential mechanism for trastuzumab-induced cardiotoxicity. Circulation. 105:1551–1554. 2002. View Article : Google Scholar : PubMed/NCBI

87 

Grazette LP, Boecker W, Matsui T, Semigran M, Force TL, Hajjar RJ and Rosenzweig A: Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: Implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol. 44:2231–2238. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Caillaud K, Boisseau N, Ennequin G, Chavanelle V, Etienne M, Li X, Denis P, Dardevet D, Lacampagne A and Sirvent P: Neuregulin 1 improves glucose tolerance in adult and old rats. Diabetes Metab. 42:96–104. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Wang X, Zhuo X, Gao J, Liu H, Lin F and Ma A: Neuregulin-1β partially improves cardiac function in volume-overload heart failure through regulation of abnormal calcium handing. Front Pharmacol. 10:6162019. View Article : Google Scholar : PubMed/NCBI

90 

Wang X, Liu Z, Duan HN and Wang L: Therapeutic potential of neuregulin in cardiovascular system: Can we ignore the effects of neuregulin on electrophysiology? Mini Rev Med Chem. 16:867–871. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, et al: Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail. 13:83–92. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, Li T, Liu X, Xu Y, Li X, et al: A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol. 55:1907–1914. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kang W, Cheng Y, Wang X, Zhou F, Zhou C, Wang L and Zhong L: Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review). Mol Med Rep 21: 2311-2320, 2020.
APA
Kang, W., Cheng, Y., Wang, X., Zhou, F., Zhou, C., Wang, L., & Zhong, L. (2020). Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review). Molecular Medicine Reports, 21, 2311-2320. https://doi.org/10.3892/mmr.2020.11034
MLA
Kang, W., Cheng, Y., Wang, X., Zhou, F., Zhou, C., Wang, L., Zhong, L."Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review)". Molecular Medicine Reports 21.6 (2020): 2311-2320.
Chicago
Kang, W., Cheng, Y., Wang, X., Zhou, F., Zhou, C., Wang, L., Zhong, L."Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review)". Molecular Medicine Reports 21, no. 6 (2020): 2311-2320. https://doi.org/10.3892/mmr.2020.11034
Copy and paste a formatted citation
x
Spandidos Publications style
Kang W, Cheng Y, Wang X, Zhou F, Zhou C, Wang L and Zhong L: Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review). Mol Med Rep 21: 2311-2320, 2020.
APA
Kang, W., Cheng, Y., Wang, X., Zhou, F., Zhou, C., Wang, L., & Zhong, L. (2020). Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review). Molecular Medicine Reports, 21, 2311-2320. https://doi.org/10.3892/mmr.2020.11034
MLA
Kang, W., Cheng, Y., Wang, X., Zhou, F., Zhou, C., Wang, L., Zhong, L."Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review)". Molecular Medicine Reports 21.6 (2020): 2311-2320.
Chicago
Kang, W., Cheng, Y., Wang, X., Zhou, F., Zhou, C., Wang, L., Zhong, L."Neuregulin‑1: An underlying protective force of cardiac dysfunction in sepsis (Review)". Molecular Medicine Reports 21, no. 6 (2020): 2311-2320. https://doi.org/10.3892/mmr.2020.11034
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team