Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy

  • Authors:
    • Ning Tan
    • Shuiwang Hu
    • Zhen Hu
    • Zhouli Wu
    • Bin Wang
  • View Affiliations / Copyright

    Affiliations: Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China, Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China, National and Local Joint Engineering Laboratory for High‑through Molecular Diagnosis Technology, Translational Medicine Institute, Collaborative Research Center for Post‑doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China, Department of Neonatology, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
    Copyright: © Tan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1257-1268
    |
    Published online on: May 28, 2020
       https://doi.org/10.3892/mmr.2020.11194
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Severe hyperbilirubinemia causes neurotoxicity and may lead to acute bilirubin encephalopathy (ABE) during the critical period of central nervous system development. The aim of the present study was to identify differentially expressed proteins (DEPs) in microvesicles/exosomes (MV/E) isolated from the cerebrospinal fluid (CSF) of patients with ABE. Co‑precipitation was used to isolate the MV/E from the CSF of patients with ABE and age‑matched controls. Isobaric tagging for relative and absolute quantification‑based proteomic technology combined with liquid chromatography/tandem mass spectrometry was used to identify DEPs in the MV/E. Bioinformatics analysis was subsequently performed to investigate Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes enriched signaling pathways of these DEPs. A total of four proteins were selected for further validation via western blotting. A total of 291 dysregulated proteins were identified by comparing the patients with ABE with the controls. Bioinformatics analysis indicated the involvement of immune‑inflammation‑associated cellular processes and signaling pathways in the pathophysiology of ABE. In conclusion, the present study identified the proteomic profile of MV/E isolated from the CSF of patients with ABE. These results may provide an improved understanding of the pathogenesis of ABE and may help to identify early diagnostic biomarkers and therapeutic targets.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bhutani VK, Stark AR, Lazzeroni LC, Poland R, Gourley GR, Kazmierczak S, Meloy L, Burgos AE, Hall JY and Stevenson DK: Predischarge screening for severe neonatal hyperbilirubinemia identifies infants who need phototherapy. J Pediatr. 162:477–482.e1. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Bech LF, Donneborg ML, Lund AM and Ebbesen F: Extreme neonatal hyperbilirubinemia, acute bilirubin encephalopathy, and kernicterus spectrum disorder in children with galactosemia. Pediatr Res. 84:228–232. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Bahr TM, Christensen RD, Agarwal AM, George TI and Bhutani VK: The neonatal acute bilirubin encephalopathy registry (NABER): Background, aims, and protocol. Neonatology. 115:242–246. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Christensen RD, Agarwal AM, George TI, Bhutani VK and Yaish HM: Acute neonatal bilirubin encephalopathy in the state of utah 2009–2018. Blood Cells Mol Dis. 72:10–13. 2018. View Article : Google Scholar : PubMed/NCBI

5 

McGillivray A and Evans N: Severe neonatal jaundice: Is it a rare event in Australia? J Paediatr Child Health. 48:801–807. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Olusanya BO, Kaplan M and Hansen TWR: Neonatal hyperbilirubinaemia: A global perspective. Lancet Child Adolesc Health. 2:610–620. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Diala UM, Wennberg RP, Abdulkadir I, Farouk ZL, Zabetta CDC, Omoyibo E, Emokpae A, Aravkin A, Toma B, Oguche S, et al On behalf of the Stop Kernicterus In Nigeria (SKIN) study group, : Patterns of acute bilirubin encephalopathy in Nigeria: A multicenter pre-intervention study. J Perinatol. 38:873–880. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Morioka I, Nakamura H, Koda T, Yokota T, Okada H, Katayama Y, Kunikata T, Kondo M, Nakamura M, Hosono S, et al: Current incidence of clinical kernicterus in preterm infants in Japan. Pediatr Int. 57:494–497. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Radmacher PG, Groves FD, Owa JA, Ofovwe GE, Amuabunos EA, Olusanya BO and Slusher TM: A modified Bilirubin-induced neurologic dysfunction (BIND-M) algorithm is useful in evaluating severity of jaundice in a resource-limited setting. BMC Pediatr. 15:282015. View Article : Google Scholar : PubMed/NCBI

10 

Morioka I, Iwatani S, Koda T, Iijima K and Nakamura H: Disorders of bilirubin binding to albumin and bilirubin-induced neurologic dysfunction. Semin Fetal Neonatal Med. 20:31–36. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Watchko JF: Kernicterus and the molecular mechanisms of bilirubin-induced CNS injury in newborns. Neuromolecular Med. 8:513–529. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Deganuto M, Cesaratto L, Bellarosa C, Calligaris R, Vilotti S, Renzone G, Foti R, Scaloni A, Gustincich S, Quadrifoglio F, et al: A proteomic approach to the bilirubin-induced toxicity in neuronal cells reveals a protective function of DJ-1 protein. Proteomics. 10:1645–1657. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Brites D: The evolving landscape of neurotoxicity by unconjugated bilirubin: Role of glial cells and inflammation. Front Pharmacol. 3:882012. View Article : Google Scholar : PubMed/NCBI

14 

Watchko JF and Tiribelli C: Bilirubin-induced neurologic damage - mechanisms and management approaches. N Engl J Med. 369:2021–2030. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RF and Brites D: Features of bilirubin-induced reactive microglia: From phagocytosis to inflammation. Neurobiol Dis. 40:663–675. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Brites D: Bilirubin injury to neurons and glial cells: New players, novel targets, and newer insights. Semin Perinatol. 35:114–120. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Daood M, Tsai C, Ahdab-Barmada M and Watchko JF: ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics. 39:211–218. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Qaisiya M, Brischetto C, Jašprová J, Vitek L, Tiribelli C and Bellarosa C: Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch Toxicol. 91:1847–1858. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Chivet M, Javalet C, Laulagnier K, Blot B, Hemming FJ and Sadoul R: Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles. 3:247222014. View Article : Google Scholar : PubMed/NCBI

20 

Izadpanah M, Seddigh A, Ebrahimi Barough S, Fazeli SAS and Ai J: Potential of extracellular vesicles in neurodegenerative diseases: Diagnostic and therapeutic indications. J Mol Neurosci. 66:172–179. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Paolicelli RC, Bergamini G and Rajendran L: Cell-to-cell communication by extracellular vesicles: Focus on microglia. Neuroscience. 405:148–157. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Xiong XG, Liang Q, Zhang C, Wang Y, Huang W, Peng W, Wang Z and Xia ZA: Serum proteome alterations in patients with cognitive impairment after traumatic brain injury revealed by itraq-based quantitative proteomics. BioMed Res Int. 2017:85725092017. View Article : Google Scholar : PubMed/NCBI

23 

Núñez Galindo A, Macron C, Cominetti O and Dayon L: Analyzing cerebrospinal fluid proteomes to characterize central nervous system disorders: A highly automated mass spectrometry-based pipeline for biomarker discovery. Methods Mol Biol. 1959:89–112. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Adav SS, Park JE and Sze SK: Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer's disease. Mol Brain. 12:82019. View Article : Google Scholar : PubMed/NCBI

25 

Bortolussi G, Codarin E, Antoniali G, Vascotto C, Vodret S, Arena S, Cesaratto L, Scaloni A, Tell G and Muro AF: Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice. Cell Death Dis. 6:e17392015. View Article : Google Scholar : PubMed/NCBI

26 

Chiasserini D, van Weering JRT, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H and Jiménez CR: Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. J Proteomics. 106:191–204. 2014. View Article : Google Scholar : PubMed/NCBI

27 

World Medical Association: World Medical Association Declaration of Helsinki, . Ethical Principles for Medical Research Involving Human Subjects. JAMA. 310:2191–2194. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Bhutani VK and Johnson-Hamerman L: The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin Fetal Neonatal Med. 20:6–13. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Gardiner C, Ferreira YJ, Dragovic RA, Redman CW and Sargent IL: Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2:22013. View Article : Google Scholar

30 

Shao H, Im H, Castro CM, Breakefield X, Weissleder R and Lee H: New technologies for analysis of extracellular vesicles. Chemical reviews. 118:1917–1950. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Taylor DD and Doellgast GJ: Quantitation of peroxidase-antibody binding to membrane fragments using column chromatography. Anal Biochem. 98:53–59. 1979. View Article : Google Scholar : PubMed/NCBI

32 

Osier N, Motamedi V, Edwards K, Puccio A, Diaz-Arrastia R, Kenney K and Gill J: Exosomes in acquired neurological disorders: New insights into pathophysiology and treatment. Mol Neurobiol. 55:9280–9293. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Tang BL: Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res Bull. 143:123–131. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Fernandes A, Barateiro A, Falcão AS, Silva SL, Vaz AR, Brito MA, Silva RF and Brites D: Astrocyte reactivity to unconjugated bilirubin requires TNF-α and IL-1β receptor signaling pathways. Glia. 59:14–25. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Li M, Song S, Li S, Feng J and Hua Z: The blockade of nf-kappab activation by a specific inhibitory peptide has a strong neuroprotective role in a sprague-dawley rat kernicterus model. J Biol Chem. 290:30042–30052. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Watchko JF: Bilirubin-induced neurotoxicity in the preterm neonate. Clin Perinatol. 43:297–311. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Watchko JF and Maisels MJ: The enigma of low bilirubin kernicterus in premature infants: Why does it still occur, and is it preventable? Semin Perinatol. 38:397–406. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Vodret S, Bortolussi G, Jašprová J, Vitek L and Muro AF: Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1−/− mouse model. J Neuroinflammation. 14:642017. View Article : Google Scholar : PubMed/NCBI

39 

Kitamura M: Control of NF-κB and inflammation by the unfolded protein response. Int Rev Immunol. 30:4–15. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Feng J, Li M, Wei Q, Li S, Song S and Hua Z: Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes. J Neuroinflammation. 15:232018. View Article : Google Scholar : PubMed/NCBI

41 

Zhu M, Wang X, Schultzberg M and Hjorth E: Differential regulation of resolution in inflammation induced by amyloid-β42 and lipopolysaccharides in human microglia. J Alzheimers Dis. 43:1237–1250. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Davies MG and Hagen PO: Systemic inflammatory response syndrome. Br J Surg. 84:920–935. 1997. View Article : Google Scholar : PubMed/NCBI

43 

Anada RP, Wong KT, Jayapalan JJ, Hashim OH and Ganesan D: Panel of serum protein biomarkers to grade the severity of traumatic brain injury. Electrophoresis. 39:2308–2315. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Gasque P, Fontaine M and Morgan BP: Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. Immunol. 154:4726–4733. 1995.

45 

Nataf S, Levison SW and Barnum SR: Expression of the anaphylatoxin C5a receptor in the oligodendrocyte lineage. Brain Res. 894:321–326. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Hammad A, Westacott L and Zaben M: The role of the complement system in traumatic brain injury: A review. J Neuroinflammation. 15:242018. View Article : Google Scholar : PubMed/NCBI

47 

Brennan FH, Anderson AJ, Taylor SM, Woodruff TM and Ruitenberg MJ: Complement activation in the injured central nervous system: Another dual-edged sword? J Neuroinflammation. 9:1372012. View Article : Google Scholar : PubMed/NCBI

48 

Bellander BM, Olafsson IH, Ghatan PH, Bro Skejo HP, Hansson LO, Wanecek M and Svensson MA: Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir (Wien). 153:90–100. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Stoll BJ, Lee FK, Hale E, Schwartz D, Holmes R, Ashby R, Czerkinsky C and Nahmias AJ: Immunoglobulin secretion by the normal and the infected newborn infant. J Pediatr. 122:780–786. 1993. View Article : Google Scholar : PubMed/NCBI

50 

Zinn K and Özkan E: Neural immunoglobulin superfamily interaction networks. Curr Opin Neurobiol. 45:99–105. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Denstaedt SJ, Spencer-Segal JL, Newstead MW, Laborc K, Zhao AP, Hjelmaas A, Zeng X, Akil H, Standiford TJ and Singer BH: S100a8/a9 drives neuroinflammatory priming and protects against anxiety-like behavior after sepsis. J Immunol. 200:3188–3200. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Hermani A, De Servi B, Medunjanin S, Tessier PA and Mayer D: S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res. 312:184–197. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C and Los M: S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol. 83:1484–1492. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Ryu MJ, Liu Y, Zhong X, Du J, Peterson N, Kong G, Li H, Wang J, Salamat S, Chang Q, et al: Oncogenic Kras expression in postmitotic neurons leads to S100A8-S100A9 protein overexpression and gliosis. J Biol Chem. 287:22948–22958. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Wang S, Song R, Wang Z, Jing Z, Wang S and Ma J: S100A8/A9 in Inflammation. Front Immunol. 9:12982018. View Article : Google Scholar : PubMed/NCBI

56 

Low D, Subramaniam R, Lin L, Aomatsu T, Mizoguchi A, Ng A, DeGruttola AK, Lee CG, Elias JA, Andoh A, et al: Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget. 6:36535–36550. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Donato R, Cannon B, Sorci G, Riuzzi F, Hsu K, Weber D and Geczy C: Functions of s100 proteins. Curr Mol Med. 13:24–57. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Ryckman C, Vandal K, Rouleau P, Talbot M and Tessier PA: Proinflammatory activities of s100: Proteins s100a8, s100a9, and s100a8/a9 induce neutrophil chemotaxis and adhesion. J Immunol. 170:3233–3242. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Pruenster M, Kurz AR, Chung KJ, Cao-Ehlker X, Bieber S, Nussbaum CF, Bierschenk S, Eggersmann TK, Rohwedder I, Heinig K, et al: Extracellular MRP8/14 is a regulator of β2 integrin-dependent neutrophil slow rolling and adhesion. Nat Commun. 6:69152015. View Article : Google Scholar : PubMed/NCBI

60 

Nishikawa Y, Kajiura Y, Lew JH, Kido JI, Nagata T and Naruishi K: Calprotectin induces il-6 and mcp-1 production via toll-like receptor 4 signaling in human gingival fibroblasts. J Cell Physiol. 232:1862–1871. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Ma L, Sun P, Zhang JC, Zhang Q and Yao SL: Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int J Mol Med. 40:31–38. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Horvath I, Jia X, Johansson P, Wang C, Moskalenko R, Steinau A, Forsgren L, Wågberg T, Svensson J, Zetterberg H, et al: Pro-inflammatory s100a9 protein as a robust biomarker differentiating early stages of cognitive impairment in alzheimer's disease. ACS Chem Neurosci. 7:34–39. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Wache C, Klein M, Ostergaard C, Angele B, Häcker H, Pfister HW, Pruenster M, Sperandio M, Leanderson T, Roth J, et al: Myeloid-related protein 14 promotes inflammation and injury in meningitis. J Infect Dis. 212:247–257. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Meldolesi J: Exosomes and ectosomes in intercellular communication. Curr Biol. 28:R435–R444. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Fritz G, Botelho HM, Morozova-Roche LA and Gomes CM: Natural and amyloid self-assembly of S100 proteins: Structural basis of functional diversity. FEBS J. 277:4578–4590. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Jansen S, Podschun R, Leib SL, Grötzinger J, Oestern S, Michalek M, Pufe T and Brandenburg LO: Expression and function of psoriasin (S100A7) and koebnerisin (S100A15) in the brain. Infect Immun. 81:1788–1797. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Qin W, Ho L, Wang J, Peskind E and Pasinetti GM: S100A7, a novel Alzheimer's disease biomarker with non-amyloidogenic alpha-secretase activity acts via selective promotion of ADAM-10. PLoS One. 4:e41832009. View Article : Google Scholar : PubMed/NCBI

68 

Sharma R, Gowda H, Chavan S, Advani J, Kelkar D, Kumar GS, Bhattacharjee M, Chaerkady R, Prasad TS, Pandey A, et al: Proteomic signature of endothelial dysfunction identified in the serum of acute ischemic stroke patients by the itraq-based lc-ms approach. J Proteome Res. 14:2466–2479. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Kim C and Kaufmann SH: Defensin: A multifunctional molecule lives up to its versatile name. Trends Microbiol. 14:428–431. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Park YG, Jeong JK, Lee JH, Lee YJ, Seol JW, Kim SJ, Hur TY, Jung YH, Kang SJ and Park SY: Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction. Int J Mol Med. 31:325–330. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Semple F and Dorin JR: β-Defensins: Multifunctional modulators of infection, inflammation and more? J Innate Immun. 4:337–348. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Tollner TL, Bevins CL and Cherr GN: Multifunctional glycoprotein DEFB126 - a curious story of defensin-clad spermatozoa. Nat Rev Urol. 9:365–375. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Kazakos EI, Kountouras J, Polyzos SA and Deretzi G: Novel aspects of defensins' involvement in virus-induced autoimmunity in the central nervous system. Med Hypotheses. 102:33–36. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Williams WM, Torres S, Siedlak SL, Castellani RJ, Perry G, Smith MA and Zhu X: Antimicrobial peptide β-defensin-1 expression is upregulated in Alzheimer's brain. J Neuroinflammation. 10:1272013. View Article : Google Scholar : PubMed/NCBI

75 

Rocha-Ferreira E and Hristova M: Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage. Front Immunol. 6:562015. View Article : Google Scholar : PubMed/NCBI

76 

Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE, Davidson DJ, Barr TA, Campopiano DJ and Gray M: Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol. 183:2122–2132. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Zakharova ET, Sokolov AV, Pavlichenko NN, Kostevich VA, Abdurasulova IN, Chechushkov AV, Voynova IV, Elizarova AY, Kolmakov NN, Bass MG, et al: Erythropoietin and Nrf2: Key factors in the neuroprotection provided by apo-lactoferrin. Biometals. 31:425–443. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Legrand D, Elass E, Carpentier M and Mazurier J: Lactoferrin: A modulator of immune and inflammatory responses. Cell Mol Life Sci. 62:2549–2559. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Legrand D: Lactoferrin, a key molecule in immune and inflammatory processes. Biochem Cell Biol. 90:252–268. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Bennett RM and Kokocinski T: Lactoferrin content of peripheral blood cells. Br J Haematol. 39:509–521. 1978. View Article : Google Scholar : PubMed/NCBI

81 

Qaisiya M, Coda Zabetta CD, Bellarosa C and Tiribelli C: Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell Signal. 26:512–520. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Ginet V, van de Looij Y, Petrenko V, Toulotte A, Kiss J, Hüppi PS and Sizonenko SV: Lactoferrin during lactation reduces lipopolysaccharide-induced brain injury. Biofactors. 42:323–336. 2016.PubMed/NCBI

83 

van de Looij Y, Ginet V, Chatagner A, Toulotte A, Somm E, Hüppi PS and Sizonenko SV: Lactoferrin during lactation protects the immature hypoxic-ischemic rat brain. Ann Clin Transl Neurol. 1:955–967. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Somm E, Larvaron P, van de Looij Y, Toulotte A, Chatagner A, Faure M, Métairon S, Mansourian R, Raymond F, Gruetter R, et al: Protective effects of maternal nutritional supplementation with lactoferrin on growth and brain metabolism. Pediatr Res. 75:51–61. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Lee SH, Pyo CW, Hahm DH, Kim J and Choi SY: Iron-saturated lactoferrin stimulates cell cycle progression through PI3K/Akt pathway. Mol Cells. 28:37–42. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, Wood MJ and Turner MR: Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat Rev Neurol. 12:346–357. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tan N, Hu S, Hu Z, Wu Z and Wang B: Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy . Mol Med Rep 22: 1257-1268, 2020.
APA
Tan, N., Hu, S., Hu, Z., Wu, Z., & Wang, B. (2020). Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy . Molecular Medicine Reports, 22, 1257-1268. https://doi.org/10.3892/mmr.2020.11194
MLA
Tan, N., Hu, S., Hu, Z., Wu, Z., Wang, B."Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy ". Molecular Medicine Reports 22.2 (2020): 1257-1268.
Chicago
Tan, N., Hu, S., Hu, Z., Wu, Z., Wang, B."Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy ". Molecular Medicine Reports 22, no. 2 (2020): 1257-1268. https://doi.org/10.3892/mmr.2020.11194
Copy and paste a formatted citation
x
Spandidos Publications style
Tan N, Hu S, Hu Z, Wu Z and Wang B: Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy . Mol Med Rep 22: 1257-1268, 2020.
APA
Tan, N., Hu, S., Hu, Z., Wu, Z., & Wang, B. (2020). Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy . Molecular Medicine Reports, 22, 1257-1268. https://doi.org/10.3892/mmr.2020.11194
MLA
Tan, N., Hu, S., Hu, Z., Wu, Z., Wang, B."Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy ". Molecular Medicine Reports 22.2 (2020): 1257-1268.
Chicago
Tan, N., Hu, S., Hu, Z., Wu, Z., Wang, B."Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy ". Molecular Medicine Reports 22, no. 2 (2020): 1257-1268. https://doi.org/10.3892/mmr.2020.11194
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team