Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism

  • Authors:
    • Hai‑Ning Wang
    • Ji‑Lin Li
    • Tan Xu
    • Huai‑Qi Yao
    • Gui‑Hua Chen
    • Jing Hu
  • View Affiliations / Copyright

    Affiliations: The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, Shantou, Guangdong 515041, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1342-1350
    |
    Published online on: May 28, 2020
       https://doi.org/10.3892/mmr.2020.11195
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to examine the role of sirtuin 3 (Sirt3)‑autophagy in regulating myocardial energy metabolism and inhibiting myocardial hypertrophy in angiotensin (Ang) II‑induced myocardial cell hypertrophy. The primary cultured myocardial cells of neonatal Sprague Dawley rats were used to construct a myocardial hypertrophy model induced with Ang II. Following the activation of Sirt3 by resveratrol (Res), Sirt3 was silenced using small interfering (si)RNA‑Sirt3, and the morphology of the myocardial cells was observed under an optical microscope. Reverse transcription‑polymerase chain reaction was used to detect the mRNA expression of the following myocardial hypertrophy markers; atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), Sirt3, medium‑chain acyl‑CoA dehydrogenase (MCAD) and pyruvate kinase (PK). Western blot analysis was used to detect the protein expression of Sirt3, light chain 3 (LC3) and Beclin1. Ang II may inhibit the protein expression of Sirt3, LC3 and Beclin1. Res, an agonist of Sirt3, may promote the protein expression of Sirt3, LC3 and Beclin1. Res inhibited the mRNA expression of ANP and BNP, and reversed the Ang II‑induced myocardial cell hypertrophy. The addition of siRNA‑Sirt3 decreased the protein expression of Sirt3, LC3 and Beclin1, increased the mRNA expression of ANP and BNP, and weakened the inhibitory effect of Res on myocardial cell hypertrophy. Res promoted the mRNA expression of MCAD, inhibited the mRNA expression of PK, and reversed the influence of Ang II on myocardial energy metabolism. siRNA‑Sirt3 intervention significantly decreased the effect of Res in eliminating abnormal myocardial energy metabolism. In conclusion, Sirt3 may inhibit Ang II‑induced myocardial hypertrophy and reverse the Ang II‑caused abnormal myocardial energy metabolism through activation of autophagy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Vanberg P and Atar D: Androgenic anabolic steroid abuse and the cardiovascular system. Handb Exp Pharmacol. 195:411–457. 2010. View Article : Google Scholar

2 

Ruppert M, Korkmaz-Icöz S, Loganathan S, Jiang W, Lehmann L, Oláh A, Sayour AA, Barta BA, Merkely B, Karck M, et al: Pressure-volume analysis reveals characteristic sex-related differences in cardiac function in a rat model of aortic banding-induced myocardial hypertrophy. Am J Physiol Heart Circ Physiol. 315:H502–H511. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Sugden PH and Clerk A: Cellular mechanisms of cardiac hypertrophy. J Mol Med (Berl). 76:725–746. 1998. View Article : Google Scholar : PubMed/NCBI

4 

den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ and Bakker BM: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 54:2325–2340. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Chatham JC and Young ME: Metabolic remodeling in the hypertrophic heart: Fuel for thought. Circ Res. 111:666–668. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, Vatner SF and Ingwall JS: Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: A compensatory role for the parallel loss of creatine. Circulation. 100:2113–2118. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Ingwall JS: Energy metabolism in heart failure and remodelling. Cardiovasc Res. 81:412–419. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Blander G and Guarente L: The Sir2 family of protein deacetylases. Annu Rev Biochem. 73:417–435. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Giralt A and Villarroya F: SIRT3, a pivotal actor in mitochondrial functions: Metabolism, cell death and aging. Biochem J. 444:1–10. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A and Gupta MP: Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 119:2758–2771. 2009.PubMed/NCBI

11 

Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, Samant S, Ravindra PV, Isbatan A and Gupta MP: Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 285:3133–3144. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Yue Z, Ma Y, You J, Li Z, Ding Y, He P, Lu X, Jiang J, Chen S and Liu P: NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Exp Cell Res. 347:261–273. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Shintani T and Klionky DJ: Autophagy in health and disease: a double-edged sword. Science. 306:990–995. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Dämmrich J and Pfeifer U: Cardiac hypertrophy in rats after supravalvular aortic constriction. II. Inhibition of cellular autophagy in hypertrophying cardiomyocytes. Virchows Arch B Cell Pathol Incl Mol Pathol. 43:287–307. 1983. View Article : Google Scholar : PubMed/NCBI

15 

Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et al: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 13:619–624. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Wang HN, Liu C, Li YH, Chen Z, Sun G, Xue RC and Dong YG: Role of autophagy in myocardial hypertrophy induced by angiotensin II. J Zhongshan Univ. 33:440–443. 2014.

17 

Hindle AG, Grabek KR, Epperson LE, Karimpour-Fard A and Martin SL: Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels. Physiol Genomics. 46:348–361. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, et al: SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 11:1037–1051. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Tong W, Ju L, Qiu M, Xie Q, Cheng Y, Shen W, Sun W, Wang W and Tian J: Liraglutide ameliorate non-alcohol fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through SIRT1/SIRT3-FOXO3a pathway. Hepatol Res. 46:933–943. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Auburger G, Gispert S and Jendrach M: Mitochondrial acetylation and genetic models of Parkinson's disease. Prog Mol Biol Transl Sci. 127:155–182. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Marques-Aleixo I, Santos-Alves E, Balça MM, Moreira PI, Oliveira PJ, Magalhães J and Ascensão A: Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling. Mitochondrion. 26:43–57. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Fang Y, Wang J, Xu L, Cao Y, Xu F, Yan L, Nie M, Yuan N, Zhang S, Zhao R, et al: Autophagy maintains ubiquitination-proteasomal degradation of Sirt3 to limit oxidative stress in K562 leukemia cells. Oncotarget. 7:35692–35702. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Qiao A, Wang K, Yuan Y, Guan Y, Ren X, Li L, Chen X, Li F, Chen AF, Zhou J, et al: Sirt3-mediated mitophagy protects tumor cells against apoptosis under hypoxia. Oncotarget. 7:43390–43400. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Shi L, Zhang T, Zhou Y, Zeng X, Ran L, Zhang Q, Zhu J and Mi M: Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1α-Sirt3 signaling pathway. Endocrine. 50:378–389. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Mukherjee S, Ray D, Lekli I, Bak I, Tosaki A and Das DK: Effects of Longevinex (modified resveratrol) on cardioprotection and its mechanisms of action. Can J Physiol Pharmacol. 88:1017–1025. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Chen GQ, Liu C, Zhang CX, Meng RS, Chen BL, Xiong ZJ and Dong YG: The role of HO-1 in inhibiting cardiac hypertrophy by AMPK. Journal of Sun Yat-sen University. 31:614–618. 2010.

27 

Yin R, Dong YG, Li HL and Liu D: Activated AMPK attenuates cardiac hypertrophy in rats through increasing myocardial fatty acid oxidation. Chin J Pathophysiol. 23:1258–1262. 2007.

28 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Watson CJ, Horgan S, Neary R, Glezeva N, Tea I, Corrigan N, McDonald K, Ledwidge M and Baugh J: Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther. 21:127–137. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Lu L, Wu D, Li L and Chen L: Apelin/APJ system: A bifunctional target for cardiac hypertrophy. Int J Cardiol. 230:164–170. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Cooper HM and Spelbrink JN: The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochem J. 411:279–285. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Scher MB, Vaquero A and Reinberg D: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 21:920–928. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Jin L, Galonek H, Israelian K, Choy W, Morrison M, Xia Y, Wang X, Xu Y, Yang Y, Smith JJ, et al: Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Sci. 18:514–525. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Shi T, Wang F, Stieren E and Tong Q: SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 280:13560–13567. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Li H, Feng Z, Wu W, Li J, Zhang J and Xia T: SIRT3 regulates cell proliferation and apoptosis related to energy metabolism in non-small cell lung cancer cells through deacetylation of NMNAT2. Int J Oncol. 43:1420–1430. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Bell EL, Emerling BM, Ricoult SJ and Guarente L: SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene. 30:2986–2996. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM and Kahn CR: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA. 108:14608–14613. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M, Sun L, Nguyen P, Ahn BH, Leclerc J, et al: SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci. 4:291–299. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Fernandez-Marcos PJ, Jeninga EH, Canto C, Harach T, de Boer VC, Andreux P, Moullan N, Pirinen E, Yamamoto H, Houten SM, et al: Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci Rep. 2:4252012. View Article : Google Scholar : PubMed/NCBI

40 

Finley LW, Haas W, Desquiret-Dumas V, Wallace DC, Procaccio V, Gygi SP and Haigis MC: Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One. 6:e232952011. View Article : Google Scholar : PubMed/NCBI

41 

Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX and Finkel T: A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 105:14447–14452. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S and Xiong Y: Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 12:534–541. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, et al: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 19:416–428. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, et al: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell. 41:139–149. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, et al: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 464:121–125. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Hirschey MD, Shimazu T, Capra JA, Pollard KS and Verdin E: SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging (Albany NY). 3:635–642. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM, et al: SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12:654–661. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL, Watson PA, Birdsey N, Bao J, Gius D, et al: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 433:505–514. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Yang Y, Cimen H, Han MJ, Shi T, Deng JH, Koc H, Palacios OM, Montier L, Bai Y, Tong Q, et al: NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem. 285:7417–7429. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A and Sinclair DA: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY). 2:914–923. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Iwahara T, Bonasio R, Narendra V and Reinberg D: SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol. 32:5022–5034. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Allison SJ and Milner J: SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle. 6:2669–2677. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Cooper HM, Huang JY, Verdin E and Spelbrink JN: A new splice variant of the mouse SIRT3 gene encodes the mitochondrial precursor protein. PLoS One. 4:e49862009. View Article : Google Scholar : PubMed/NCBI

54 

Shulga N and Pastorino JG: Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. J Cell Sci. 123:4117–4127. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Chen T, Li J, Liu J, Li N, Wang S, Liu H, Zeng M, Zhang Y and Bu P: Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am J Physiol Heart Circ Physiol. 308:H424–H434. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Chen T, Liu J, Li N, Wang S, Liu H, Li J, Zhang Y and Bu P: Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One. 10:e01189092015. View Article : Google Scholar : PubMed/NCBI

57 

Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, Dangwal S, Kumarswamy R, Bang C, Holzmann A, et al: The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 3:10782012. View Article : Google Scholar : PubMed/NCBI

58 

Wang X and Su H: FoxO3 hastens autophagy and shrinks the heart but does not curtail pathological hypertrophy in adult mice. Cardiovasc Res. 91:561–562. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Laurent AC, Bisserier M, Lucas A, Tortosa F, Roumieux M, De Régibus A, Swiader A, Sainte-Marie Y, Heymes C, Vindis C, et al: Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy. Cardiovasc Res. 105:55–64. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA and Hill JA: Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 117:1782–1793. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Kostin S, Pool L, Elsässer A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klövekorn WP, et al: Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 92:715–724. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Rawat DK, Alzoubi A, Gupte R, Chettimada S, Watanabe M, Kahn AG, Okada T, McMurtry IF and Gupte SA: Increased reactive oxygen species, metabolic maladaptation, and autophagy contribute to pulmonary arterial hypertension-induced ventricular hypertrophy and diastolic heart failure. Hypertension. 64:1266–1274. 2014. View Article : Google Scholar : PubMed/NCBI

63 

De Meyer GR, De Keulenaer GW and Martinet W: Role of autophagy in heart failure associated with aging. Heart Fail Rev. 15:423–430. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Mao XB, You ZP, Wu C and Huang J: Potential suppression of the high glucose and insulin-induced retinal neovascularization by Sirtuin 3 in the human retinal endothelial cells. Biochem Biophys Res Commun. 482:341–345. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Wei T, Huang G, Gao J, Huang C, Sun M, Wu J, Bu J and Shen W: Sirtuin 3 deficiency accelerates hypertensive cardiac remodeling by impairing angiogenesis. J Am Heart Assoc. 6:e0061142017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang HN, Li JL, Xu T, Yao HQ, Chen GH and Hu J: Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Mol Med Rep 22: 1342-1350, 2020.
APA
Wang, H., Li, J., Xu, T., Yao, H., Chen, G., & Hu, J. (2020). Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Molecular Medicine Reports, 22, 1342-1350. https://doi.org/10.3892/mmr.2020.11195
MLA
Wang, H., Li, J., Xu, T., Yao, H., Chen, G., Hu, J."Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism". Molecular Medicine Reports 22.2 (2020): 1342-1350.
Chicago
Wang, H., Li, J., Xu, T., Yao, H., Chen, G., Hu, J."Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism". Molecular Medicine Reports 22, no. 2 (2020): 1342-1350. https://doi.org/10.3892/mmr.2020.11195
Copy and paste a formatted citation
x
Spandidos Publications style
Wang HN, Li JL, Xu T, Yao HQ, Chen GH and Hu J: Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Mol Med Rep 22: 1342-1350, 2020.
APA
Wang, H., Li, J., Xu, T., Yao, H., Chen, G., & Hu, J. (2020). Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Molecular Medicine Reports, 22, 1342-1350. https://doi.org/10.3892/mmr.2020.11195
MLA
Wang, H., Li, J., Xu, T., Yao, H., Chen, G., Hu, J."Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism". Molecular Medicine Reports 22.2 (2020): 1342-1350.
Chicago
Wang, H., Li, J., Xu, T., Yao, H., Chen, G., Hu, J."Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism". Molecular Medicine Reports 22, no. 2 (2020): 1342-1350. https://doi.org/10.3892/mmr.2020.11195
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team