Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p

  • Authors:
    • Weida Gao
    • Hongbin Li
    • Yang Liu
    • Yao Zhang
    • Hong Zhao
    • Fei Liu
  • View Affiliations / Copyright

    Affiliations: Gamma Knife Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China, Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China, Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China, Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
    Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 723-732
    |
    Published online on: May 15, 2020
       https://doi.org/10.3892/mmr.2020.11149
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults that originates from glial cells. The prognosis of patients with high‑grade glioma is poor. It is therefore crucial to develop effective therapeutic strategies. Long non‑coding RNAs (lncRNAs) have been reported as potential inducers or suppressors of tumor progression. Previous studies have indicated that the lncRNA Feline Leukemia Virus Subgroup C Cellular Receptor 1 Antisense RNA 1 (FLVCR1‑AS1) is involved in the development and progression of gastric and lung cancer, as well as hepatocellular carcinoma and cholangiocarcinoma; however, the biological effect of FLVCR1‑AS1 in glioma is not completely understood. The aim of the present study was to investigate how FLVCR1‑AS1 modulates cell proliferation and invasion in glioma. FLVCR1‑AS1 expression was significantly upregulated in GBM tissues compared with adjacent normal brain samples, and was higher in GBM cell lines compared with normal human astrocyte cells. Furthermore, the microRNA (miR)‑30b‑3p was revealed to be a putative target of FLVCR1‑AS1, and the suppressive effects of miR‑30b‑3p on cellular proliferation and invasion were reversed following FLVCR1‑AS1‑knockdown. The results from Cell Counting Kit‑8 and Transwell assays confirmed that FLVCR1‑AS1‑knockdown inhibited GBM cell proliferation and invasion ability. In addition, FLVCR1‑AS1 was found to directly interact with miR‑30b‑3p, and a rescue experiment further established that FLVCR1‑AS1 contributed to glioma progression by inhibiting miR‑30b‑3p. The results from the present study demonstrated that FLVCR1‑AS1 may serve an oncogenic role in GBM and promote disease progression by interacting with miR‑30b‑3p. These findings suggested that FLVCR1‑AS1 may be considered as a novel therapeutic target and diagnostic biomarker for GBM.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Lai NS, Wu DG, Fang XG, Lin YC, Chen SS, Li ZB and Xu SS: Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma. Br J Cancer. 112:1241–1246. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Wang K, Kievit FM, Jeon M, Silber JR, Ellenbogen RG and Zhang M: Nanoparticle-mediated target delivery of TRAIL as gene therapy for glioblastoma. Adv Healthc Mater. 4:2719–2726. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Delgado-López PD and Corrales-García EM: Survival in glioblastoma: A review on the treatment modalities. Clin Transl Oncol. 18:1062–1071. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Li C, Jing H, Ma G and Liang P: Allicin induces apoptosis through activation of both intrinsic and extrinsic pathways in glioma cells. Mol Med Rep. 17:5976–5981. 2018.PubMed/NCBI

5 

Nikolov V, Stojanovic M, Kostic A, Radisavljevic M, Simonovic N, Jelenkovic B and Berilazic L: Factors affecting the survival of patients with glioblastoma multiforme. J BUON. 23:173–178. 2018.PubMed/NCBI

6 

Han Y: Analysis of the role of the Hippo pathway in cancer. J Transl Med. 17:1162019. View Article : Google Scholar : PubMed/NCBI

7 

Tamura R, Tanaka T, Miyake K, Yoshida K and Sasaki H: Bevacizumab formalignant gliomas: Current indications, mechanisms of action and resistance, and markers of response. Brain Tumor Pathol. 34:62–77. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Li C, Zheng H, Hou W, Bao H, Xiong J, Che W, Gu Y, Sun H and Liang P: Long non-coding RNA linc00645 promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-205-3p-ZEB1 axis in glioma. Cell Death Dis. 10:7172019. View Article : Google Scholar : PubMed/NCBI

9 

Maruyama R and Suzuki H: Long noncoding RNA involvement in cancer. BMB Rep. 45:604–611. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Spizzo R, Almeida MI, Colombatti A and Calin GA: Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene. 31:4577–4587. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Do H and Kim W: Roles of oncogenic long non-coding RNAs in cancer development. Genomics Inform. 16:e182018. View Article : Google Scholar : PubMed/NCBI

12 

Vital AL, Tabernero MD, Castrillo A, Rebelo A, Tão H, Gomes F, Nieto AB, Resende Oliveira C, Lopes MC and Orfao A: Gene expression profiles of human glioblastomas are associated with both tumor cytogenetics and histopathology. Neuro Oncol. 12:991–1003. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Zhang K, Zhao Z, Yu J, Chen W, Xu Q and Chen L: lncRNA FLVCR1-AS1 acts as miR-513c sponge to modulate cancer cell proliferation, migration, and invasion in hepatocellular carcinoma. J Cell Biochem. 119:6045–6056. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Westermarck J and Kahari VM: Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 13:781–792. 1999. View Article : Google Scholar : PubMed/NCBI

15 

Gao X, Zhao S, Yang X, Zang S and Yuan X: Long non-coding RNA FLVCR1-AS1 contributes to the proliferation and invasion of lung cancer by sponging miR-573 to upregulate the expression of E2F transcription factor 3. Biochem Biophys Res Commun. 505:931–938. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Lin H, Shangguan Z, Zhu M, Bao L, Zhang Q and Pan S: lncRNA FLVCR1-AS1 silencing inhibits lung cancer cell proliferation, migration, and invasion by inhibiting the activity of the Wnt/β-catenin signaling pathway. J Cell Biochem. 120:10625–10632. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Yan H, Li H, Silva MA, Guan Y, Yang L, Zhu L, Zhang Z, Li G and Ren C: lncRNA FLVCR1-AS1 mediates miR-513/YAP1 signaling to promote cell progression, migration, invasion and EMT process in ovarian cancer. J Exp Clin Cancer Res. 38:3562019. View Article : Google Scholar : PubMed/NCBI

18 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Li S, Zeng A, Hu Q, Yan W, Liu Y and You Y: miR-423-5p contributes to a malignant phenotype and temozolomide chemoresistance in glioblastomas. Neuro Oncol. 19:55–65. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Zhang D, Liu Z, Zheng N, Wu H, Zhang Z and Xu J: miR-30b-5p modulates glioma cell proliferation by direct targeting MDTH. Saudi J Biol Sci. 25:947–952. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Zhu ED, Li N, Li BS, Li W, Zhang WJ, Mao XH, Guo G, Zou QM and Xiao B: miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1. PLoS One. 9:e1060492014. View Article : Google Scholar : PubMed/NCBI

22 

Huang Da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Robinson MD, Mccarthy DJ and Smyth GK: EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Benjamini Y and Hochberg Y: Controlling the false discovery rate-A practical and powerful approach to multiple testing. J R Stat Soc. 57:289–300. 1995.

26 

Ye Z, Jin H and Qian Q: Argonaute 2: A novel rising star in cancer research. J Cancer. 6:877–882. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S, et al: lncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol. 40:2004–2012. 2012.PubMed/NCBI

28 

Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, Lui WM, Fung CF, Wong TS and leung GK: A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis. 58:123–131. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Zhi F, Wang Q, Xue L, Shao N, Wang R, Deng D, Wang S, Xia X and Yang Y: The use of three long non-coding RNAs as potential prognostic indicators of astrocytoma. PLoS One. 10:e01352422015. View Article : Google Scholar : PubMed/NCBI

30 

Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST and Leung GK: Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobio Dis. 48:1–8. 2012. View Article : Google Scholar

31 

Hu Y, Deng C, Zhang H, Zhang J, Peng B and Hu C: Long non-coding RNA XIST promotes cell growth and metastasis through regulating miR-139-5p mediated Wnt/β-catenin signaling pathway in bladder cancer. Oncotarget. 8:94554–94568. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Li C, Wan L, Liu Z, Xu G, Wang S, Su Z, Zhang Y, Zhang C, Liu X, Lei Z and Zhang HT: Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett. 418:185–195. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Wang L, Cho KB, Li Y, Tao G, Xie Z and Guo B: Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. 20:E57582019. View Article : Google Scholar : PubMed/NCBI

34 

Zhao J, Li L, Han ZY, Wang ZX and Qin LX: Long noncoding RNAs, emerging and versatile regulators of tumor-induced angiogenesis. Am J Cancer Res. 9:1367–1381. 2019.PubMed/NCBI

35 

Zhang J, Yao T, Wang Y, Yu J, Liu Y and Lin Z: Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 17:104–113. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Lv M, Zhong Z, Huang M, Tian Q, Jiang R and Chen J: lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim Biophys Acta Mol Cell Res. 1864:1887–1899. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Lu Q, Shan S, Li Y, Zhu D, Jin W and Ren T: Long noncoding RNA SNHG1 promotes non-small cell lung cancer progression by up-regulating MTDH via sponging miR-145-5p. FASEB J. 32:3957–3967. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Oliveto S, Mancino M, Manfrini N and Biffo S: Role of microRNAs in translation regulation and cancer. World J Biol Chem. 8:45–56. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Kumar B, Khaleghzadegan S, Mears B, Hatano K, Kudrolli TA, Chowdhury WH, Yeater DB, Ewing CM, Luo J, Isaacs WB, et al: Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget. 7:72593–72607. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Liu Y, Guo G, Zhong Z, Sun L, Liao L, Wang X, Cao Q and Chen H: Long non-coding RNA FLVCR1-AS1 sponges miR-155 to promote the tumorigenesis of gastric cancer by targeting c-Myc. Am J Transl Res. 11:793–805. 2019.PubMed/NCBI

41 

Bao W, Cao F, Ni S, Yang J, Li H, Su Z and Zhao B: lncRNA FLVCR1-AS1 regulates cell proliferation, migration and invasion by sponging miR-485-5p in human cholangiocarcinoma. Oncol Lett. 18:2240–2247. 2019.PubMed/NCBI

42 

Yan Z, Zhang W, Xiong Y, Wang Y and Li Z: Long noncoding RNA FLVCR1-AS1 aggravates biological behaviors of gliomacells via targeting miR-4731-5p/E2F2 axis. Biochem Biophys Res Commun. 521:716–720. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao W, Li H, Liu Y, Zhang Y, Zhao H and Liu F: Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p. Mol Med Rep 22: 723-732, 2020.
APA
Gao, W., Li, H., Liu, Y., Zhang, Y., Zhao, H., & Liu, F. (2020). Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p. Molecular Medicine Reports, 22, 723-732. https://doi.org/10.3892/mmr.2020.11149
MLA
Gao, W., Li, H., Liu, Y., Zhang, Y., Zhao, H., Liu, F."Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p". Molecular Medicine Reports 22.2 (2020): 723-732.
Chicago
Gao, W., Li, H., Liu, Y., Zhang, Y., Zhao, H., Liu, F."Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p". Molecular Medicine Reports 22, no. 2 (2020): 723-732. https://doi.org/10.3892/mmr.2020.11149
Copy and paste a formatted citation
x
Spandidos Publications style
Gao W, Li H, Liu Y, Zhang Y, Zhao H and Liu F: Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p. Mol Med Rep 22: 723-732, 2020.
APA
Gao, W., Li, H., Liu, Y., Zhang, Y., Zhao, H., & Liu, F. (2020). Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p. Molecular Medicine Reports, 22, 723-732. https://doi.org/10.3892/mmr.2020.11149
MLA
Gao, W., Li, H., Liu, Y., Zhang, Y., Zhao, H., Liu, F."Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p". Molecular Medicine Reports 22.2 (2020): 723-732.
Chicago
Gao, W., Li, H., Liu, Y., Zhang, Y., Zhao, H., Liu, F."Long non‑coding RNA FLVCR1‑AS1 promotes glioma cell proliferation and invasion by negatively regulating miR‑30b‑3p". Molecular Medicine Reports 22, no. 2 (2020): 723-732. https://doi.org/10.3892/mmr.2020.11149
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team