Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2020 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Identification of key miRNAs and genes for mouse retinal development using a linear model

  • Authors:
    • Yishen Wang
    • Xiao Wang
    • Yukang Jiang
    • Ruyuan Liu
    • Di Cao
    • Jianying Pan
    • Yan Luo
  • View Affiliations / Copyright

    Affiliations: State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China, Department of Statistical Science, School of Mathematics, Southern China Research Center of Statistical Science, Sun Yat‑Sen University, Guangzhou, Guangdong 51027, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 494-506
    |
    Published online on: April 21, 2020
       https://doi.org/10.3892/mmr.2020.11082
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRNAs) are upstream regulators of gene expression and are involved in several biological processes. The purpose of the present study was to obtain a detailed spatiotemporal miRNA expression profile in mouse retina, to identify one or more miRNAs that are key to mouse retinal development and to investigate the roles and mechanisms of these miRNAs. The miRNA expression pattern of the developing mouse retina was acquired from Locked Nucleic Acid microarrays. Data were processed to identify differentially expressed miRNAs (DE‑miRNAs) using the linear model in Python 3.6. Following bioinformatics analysis and reverse transcription‑quantitative polymerase chain reaction validation, 8 miRNAs (miR‑9‑5p, miR‑130a‑3p, miR‑92a‑3p, miR‑20a‑5p, miR‑93‑5p, miR‑9‑3p, miR‑709 and miR‑124) were identified as key DE‑miRNAs with low variability during mouse retinal development. Gene Ontology analysis revealed that the target genes of the DE‑miRNAs were enriched in cellular metabolic processes. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the target genes of the DE‑miRNAs were significantly enriched in PI3K/AKT/mTOR, class O of forkhead box transcription factors, mitogen‑activated protein kinase (MAPK), neurotrophin and transforming growth factor (TGF)‑β signaling, as well as focal adhesion and the axon guidance pathway. PI3K, AKT, PTEN, MAPK1, Son of Sevenless, sphingosine‑1‑phosphate receptor 1, BCL‑2L11, TGF‑β receptor type 1/2 and integrin α (ITGA)/ITGAB, which are key components of the aforementioned pathways and were revealed to be target genes of several of the DE‑miRNAs. The present study used a linear model to identify several DE‑miRNAs, as well as their target genes and associated pathways, which may serve crucial roles in mouse retinal development. Therefore, the results obtained in the present study may provide the groundwork for further experiments.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Suárez Y, Fernández-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M and Sessa WC: Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA. 105:14082–14087. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Zamore PD and Haley B: Ribo-gnome: The big world of small RNAs. Science. 309:1519–1524. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Leonardo TR, Schultheisz HL, Loring JF and Laurent LC: The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol. 14:1114–1121. 2012. View Article : Google Scholar : PubMed/NCBI

4 

de Chevigny A, Coré N, Follert P, Gaudin M, Barbry P, Béclin C and Cremer H: miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci. 15:1120–1126. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Surzenko N, Crowl T, Bachleda A, Langer L and Pevny L: SOX2 maintains the quiescent progenitor cell state of postnatal retinal Muller glia. Development. 140:1445–1456. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Damiani D, Alexander JJ, O'Rourke JR, McManus M, Jadhav AP, Cepko CL, Hauswirth WW, Harfe BD and Strettoi E: Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J Neurosci. 28:4878–4887. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Lin S and Gregory RI: MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Karali M, Peluso I, Marigo V and Banfi S: Identification and characterization of microRNAs expressed in the mouse eye. Invest Ophthalmol Vis Sci. 48:509–515. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Hackler L Jr, Wan J, Swaroop A, Qian J and Zack DJ: MicroRNA profile of the developing mouse retina. Invest Ophthalmol Vis Sci. 51:1823–1831. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, et al: The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci. 51:2813–2826. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Fan WJ, Li X, Yao HL, Deng JX, Liu HL, Cui ZJ, Wang Q, Wu P and Deng JB: Neural differentiation and synaptogenesis in retinal development. Neural Regen Res. 11:312–318. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. eLife. 4:42015. View Article : Google Scholar

14 

Wong N and Wang X: miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43:D146–D152. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al The Gene Ontology Consortium, : Gene ontology: Tool for the unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI

16 

The Gene Ontology Consortium, . Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 45:D331–D338. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H and Kanehisa M: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27:29–34. 1999. View Article : Google Scholar : PubMed/NCBI

18 

Huang W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Larionov A, Krause A and Miller W: A standard curve based method for relative real time PCR data processing. BMC Bioinformatics. 6:622005. View Article : Google Scholar : PubMed/NCBI

22 

Aubert M, Chaplain MA, McDougall SR, Devlin A and Mitchell CA: A continuum mathematical model of the developing murine retinal vasculature. Bull Math Biol. 73:2430–2451. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Xu S, Witmer PD, Lumayag S, Kovacs B and Valle D: MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 282:25053–25066. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Lavker RM and Ryan DG: MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Invest Ophthalmol Vis Sci. 47:5410. 2006.

25 

Shi Z, Chen Q, Li C, Wang L, Qian X, Jiang C, Liu X, Wang X, Li H, Kang C, et al: MiR-124 governs glioma growth and angiogenesis and enhances chemosensitivity by targeting R-Ras and N-Ras. Neuro Oncol. 16:1341–1353. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, et al: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 6:142008. View Article : Google Scholar : PubMed/NCBI

27 

He Y, Li HB, Li X, Zhou Y, Xia XB and Song WT: MiR-124 promotes the growth of retinal ganglion cells derived from Müller cells. Cell Physiol Biochem. 45:973–983. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Baudet ML, Zivraj KH, Abreu-Goodger C, Muldal A, Armisen J, Blenkiron C, Goldstein LD, Miska EA and Holt CE: miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nat Neurosci. 15:29–38. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW and Crabtree GR: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 476:228–231. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Kania EE, Carvajal-Moreno J, Hernandez VA, English A, Papa JL, Shkolnikov N, Ozer HG, Yilmaz AS, Yalowich JC and Elton TS: hsa-miR-9-3p and hsa-miR-9-5p as post-transcriptional modulators of DNA topoisomerase IIα in human leukemia K562 cells with acquired resistance to etoposide. Mol Pharmacol. 97:159–170. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Sim SE, Lim CS, Kim JI, Seo D, Chun H, Yu NK, Lee J, Kang SJ, Ko HG, Choi JH, et al: The brain-enriched MicroRNA miR-9-3p regulates synaptic plasticity and memory. J Neurosci. 36:8641–8652. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Coolen M, Katz S and Bally-Cuif L: miR-9: A versatile regulator of neurogenesis. Front Cell Neurosci. 7:2202013. View Article : Google Scholar : PubMed/NCBI

33 

Carrella S, Barbato S, D'Agostino Y, Salierno FG, Manfredi A, Banfi S and Conte I: TGF-β controls miR-181/ERK regulatory network during retinal axon specification and growth. PLoS One. 10:e01441292015. View Article : Google Scholar : PubMed/NCBI

34 

Karali M, Persico M, Mutarelli M, Carissimo A, Pizzo M, Singh Marwah V, Ambrosio C, Pinelli M, Carrella D, Ferrari S, et al: High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Res. 44:1525–1540. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, et al: MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 324:1710–1713. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Pin AL, Houle F, Guillonneau M, Paquet ER, Simard MJ and Huot J: miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis. 15:593–608. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Fang L, Du WW, Yang W, Rutnam ZJ, Peng C, Li H, O'Malley YQ, Askeland RW, Sugg S, Liu M, et al: MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle. 11:4352–4365. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Akerblom M, Petri R, Sachdeva R, Klussendorf T, Mattsson B, Gentner B and Jakobsson J: microRNA-125 distinguishes developmentally generated and adult-born olfactory bulb interneurons. Development. 141:1580–1588. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Boissart C, Nissan X, Giraud-Triboult K, Peschanski M and Benchoua A: miR-125 potentiates early neural specification of human embryonic stem cells. Development. 139:1247–1257. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um M, Udolph G, Yang H, Lim B and Lodish HF: MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol. 29:5290–5305. 2009. View Article : Google Scholar : PubMed/NCBI

41 

La Torre A, Georgi S and Reh TA: Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. Proc Natl Acad Sci USA. 110:E2362–E2370. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Decembrini S, Bressan D, Vignali R, Pitto L, Mariotti S, Rainaldi G, Wang X, Evangelista M, Barsacchi G and Cremisi F: MicroRNAs couple cell fate and developmental timing in retina. Proc Natl Acad Sci USA. 106:21179–21184. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Soufi-Zomorrod M, Hajifathali A, Kouhkan F, Mehdizadeh M, Rad SM and Soleimani M: MicroRNAs modulating angiogenesis: miR-129-1 and miR-133 act as angio-miR in HUVECs. Tumour Biol. 37:9527–9534. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Zhang Y, Chen M, Qiu Z, Hu K, McGee W, Chen X, Liu J, Zhu L and Wu JY: MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. Protein Cell. 7:489–500. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Lee DY, Deng Z, Wang CH and Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA. 104:20350–20355. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Chan JK, Kiet TK, Blansit K, Ramasubbaiah R, Hilton JF, Kapp DS and Matei D: MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer. Gynecol Oncol. 133:568–574. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Rafalski VA and Brunet A: Energy metabolism in adult neural stem cell fate. Prog Neurobiol. 93:182–203. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Zhang X, He X, Li Q, Kong X, Ou Z, Zhang L, Gong Z, Long D, Li J, Zhang M, et al: PI3K/AKT/mTOR signaling mediates valproic acid-induced neuronal differentiation of neural stem cells through epigenetic modifications. Stem Cell Reports. 8:1256–1269. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Adams HH, Hibar DP, Chouraki V, Stein JL, Nyquist PA, Rentería ME, Trompet S, Arias-Vasquez A, Seshadri S, Desrivières S, et al: Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat Neurosci. 19:1569–1582. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Peltier J, O'Neill A and Schaffer DV: PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol. 67:1348–1361. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Hevner RF: Brain overgrowth in disorders of RTK-PI3K-AKT signaling: A mosaic of malformations. Semin Perinatol. 39:36–43. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Zhang W and Liu HT: MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12:9–18. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Nakazawa T, Tamai M and Mori N: Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci. 43:3319–3326. 2002.PubMed/NCBI

54 

Galy A, Néron B, Planque N, Saule S and Eychène A: Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina. Dev Biol. 248:251–264. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Lin SJ, Chiang MC, Shih HY, Chiang KC and Cheng YC: Spatiotemporal expression of foxo4, foxo6a, and foxo6b in the developing brain and retina are transcriptionally regulated by PI3K signaling in zebrafish. Dev Genes Evol. 227:219–230. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, Lim R, Zimmermann B, Aspalter IM, Franco CA, Boettger T, et al: FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 529:216–220. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Llamosas MM, Cernuda-Cernuda R, Huerta JJ, Vega JA and García-Fernández JM: Neurotrophin receptors expression in the developing mouse retina: An immunohistochemical study. Anat Embryol (Berl). 195:337–344. 1997. View Article : Google Scholar : PubMed/NCBI

58 

Lange J, Yafai Y, Noack A, Yang XM, Munk AB, Krohn S, Iandiev I, Wiedemann P, Reichenbach A and Eichler W: The axon guidance molecule Netrin-4 is expressed by Müller cells and contributes to angiogenesis in the retina. Glia. 60:1567–1578. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Rohrer B, Korenbrot JI, LaVail MM, Reichardt LF and Xu B: Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J Neurosci. 19:8919–8930. 1999. View Article : Google Scholar : PubMed/NCBI

60 

Wang X, Abraham S, McKenzie JAG, Jeffs N, Swire M, Tripathi VB, Luhmann UF, Lange CAK, Zhai Z, Arthur HM, et al: LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature. 499:306–311. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Zhao M, Hu Y, Jin J, Yu Y, Zhang S, Cao J, Zhai Y, Wei R, Shou J, Cai W, et al: Interleukin 37 promotes angiogenesis through TGF-β signaling. Sci Rep. 7:61132017. View Article : Google Scholar : PubMed/NCBI

62 

Bialas AR and Stevens B: TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. 16:1773–1782. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Braunger BM, Pielmeier S, Demmer C, Landstorfer V, Kawall D, Abramov N, Leibinger M, Kleiter I, Fischer D, Jägle H, et al: TGF-β signaling protects retinal neurons from programmed cell death during the development of the mammalian eye. J Neurosci. 33:14246–14258. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Chacón MR, Navarro AI, Cuesto G, del Pino I, Scott R, Morales M and Rico B: Focal adhesion kinase regulates actin nucleation and neuronal filopodia formation during axonal growth. Development. 139:3200–3210. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Zhao X and Guan JL: Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 63:610–615. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Li M and Sakaguchi DS: Expression patterns of focal adhesion associated proteins in the developing retina. Dev Dyn. 225:544–553. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Xie X, Gilbert M, Petley-Ragan L and Auld VJ: Loss of focal adhesions in glia disrupts both glial and photoreceptor axon migration in the Drosophila visual system. Development. 141:3072–3083. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Kornberg LJ, Shaw LC, Spoerri PE, Caballero S and Grant MB: Focal adhesion kinase overexpression induces enhanced pathological retinal angiogenesis. Invest Ophthalmol Vis Sci. 45:4463–4469. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Margolis B and Skolnik EY: Activation of Ras by receptor tyrosine kinases. J Am Soc Nephrol. 5:1288–1299. 1994.PubMed/NCBI

70 

Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha'afi RI and Hla T: Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 99:301–312. 1999. View Article : Google Scholar : PubMed/NCBI

71 

Chae SS, Paik JH, Allende ML, Proia RL and Hla T: Regulation of limb development by the sphingosine 1-phosphate receptor S1p1/EDG-1 occurs via the hypoxia/VEGF axis. Dev Biol. 268:441–447. 2004. View Article : Google Scholar : PubMed/NCBI

72 

O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S and Huang DC: Bim: A novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17:384–395. 1998. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Y, Wang X, Jiang Y, Liu R, Cao D, Pan J and Luo Y: Identification of key miRNAs and genes for mouse retinal development using a linear model. Mol Med Rep 22: 494-506, 2020.
APA
Wang, Y., Wang, X., Jiang, Y., Liu, R., Cao, D., Pan, J., & Luo, Y. (2020). Identification of key miRNAs and genes for mouse retinal development using a linear model. Molecular Medicine Reports, 22, 494-506. https://doi.org/10.3892/mmr.2020.11082
MLA
Wang, Y., Wang, X., Jiang, Y., Liu, R., Cao, D., Pan, J., Luo, Y."Identification of key miRNAs and genes for mouse retinal development using a linear model". Molecular Medicine Reports 22.1 (2020): 494-506.
Chicago
Wang, Y., Wang, X., Jiang, Y., Liu, R., Cao, D., Pan, J., Luo, Y."Identification of key miRNAs and genes for mouse retinal development using a linear model". Molecular Medicine Reports 22, no. 1 (2020): 494-506. https://doi.org/10.3892/mmr.2020.11082
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Y, Wang X, Jiang Y, Liu R, Cao D, Pan J and Luo Y: Identification of key miRNAs and genes for mouse retinal development using a linear model. Mol Med Rep 22: 494-506, 2020.
APA
Wang, Y., Wang, X., Jiang, Y., Liu, R., Cao, D., Pan, J., & Luo, Y. (2020). Identification of key miRNAs and genes for mouse retinal development using a linear model. Molecular Medicine Reports, 22, 494-506. https://doi.org/10.3892/mmr.2020.11082
MLA
Wang, Y., Wang, X., Jiang, Y., Liu, R., Cao, D., Pan, J., Luo, Y."Identification of key miRNAs and genes for mouse retinal development using a linear model". Molecular Medicine Reports 22.1 (2020): 494-506.
Chicago
Wang, Y., Wang, X., Jiang, Y., Liu, R., Cao, D., Pan, J., Luo, Y."Identification of key miRNAs and genes for mouse retinal development using a linear model". Molecular Medicine Reports 22, no. 1 (2020): 494-506. https://doi.org/10.3892/mmr.2020.11082
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team