Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2020 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway

  • Authors:
    • Siqian Wang
    • Jingyuan Yang
    • Tingting Lin
    • Shengbing Huang
    • Jianfeng Ma
    • Xin Xu
  • View Affiliations / Copyright

    Affiliations: Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China, Department of Prothodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 257-264
    |
    Published online on: April 24, 2020
       https://doi.org/10.3892/mmr.2020.11094
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The incidence of peri-implant bone loss is high, and is a difficult condition to treat. Previous studies have shown that titanium (Ti) ions released from implants can lead to osteoblast cell damage, but the specific mechanisms have not been elucidated. The present study established a Ti ion damage osteoblast cell model. The levels of mitochondrion‑derived reactive oxygen species (mROS) and autophagy, cell viability and the sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) pathway were examined in this model. It was found that Ti ions decreased osteoblast viability. Moreover, with increased Ti ion concentration, the expression levels of microtubule associated protein 1 light chain 3α (LC3) progressively increased, P62 decreased, autophagic flow increased and mROS levels increased. After the addition of an autophagy inhibitor Bafilomycin A1 and Mito‑TEMPO, a mitochondrial antioxidant, the production of mROS was inhibited, the level of autophagy was decreased and cell activity was improved. In addition, with increased Ti ion concentration, the activity of SOD2 decreased, the acetylation level of SOD2 increased, the SIRT3 mRNA and protein expression levels decreased, and the activity of SIRT3 was significantly decreased. Furthermore, it was demonstrated that SIRT3 overexpression reduced the acetylation of SOD2 and increased the activity of SOD2, as well as reducing the production of mROS and the expression level of LC3, thus increasing cell viability. Therefore, the present results suggested that excessive production of mROS induced by Ti ions led to autophagic cell death of osteoblasts, which is dependent on the SIRT3/SOD2 pathway.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Anselme K: Osteoblast adhesion on biomaterials. Biomaterials. 21:667–681. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Anselme K: Biomaterials and interface with bone. Osteoporos Int. 22:2037–2042. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Davies JE: Mechanisms of endosseous integration. Int J Prosthodont. 11:391–401. 1998.PubMed/NCBI

4 

Davies JE: Understanding peri-implant endosseous healing. J Dent Educ. 67:932–949. 2003.PubMed/NCBI

5 

Hermann JS, Buser D, Schenk RK, Schoolfield JD and Cochran DL: Biologic Width around one- and two-piece titanium implants. Clin Oral Implants Res. 12:559–571. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Lindhe J and Meyle J; Group D of European Workshop on Periodontology, : Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol. 35 (Suppl):282–285. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Brånemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S and Rockler B: Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials. 4:25–28. 1983. View Article : Google Scholar : PubMed/NCBI

8 

Wachi T, Shuto T, Shinohara Y, Matono Y and Makihira S: Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology. 327:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Schwarz F, Sahm N, Mihatovic I, Golubovic V and Becker J: Surgical therapy of advanced ligature-induced peri-implantitis defects: Cone-beam computed tomographic and histological analysis. J Clin Periodontol. 38:939–949. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Kumazawa R, Watari F, Takashi N, Tanimura Y, Uo M and Totsuka Y: Effects of Ti ions and particles on neutrophil function and morphology. Biomaterials. 23:3757–3764. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Wennerberg A, Ide-Ektessabi A, Hatkamata S, Sawase T, Johansson C, Albrektsson T, Martinelli A, Södervall U and Odelius H: Titanium release from implants prepared with different surface roughness. Clin Oral Implants Res. 15:505–512. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Ellingsen JE, Johansson CB, Wennerberg A and Holmén A: Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants. 19:659–666. 2004.PubMed/NCBI

13 

Pajarinen J, Kouri VP, Jämsen E, Li TF, Mandelin J and Konttinen YT: The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater. 9:9229–9240. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Obando-Pereda GA, Fischer L and Stach-Machado DR: Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sci. 97:96–106. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Brettin BT, Grosland NM, Qian F, Southard KA, Stuntz TD, Morgan TA, Marshall SD and Southard TE: Bicortical vs monocortical orthodontic skeletal anchorage. Am J Orthod Dentofacial Orthop. 134:625–635. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Bitar D and Parvizi J: Biological response to prosthetic debris. World J Orthop. 6:172–189. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Grunow M and Schöpp W: [Determination of the activity of superoxide dismutase in terms of rea substrate conversion]. Biomed Biochim Acta. 48:185–199. 1989.(In German). PubMed/NCBI

18 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Klionsky DJ, Elazar Z, Seglen PO and Rubinsztein DC: Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy. 4:849–850. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Sena LA and Chandel NS: Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 48:158–167. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Lambert AJ and Brand MD: Reactive oxygen species production by mitochondria. Methods Mol Biol. 554:165–181. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Tao R, Vassilopoulos A, Parisiadou L, Yan Y and Gius D: Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid Redox Signal. 20:1646–1654. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S and Xiong Y: Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 12:534–541. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, et al: Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 40:893–904. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Di Tucci AA, Murru R, Alberti D, Rabault B, Deplano S and Angelucci E: Correction of anemia in a transfusion-dependent patient with primary myelofibrosis receiving iron chelation therapy with deferasirox (Exjade, ICL670). Eur J Haematol. 78:540–542. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Messa E, Cilloni D, Messa F, Arruga F, Roetto A and Saglio G: Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis. Acta Haematol. 120:70–74. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Angelucci E, Santini V, Di Tucci AA, Quaresmini G, Finelli C, Volpe A, Quarta G, Rivellini F, Sanpaolo G, Cilloni D, et al: Deferasirox for transfusion-dependent patients with myelodysplastic syndromes: Safety, efficacy, and beyond (GIMEMA MDS0306 Trial). Eur J Haematol. 92:527–536. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Jacobs JJ, Gilbert JL and Urban RM: Corrosion of metal orthopaedic implants. J Bone Joint Surg Am. 80:268–282. 1998. View Article : Google Scholar : PubMed/NCBI

29 

Gallo J, Kamínek P, Tichá V, Riháková P and Ditmar R: Particle disease. A comprehensive theory of periprosthetic osteolysis: A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 146:21–28. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Nakagawa M, Matsuya S and Udoh K: Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dent Mater J. 21:83–92. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Matono Y, Nakagawa M, Matsuya S, Ishikawa K and Terada Y: Corrosion behavior of pure titanium and titanium alloys in various concentrations of Acidulated Phosphate Fluoride (APF) solutions. Dent Mater J. 25:104–112. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Roehlecke C, Witt M, Kasper M, Schulze E, Wolf C, Hofer A and Funk RW: Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs. 168:178–187. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Terheyden H, Lang NP, Bierbaum S and Stadlinger B: Osseointegration--communication of cells. Clin Oral Implants Res. 23:1127–1135. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Rajendrakumar SK, Revuri V, Samidurai M, Mohapatra A, Lee JH, Ganesan P, Jo J, Lee YK and Park IK: Peroxidase-mimicking nanoassembly mitigates lipopolysaccharide-induced endotoxemia and cognitive damage in the brain by impeding inflammatory signaling in macrophages. Nano Lett. 18:6417–6426. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Landgraeber S, Jäger M, Jacobs JJ and Hallab NJ: The pathology of orthopedic implant failure is mediated by innate immune system cytokines. Mediators Inflamm. 2014:1851502014. View Article : Google Scholar : PubMed/NCBI

36 

Li X, Ma XY, Feng YF, Ma ZS, Wang J, Ma TC, Qi W, Lei W and Wang L: Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions. Biomaterials. 36:44–54. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, Lei W and Zhang ZY: Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials. 34:2234–2243. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Wang L, Zhao X, Wei BY, Liu Y, Ma XY, Wang J, Cao PC, Zhang Y, Yan YB, Lei W, et al: Insulin improves osteogenesis of titanium implants under diabetic conditions by inhibiting reactive oxygen species overproduction via the PI3K-Akt pathway. Biochimie. 108:85–93. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Klionsky DJ, Abdelmohsen K, Abe A, Abedin MDJ, Abeliovich H, Arozena AA, Adachi H, Adams CM, Adams PD, Adeli K, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Liu Y and Levine B: Autosis and autophagic cell death: The dark side of autophagy. Cell Death Differ. 22:367–376. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Essick EE and Sam F: Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev. 3:168–177. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Zhang T, Li Y, Park KA, Byun HS, Won M, Jeon J, Lee Y, Seok JH, Choi SW, Lee SH, et al: Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy. 8:559–576. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Shen W, Tian C, Chen H, Yang Y, Zhu D, Gao P and Liu J: Oxidative stress mediates chemerin-induced autophagy in endothelial cells. Free Radic Biol Med. 55:73–82. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Dai DF and Rabinovitch P: Mitochondrial oxidative stress mediates induction of autophagy and hypertrophy in angiotensin-II treated mouse hearts. Autophagy. 7:917–918. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Kim Y, Kim YS, Kim DE, Lee JS, Song JH, Kim HG, Cho DH, Jeong SY, Jin DH, Jang SJ, et al: BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy. 9:2126–2139. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Liang Q, Benavides GA, Vassilopoulos A, Gius D, Darley-Usmar V and Zhang J: Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts. Biochem J. 454:249–257. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, et al: SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 11:1037–1051. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Lee J, Giordano S and Zhang J: Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem J. 441:523–540. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Zhu Y, Park SH, Ozden O, Kim HS, Jiang H, Vassilopoulos A, Spitz DR and Gius D: Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity. Free Radic Biol Med. 53:828–833. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Zeng L, Yang Y, Hu Y, Sun Y, Du Z, Xie Z, Zhou T and Kong W: Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS One. 9:e880192014. View Article : Google Scholar : PubMed/NCBI

52 

Li M, Chiu JF, Mossman BT and Fukagawa NK: Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats. J Biol Chem. 281:40429–40439. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Niska K, Pyszka K, Tukaj C, Wozniak M, Radomski MW and Inkielewicz-Stepniak I: Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int J Nanomedicine. 10:1095–1107. 2015.PubMed/NCBI

54 

Li Y, Wang W, Wu Q, Li Y, Tang M, Ye B and Wang D: Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One. 7:e446882012. View Article : Google Scholar : PubMed/NCBI

55 

Bánréti A, Sass M and Graba Y: The emerging role of acetylation in the regulation of autophagy. Autophagy. 9:819–829. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Papanicolaou KN, O'Rourke B and Foster DB: Metabolism leaves its mark on the powerhouse: Recent progress in post-translational modifications of lysine in mitochondria. Front Physiol. 5:3012014. View Article : Google Scholar : PubMed/NCBI

57 

Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, et al: Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell. 49:186–199. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Giralt A and Villarroya F: SIRT3, a pivotal actor in mitochondrial functions: Metabolism, cell death and aging. Biochem J. 444:1–10. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Kim H, Lee YD, Kim HJ, Lee ZH and Kim HH: SOD2 and Sirt3 Control Osteoclastogenesis by Regulating Mitochondrial ROS. J Bone Miner Res. 32:397–406. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang S, Yang J, Lin T, Huang S, Ma J and Xu X: Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway. Mol Med Rep 22: 257-264, 2020.
APA
Wang, S., Yang, J., Lin, T., Huang, S., Ma, J., & Xu, X. (2020). Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway. Molecular Medicine Reports, 22, 257-264. https://doi.org/10.3892/mmr.2020.11094
MLA
Wang, S., Yang, J., Lin, T., Huang, S., Ma, J., Xu, X."Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway". Molecular Medicine Reports 22.1 (2020): 257-264.
Chicago
Wang, S., Yang, J., Lin, T., Huang, S., Ma, J., Xu, X."Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway". Molecular Medicine Reports 22, no. 1 (2020): 257-264. https://doi.org/10.3892/mmr.2020.11094
Copy and paste a formatted citation
x
Spandidos Publications style
Wang S, Yang J, Lin T, Huang S, Ma J and Xu X: Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway. Mol Med Rep 22: 257-264, 2020.
APA
Wang, S., Yang, J., Lin, T., Huang, S., Ma, J., & Xu, X. (2020). Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway. Molecular Medicine Reports, 22, 257-264. https://doi.org/10.3892/mmr.2020.11094
MLA
Wang, S., Yang, J., Lin, T., Huang, S., Ma, J., Xu, X."Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway". Molecular Medicine Reports 22.1 (2020): 257-264.
Chicago
Wang, S., Yang, J., Lin, T., Huang, S., Ma, J., Xu, X."Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway". Molecular Medicine Reports 22, no. 1 (2020): 257-264. https://doi.org/10.3892/mmr.2020.11094
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team