Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p

  • Authors:
    • Shanshan Li
    • Yixin Yin
    • Liping Yao
    • Ziyi Lin
    • Shengjun Sun
    • Jin Zhang
    • Xiaoyan Li
  • View Affiliations / Copyright

    Affiliations: Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China, Department of Endodontics, Yantai Stomatological Hospital, Yantai, Shandong 264008, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1017-1025
    |
    Published online on: May 18, 2020
       https://doi.org/10.3892/mmr.2020.11152
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Elucidation of the underlying mechanisms governing osteogenic differentiation is of significant importance to the improvement of therapeutics for bone‑related inflammatory diseases. Tumor necrosis factor‑α (TNF‑α) is regarded as one of the major agents during osteogenic differentiation in an inflammatory environment. miR‑335‑5p post‑transcriptionally downregulates the Dickkopf WNT signaling pathway inhibitor 1 (DKK1) protein level by specifically binding to the DKK1 3'UTR and activating Wnt signaling. The role of miR‑335‑5p in TNF‑α‑induced post‑transcriptional regulation of DKK1 remains to be elucidated. In the present study, the mRNA and protein levels of DKK1 and the level of miR‑335‑5p were determined in MC3T3‑E1 cells and the primary calvarial osteoblasts treated with or without TNF‑α. The role of NF‑κB signaling in TNF‑α‑induced post‑transcriptional regulation of DKK1 was also evaluated. The present study determined that although TNF‑α treatment exhibited cell‑specific effects on DKK1 mRNA expression, the stimulation of TNF‑α time‑ and concentration‑dependently upregulated the protein levels of DKK1. In primary calvarial osteoblasts, the decreased miR‑335‑5p level induced by TNF‑α‑activated NF‑κB signaling served an important role in mediating the post‑transcriptional regulation of DKK1 by TNF‑α treatment. In MC3T3‑E1 cells, the post‑transcriptional regulation of DKK1 by TNF‑α treatment was more complicated and involved other molecular signaling pathways in addition to the NF‑κB signaling. In conclusion, TNF‑α treatment served an important role in the post‑transcriptional regulation of DKK1 expression, which requires further investigation. The results of the present study not only provided new insights into the regulatory effects of miR‑335‑5p on osteogenic differentiation in an inflammatory microenvironment, but may also promote the development of potential therapeutic strategies for the treatment of bone‑related inflammatory diseases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Taurog JD, Chhabra A and Colbert RA: Ankylosing spondylitis and axial spondyloarthritis. N Engl J Med. 374:2563–2574. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Wu X, Gu Q, Chen X, Mi W, Wu T and Huang H: MiR-27a targets DKK2 and SFRP1 to promote reosseointegration in the regenerative treatment of peri-implantitis. J Bone Miner Res. 34:123–134. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, et al: Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res. 28:559–573. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Magrey MN and Khan MA: The paradox of bone formation and bone loss in ankylosing spondylitis: Evolving new concepts of bone formation and future trends in management. Curr Rheumatol Rep. 19:172017. View Article : Google Scholar : PubMed/NCBI

5 

Weitzmann MN: Bone and the immune system. Toxicol Pathol. 45:911–924. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Sun SC, Chang JH and Jin J: Regulation of nuclear factor-κB in autoimmunity. Trends Immunol. 34:282–289. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Litke JL and Jaffrey SR: Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat Biotechnol. 37:667–675. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Keller SA, Schattner EJ and Cesarman E: Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood. 96:2537–2542. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Kunkemoeller B, Bancroft T, Xing H, Morris AH, Luciano AK, Wu J, Fernandez-Hernando C and Kyriakides TR: Elevated thrombospondin 2 contributes to delayed wound healing in diabetes. Diabetes. 68:2016–2023. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Salahuddin S, Fath EK, Biel N, Ray A, Moss CR, Patel A, Patel S, Hilding L, Varn M, Ross T, et al: Epstein-barr virus latent membrane protein-1 induces the expression of SUMO-1 and SUMO-2/3 in LMP1-positive lymphomas and cells. Sci Rep. 9:2082019. View Article : Google Scholar : PubMed/NCBI

11 

Osta B, Benedetti G and Miossec P: Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol. 5:482014. View Article : Google Scholar : PubMed/NCBI

12 

Guo X and Wang XF: Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 19:71–88. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J and Chen J: Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 26:1953–1963. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB and Gravallese EM: Synovium-derived MicroRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res. 32:461–472. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Sang C, Zhang Y, Chen F, Huang P, Qi J, Wang P, Zhou Q, Kang H, Cao X and Guo L: Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis. Bone. 84:78–87. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, et al: Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 13:156–163. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Pritchard CC, Cheng HH and Tewari M: MicroRNA profiling: Approaches and considerations. Nat Rev Genet. 13:358–369. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, et al: miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 287:42084–42092. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Wang W, Yang L, Zhang D, Gao C, Wu J, Zhu Y and Zhang H: MicroRNA-218 negatively regulates osteoclastogenic differentiation by repressing the nuclear factor-κB signaling pathway and targeting tumor necrosis factor receptor 1. Cell Physiol Biochem. 48:339–347. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Deng L, Hu G, Jin L, Wang C and Niu H: Involvement of microRNA-23b in TNF-alpha-reduced BMSC osteogenic differentiation via targeting runx2. J Bone Miner Metab. 36:648–660. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Mi W, Shi Q, Chen X, Wu T and Huang H: miR-33a-5p modulates TNF-alpha-inhibited osteogenic differentiation by targeting SATB2 expression in hBMSCs. FEBS Lett. 590:396–407. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Li C, Zhang P and Gu J: miR-29a modulates tumor necrosis factor-α-induced osteogenic inhibition by targeting Wnt antagonists. Dev Growth Differ. 57:264–273. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Sui L, Wang M, Han Q, Yu L, Zhang L, Zheng L, Lian J, Zhang J, Valverde P, Xu Q, et al: A novel Lipidoid-MicroRNA formulation promotes calvarial bone regeneration. Biomaterials. 177:88–97. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Matzelle MM, Gallant MA, Condon KW, Walsh NC, Manning CA, Stein GS, Lian J B, Burr DB and Gravallese EM: Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 64:1540–1550. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Walsh NC and Gravallese EM: Bone remodeling in rheumatic disease: A question of balance. Immunol Rev. 233:301–312. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Quarles LD, Yohay DA, Lever LW, Caton R and Wenstrup RJ: Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. J Bone Miner Res. 7:683–692. 1992. View Article : Google Scholar : PubMed/NCBI

28 

Arriero Mdel M, Ramis JM, Perelló J and Monjo M: Differential response of MC3T3-E1 and human mesenchymal stem cells to inositol hexakisphosphate. Cell Physiol Biochem. 30:974–986. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Naismith JH and Sprang SR: Tumor necrosis factor receptor superfamily. J Inflamm. 47:1–7. 1995.PubMed/NCBI

30 

Idriss HT and Naismith JH: TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc Res Tech. 50:184–195. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Huang H, Zhao N, Xu X, Xu Y, Li S, Zhang J and Yang P: Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 44:420–427. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Zhao B: TNF and bone remodeling. Curr Osteoporos Rep. 15:126–134. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Wang L, Zhang J, Wang C, Qi Y, Du M, Liu W, Yang C and Yang P: Low concentrations of TNF-α promote osteogenic differentiation via activation of the ephrinB2-EphB4 signalling pathway. Cell Prolif. 50:e123112017. View Article : Google Scholar

34 

Karnes JM, Daffner SD and Watkins CM: Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone. 78:87–93. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Wang FS, Chuang PC, Lin CL, Chen MW, Ke HJ, Chang YH, Chen YS, Wu SL and Ko JY: MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum. 65:1530–1540. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Redlich K and Smolen JS: Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat Rev Drug Discov. 11:234–250. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Jing Y, Feng J ZH, Zhao X, Yang J, Bai D and Han X: Role of DKK1 in periodontitis and innovative strategy with its neutralizing antibody for periodontitis treatment. OHDM. 13:994–997. 2014.

38 

Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, Asuncion F, Li X, Ominsky M, Richards W, et al: Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis. 69:2152–2159. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu JW, Meng R, Quong AA, Latz E, Scott CP and Alnemri ES: Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem. 285:9792–9802. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Xu L, Zhang L, Wang Z, Li C, Li S, Li L, Fan Q and Zheng L: Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcif Tissue Int. 103:400–410. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Huang RL, Yuan Y, Tu J, Zou GM and Li Q: Opposing TNF-α/IL-1β- and BMP-2-activated MAPK signaling pathways converge on Runx2 to regulate BMP-2-induced osteoblastic differentiation. Cell Death Dis. 5:e11872014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li S, Yin Y, Yao L, Lin Z, Sun S, Zhang J and Li X: TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p. Mol Med Rep 22: 1017-1025, 2020.
APA
Li, S., Yin, Y., Yao, L., Lin, Z., Sun, S., Zhang, J., & Li, X. (2020). TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p. Molecular Medicine Reports, 22, 1017-1025. https://doi.org/10.3892/mmr.2020.11152
MLA
Li, S., Yin, Y., Yao, L., Lin, Z., Sun, S., Zhang, J., Li, X."TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p". Molecular Medicine Reports 22.2 (2020): 1017-1025.
Chicago
Li, S., Yin, Y., Yao, L., Lin, Z., Sun, S., Zhang, J., Li, X."TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p". Molecular Medicine Reports 22, no. 2 (2020): 1017-1025. https://doi.org/10.3892/mmr.2020.11152
Copy and paste a formatted citation
x
Spandidos Publications style
Li S, Yin Y, Yao L, Lin Z, Sun S, Zhang J and Li X: TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p. Mol Med Rep 22: 1017-1025, 2020.
APA
Li, S., Yin, Y., Yao, L., Lin, Z., Sun, S., Zhang, J., & Li, X. (2020). TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p. Molecular Medicine Reports, 22, 1017-1025. https://doi.org/10.3892/mmr.2020.11152
MLA
Li, S., Yin, Y., Yao, L., Lin, Z., Sun, S., Zhang, J., Li, X."TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p". Molecular Medicine Reports 22.2 (2020): 1017-1025.
Chicago
Li, S., Yin, Y., Yao, L., Lin, Z., Sun, S., Zhang, J., Li, X."TNF‑α treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR‑335‑5p". Molecular Medicine Reports 22, no. 2 (2020): 1017-1025. https://doi.org/10.3892/mmr.2020.11152
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team