Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2020 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer

  • Authors:
    • Xiao‑Jiao Li
    • Rong Wen
    • Dong‑Yue Wen
    • Peng Lin
    • Deng‑Hua Pan
    • Li‑Jie Zhang
    • Yu He
    • Lin Shi
    • Yong‑Ying Qin
    • Yun‑Hui Lai
    • Jing‑Ni Lai
    • Jun‑Lin Yang
    • Qin‑Qiao Lai
    • Jun Wang
    • Jun Ma
    • Hong Yang
    • Yu‑Yan Pang
  • View Affiliations / Copyright

    Affiliations: Department of Positron Emission Tomography‑Computed Tomography (PET‑CT), First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China, Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China, Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China, Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2199-2218
    |
    Published online on: July 8, 2020
       https://doi.org/10.3892/mmr.2020.11310
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Thyroid cancer (TC) is a frequently occurring malignant tumor with a rising steadily incidence. microRNA (miRNA/miR)‑193a‑3p is an miRNA that is associated with tumors, playing a crucial role in the genesis and progression of various cancers. However, the expression levels of miR‑193a‑3p and its molecular mechanisms in TC remain to be elucidated. The present study aimed to probe the expression of miR‑193a‑3p and its clinical significance in TC, including its underlying molecular mechanisms. Microarray and RNA sequencing data gathered from three major databases, specifically Gene Expression Omnibus (GEO), ArrayExpress and The Cancer Genome Atlas (TCGA) databases, and the relevant data from the literature were used to examine miR‑193a‑3p expression. Meta‑analysis was also conducted to evaluate the association between clinicopathological parameters and miR‑193a‑3p in 510 TC and 59 normal samples from the TCGA database. miRWalk 3.0, and the TCGA and GEO databases were used to predict the candidate target genes of miR‑193a‑3p. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and protein‑protein interaction network enrichment analyses were conducted by using the predicted candidate target genes to investigate the underlying carcinogenic mechanisms. A dual luciferase assay was performed to validate the targeting regulatory association between the most important hub gene cyclin D1 (CCND1) and miR‑193a‑3p. miR‑193a‑3p expression was considerably downregulated in TC compared with in the non‑cancer controls (P<0.001). The area under the curve of the summary receiver operating characteristic was 0.80. Downregulation of miR‑193a‑3p was also significantly associated with age, sex and metastasis (P=0.020, 0.044 and 0.048, respectively). Bioinformatics analysis indicated that a low miR‑193a‑3p expression may augment CCND1 expression to affect the biological processes of TC. In addition, CCND1, as a straightforward target, was validated through a dual luciferase assay. miR‑193a‑3p and CCND1 may serve as prognostic biomarkers of TC. Finally, miR‑193a‑3p may possess a crucial role in the genesis and progression of TC by altering the CCND1 expression.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Konturek A, Barczyński M, Stopa M and Nowak W: Trends in Prevalence of Thyroid Cancer Over Three Decades: A Retrospective Cohort Study of 17,526 Surgical Patients. World J Surg. 40:538–544. 2016. View Article : Google Scholar : PubMed/NCBI

2 

van der Zwan JM, Mallone S, van Dijk B, Bielska-Lasota M, Otter R, Foschi R, Baudin E and Links TP; RARECARE WG, : Carcinoma of endocrine organs: Results of the RARECARE project. Eur J Cancer. 48:1923–1931. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Miller KD, Goding Sauer A, Ortiz AP, Fedewa SA, Pinheiro PS, Tortolero-Luna G, Martinez-Tyson D, Jemal A and Siegel RL: Cancer Statistics for Hispanics/Latinos, 2018. CA Cancer J Clin. 68:425–445. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Lin P, Guo YN, Shi L, Li XJ, Yang H, He Y, Li Q, Dang YW, Wei KL and Chen G: Development of a prognostic index based on an immunogenomic landscape analysis of papillary thyroid cancer. Aging (Albany NY). 11:480–500. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Zarkesh M, Zadeh-Vakili A, Akbarzadeh M, Fanaei SA, Hedayati M and Azizi F: The role of matrix metalloproteinase-9 as a prognostic biomarker in papillary thyroid cancer. BMC Cancer. 18:11992018. View Article : Google Scholar : PubMed/NCBI

6 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Carling T and Udelsman R: Thyroid cancer. Annu Rev Med. 65:125–137. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Lin P, He Y, Wen DY, Li XJ, Zeng JJ, Mo WJ, Li Q, Peng JB, Wu YQ, Pan DH, et al: Comprehensive analysis of the clinical significance and prospective molecular mechanisms of differentially expressed autophagy-related genes in thyroid cancer. Int J Oncol. 53:603–619. 2018.PubMed/NCBI

9 

Liu C, Su C, Chen Y and Li G: miR-144-3p promotes the tumor growth and metastasis of papillary thyroid carcinoma by targeting paired box gene 8. Cancer Cell Int. 18:542018. View Article : Google Scholar : PubMed/NCBI

10 

Acquaviva G, Visani M, Repaci A, Rhoden KJ, de Biase D, Pession A and Giovanni T: Molecular pathology of thyroid tumours of follicular cells: A review of genetic alterations and their clinicopathological relevance. Histopathology. 72:6–31. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Riesco-Eizaguirre G and Santisteban P: Molecular biology of thyroid cancer initiation. Clin Transl Oncol. 9:686–693. 2007. View Article : Google Scholar : PubMed/NCBI

12 

DeLellis RA: Pathology and genetics of thyroid carcinoma. J Surg Oncol. 94:662–669. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Liu T, You X, Sui J, Shen B, Zhang Y, Zhang XM, Yang S, Yao YZ, Yang F, Yin LH, et al: Prognostic value of a two-microRNA signature for papillary thyroid cancer and a bioinformatic analysis of their possible functions. J Cell Biochem. Nov 2–2018.(Epub ahead of print). doi: 10.1002/jcb.27993 2018.

14 

Wang X, Huang S, Li X, Jiang D, Yu H, Wu Q, Gao C and Wu Z: A potential biomarker hsa-miR-200a-5p distinguishing between benign thyroid tumors with papillary hyperplasia and papillary thyroid carcinoma. PLoS One. 13:e02002902018. View Article : Google Scholar : PubMed/NCBI

15 

Vuong HG, Altibi AM, Abdelhamid AH, Ngoc PU, Quan VD, Tantawi MY, Elfil M, Vu TL, Elgebaly A, Oishi N, et al: The changing characteristics and molecular profiles of papillary thyroid carcinoma over time: A systematic review. Oncotarget. 8:10637–10649. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Tricoli JV and Jacobson JW: MicroRNA: Potential for Cancer Detection, Diagnosis, and Prognosis. Cancer Res. 67:4553–4555. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Boufraqech M, Klubo-Gwiezdzinska J and Kebebew E: MicroRNAs in the thyroid. Best Pract Res Clin Endocrinol Metab. 30:603–619. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Macha MA, Seshacharyulu P, Krishn SR, Pai P, Rachagani S, Jain M and Batra SK: MicroRNAs (miRNAs) as biomarker(s) for prognosis and diagnosis of gastrointestinal (GI) cancers. Curr Pharm Des. 20:5287–5297. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Parvex P: Are microRNA potential biomarkers in children with idiopathic nephrotic syndrome? EBioMedicine. 39:27–28. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Farazi TA, Spitzer JI, Morozov P and Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Li Z, Yu X, Shen J, Law PT, Chan MT and Wu WK: MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget. 6:13914–13921. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Li L, Peng M, Xue W, Fan Z, Wang T, Lian J, Zhai Y, Lian W, Qin D and Zhao J: Integrated analysis of dysregulated long non-coding RNAs/microRNAs/mRNAs in metastasis of lung adenocarcinoma. J Transl Med. 16:3722018. View Article : Google Scholar : PubMed/NCBI

23 

Ma Y and Sun Y: miR-29a-3p inhibits growth, proliferation, and invasion of papillary thyroid carcinoma by suppressing NF-κB signaling via direct targeting of OTUB2. Cancer Manag Res. 11:13–23. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Liu Y, Ren F, Luo Y, Rong M, Chen G and Dang Y: Down-Regulation of miR-193a-3p Dictates Deterioration of HCC: A Clinical Real-Time qRT-PCR Study. Med Sci Monit. 21:2352–2360. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Chou NH, Lo YH, Wang KC, Kang CH, Tsai CY and Tsai KW: miR-193a-5p and −3p Play a Distinct Role in Gastric Cancer: miR-193a-3p Suppresses Gastric Cancer Cell Growth by Targeting ETS1 and CCND1. Anticancer Res. 38:3309–3318. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Huang Y, Luo H, Li F, Yang Y, Ou G, Ye X and Li N: LINC00152 down-regulated miR-193a-3p to enhance MCL1 expression and promote gastric cancer cells proliferation. Biosci Rep. 38:BSR201716072018. View Article : Google Scholar : PubMed/NCBI

27 

Deng W, Yan M, Yu T, Ge H, Lin H, Li J, Liu Y, Geng Q, Zhu M, Liu L, et al: Quantitative proteomic analysis of the metastasis-inhibitory mechanism of miR-193a-3p in non-small cell lung cancer. Cell Physiol Biochem. 35:1677–1688. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Yu M, Liu Z, Liu Y, Zhou X, Sun F, Liu Y, Li L, Hua S, Zhao Y, Gao H, et al: PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J. 286:1136–1153. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Takahashi H, Takahashi M, Ohnuma S, Unno M, Yoshino Y, Ouchi K, Takahashi S, Yamada Y, Shimodaira H and Ishioka C: microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer. BMC Cancer. 17:7232017. View Article : Google Scholar : PubMed/NCBI

30 

Mamoori A, Wahab R, Islam F, Lee K, Vider J, Lu CT, Gopalan V and Lam AK: Clinical and biological significance of miR-193a-3p targeted KRAS in colorectal cancer pathogenesis. Hum Pathol. 71:145–156. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Santarpia L, Calin GA, Adam L, Ye L, Fusco A, Giunti S, Thaller C, Paladini L, Zhang X, Jimenez C, et al: A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer. 20:809–823. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Baldin V, Lukas J, Marcote MJ, Pagano M and Draetta G: Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7:812–821. 1993. View Article : Google Scholar : PubMed/NCBI

33 

Zhao M, Xu P, Liu Z, Zhen Y, Chen Y, Liu Y, Fu Q, Deng X, Liang Z, Li Y, et al: Dual roles of miR-374a by modulated c-Jun respectively targets CCND1-inducing PI3K/AKT signal and PTEN-suppressing Wnt/β-catenin signaling in non-small-cell lung cancer. Cell Death Dis. 9:782018. View Article : Google Scholar : PubMed/NCBI

34 

Li Y, Li D, Yang W, Fu H, Liu Y and Li Y: Overexpression of the transcription factor FOXP3 in lung adenocarcinoma sustains malignant character by promoting G1/S transition gene CCND1. Tumour Biol. 37:7395–7404. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Li Z, Wang C, Prendergast GC and Pestell RG: Cyclin D1 functions in cell migration. Cell Cycle. 5:2440–2442. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Huang H, Han Y, Yang X, Li M, Zhu R, Hu J, Zhang X, Wei R, Li K and Gao R: HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway. Oncotarget. 8:103364–103374. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Xue J, Qin Z, Li X, Zhang J, Zheng Y, Xu W, Cao Q and Wang Z: Genetic polymorphisms in cyclin D1 are associated with risk of renal cell cancer in the Chinese population. Oncotarget. 8:80889–80899. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Cheng S, Serra S, Mercado M, Ezzat S and Asa SL: A high-throughput proteomic approach provides distinct signatures for thyroid cancer behavior. Clin Cancer Res. 17:2385–2394. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Deng M, Brägelmann J, Schultze JL and Perner S: Web-TCGA: An online platform for integrated analysis of molecular cancer data sets. BMC Bioinformatics. 17:722016. View Article : Google Scholar : PubMed/NCBI

40 

Chandran UR, Medvedeva OP, Barmada MM, Blood PD, Chakka A, Luthra S, Ferreira A, Wong KF, Lee AV, Zhang Z, et al: TCGA Expedition: A Data Acquisition and Management System for TCGA Data. PLoS One. 11:e01653952016. View Article : Google Scholar : PubMed/NCBI

41 

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets - update. Nucleic Acids Res 41D. D991–D995. 2013.

42 

Lassalle S, Zangari J, Popa A, Ilie M, Hofman V, Long E, Patey M, Tissier F, Belléannée G, Trouette H, et al: MicroRNA-375/SEC23A as biomarkers of the in vitro efficacy of vandetanib. Oncotarget. 7:30461–30478. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Minna E, Romeo P, Dugo M, De Cecco L, Todoerti K, Pilotti S, Perrone F, Seregni E, Agnelli L, Neri A, et al: miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 7:12731–12747. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Rossing M, Borup R, Henao R, Winther O, Vikesaa J, Niazi O, Godballe C, Krogdahl A, Glud M, Hjort-Sørensen C, et al: Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma. J Mol Endocrinol. 48:11–23. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Ioannidis JP, Patsopoulos NA and Evangelou E: Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 335:914–916. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Gan BL, He RQ, Zhang Y, Wei DM, Hu XH and Chen G: Downregulation of HOXA3 in lung adenocarcinoma and its relevant molecular mechanism analysed by RT-qPCR, TCGA and in silico analysis. Int J Oncol. 53:1557–1579. 2018.PubMed/NCBI

47 

Deng Y, He R, Zhang R, Gan B, Zhang Y, Chen G and Hu X: The expression of HOXA13 in lung adenocarcinoma and its clinical significance: A study based on The Cancer Genome Atlas, Oncomine and reverse transcription-quantitative polymerase chain reaction. Oncol Lett. 15:8556–8572. 2018.PubMed/NCBI

48 

Liang YY, Huang JC, Tang RX, Chen WJ, Chen P, Cen WL, Shi K, Gao L, Gao X, Liu AG, et al: Clinical value of miR-198-5p in lung squamous cell carcinoma assessed using microarray and RT-qPCR. World J Surg Oncol. 16:222018. View Article : Google Scholar : PubMed/NCBI

49 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

50 

Bardou P, Mariette J, Escudié F, Djemiel C and Klopp C: jvenn: An interactive Venn diagram viewer. BMC Bioinformatics. 15:2932014. View Article : Google Scholar : PubMed/NCBI

51 

The Gene Ontology Consortium, . The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47(D1): D330–D338. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Kanehisa M, Sato Y, Furumichi M, Morishima K and Tanabe M: New approach for understanding genome variations in KEGG. Nucleic Acids Res 47D. D590–D595. 2019. View Article : Google Scholar

53 

Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, Felix V, Jeng L, Bearer C, Lichenstein R, et al: Human Disease Ontology 2018 update: Classification, content and workflow expansion. Nucleic Acids Res 47D. D955–D962. 2019. View Article : Google Scholar

54 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Wickham H: ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY: 2016

56 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47D. D607–D613. 2019. View Article : Google Scholar

57 

Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, et al: Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA. 104:2803–2808. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Fontaine JF, Mirebeau-Prunier D, Franc B, Triau S, Rodien P, Houlgatte R, Malthièry Y and Savagner F: Microarray analysis refines classification of non-medullary thyroid tumours of uncertain malignancy. Oncogene. 27:2228–2236. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Salvatore G, Nappi TC, Salerno P, Jiang Y, Garbi C, Ugolini C, Miccoli P, Basolo F, Castellone MD, Cirafici AM, et al: A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res. 67:10148–10158. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Giordano TJ, Au AY, Kuick R, Thomas DG, Rhodes DR, Wilhelm KG Jr, Vinco M, Misek DE, Sanders D, Zhu Z, et al: Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res. 12:1983–1993. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Dom G, Tarabichi M, Unger K, Thomas G, Oczko-Wojciechowska M, Bogdanova T, Jarzab B, Dumont JE, Detours V and Maenhaut C: A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer. 107:994–1000. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Handkiewicz-Junak D, Swierniak M, Rusinek D, Oczko-Wojciechowska M, Dom G, Maenhaut C, Unger K, Detours V, Bogdanova T, Thomas G, et al: Gene signature of the post-Chernobyl papillary thyroid cancer. Eur J Nucl Med Mol Imaging. 43:1267–1277. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Barros-Filho MC, Marchi FA, Pinto CA, Rogatto SR and Kowalski LP: High Diagnostic Accuracy Based on CLDN10, HMGA2, and LAMB3 Transcripts in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 100:E890–E899. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Pita JM, Figueiredo IF, Moura MM, Leite V and Cavaco BM: Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J Clin Endocrinol Metab. 99:E497–E507. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Pita JM, Banito A, Cavaco BM and Leite V: Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer. 101:1782–1791. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Rusinek D, Swierniak M, Chmielik E, Kowal M, Kowalska M, Cyplinska R, Czarniecka A, Piglowski W, Korfanty J, Chekan M, et al: BRAFV600E-Associated Gene Expression Profile: Early Changes in the Transcriptome, Based on a Transgenic Mouse Model of Papillary Thyroid Carcinoma. PLoS One. 10:e01436882015. View Article : Google Scholar : PubMed/NCBI

67 

von Roemeling CA, Marlow LA, Pinkerton AB, Crist A, Miller J, Tun HW, Smallridge RC and Copland JA: Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target. J Clin Endocrinol Metab. 100:E697–E709. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Liu J, Xu J, Li H, Sun C, Yu L, Li Y, Shi C, Zhou X, Bian X, Ping Y, et al: miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas. Oncotarget. 6:29129–29142. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Xiong DD, Li ZY, Liang L, He RQ, Ma FC, Luo DZ, Hu XH and Chen G: The LncRNA NEAT1 Accelerates Lung Adenocarcinoma Deterioration and Binds to Mir-193a-3p as a Competitive Endogenous RNA. Cell Physiol Biochem. 48:905–918. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI

72 

Kitahara CM and Sosa JA: The changing incidence of thyroid cancer. Nat Rev Endocrinol. 12:646–653. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Vigneri R, Malandrino P and Vigneri P: The changing epidemiology of thyroid cancer: Why is incidence increasing? Curr Opin Oncol. 27:1–7. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Raue F and Frank-Raue K: Thyroid Cancer: Risk-Stratified Management and Individualized Therapy. Clin Cancer Res. 22:5012–5021. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Qiu J, Zhang W, Zang C, Liu X, Liu F, Ge R, Sun Y and Xia Q: Identification of key genes and miRNAs markers of papillary thyroid cancer. Biol Res. 51:452018. View Article : Google Scholar : PubMed/NCBI

76 

Nixon AM, Provatopoulou X, Kalogera E, Zografos GN and Gounaris A: Circulating thyroid cancer biomarkers: Current limitations and future prospects. Clin Endocrinol (Oxf). 87:117–126. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Zhang Y, Pan J, Xu D, Yang Z, Sun J, Sun L, Wu Y and Qiao H: Combination of serum microRNAs and ultrasound profile as predictive biomarkers of diagnosis and prognosis for papillary thyroid microcarcinoma. Oncol Rep. 40:3611–3624. 2018.PubMed/NCBI

78 

Nikiforov YE: Role Of Molecular Markers In Thyroid Nodule Management: Then And Now. Endocr Pract. 23:979–988. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Grossi I, Salvi A, Abeni E, Marchina E and De Petro G: Biological Function of MicroRNA193a-3p in Health and Disease. Int J Genomics. 2017:59131952017. View Article : Google Scholar : PubMed/NCBI

80 

Pekow J, Meckel K, Dougherty U, Huang Y, Chen X, Almoghrabi A, Mustafi R, Ayaloglu-Butun F, Deng Z, Haider HI, et al: miR-193a-3p is a Key Tumor Suppressor in Ulcerative Colitis-Associated Colon Cancer and Promotes Carcinogenesis through Upregulation of IL17RD. Clin Cancer Res. 23:5281–5291. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Fan Q, Hu X, Zhang H, Wang S, Zhang H, You C, Zhang CY, Liang H, Chen X and Ba Y: miR-193a-3p is an Important Tumour Suppressor in Lung Cancer and Directly Targets KRAS. Cell Physiol Biochem. 44:1311–1324. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Ren F, Ding H, Huang S, Wang H, Wu M, Luo D, Dang Y, Yang L and Chen G: Expression and clinicopathological significance of miR-193a-3p and its potential target astrocyte elevated gene-1 in non-small lung cancer tissues. Cancer Cell Int. 15:802015. View Article : Google Scholar : PubMed/NCBI

83 

Williams M, Kirschner MB, Cheng YY, Hanh J, Weiss J, Mugridge N, Wright CM, Linton A, Kao SC, Edelman JJ, et al: miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget. 6:23480–23495. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Lin M, Duan B, Hu J, Yu H, Sheng H, Gao H and Huang J: Decreased expression of miR-193a-3p is associated with poor prognosis in colorectal cancer. Oncol Lett. 14:1061–1067. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Liu Y, Xu X, Xu X, Li S, Liang Z, Hu Z, Wu J, Zhu Y, Jin X, Wang X, et al: MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1. Oncol Lett. 14:5121–5128. 2017.PubMed/NCBI

86 

Liang W and Sun F: Identification of key genes of papillary thyroid cancer using integrated bioinformatics analysis. J Endocrinol Invest. 41:1237–1245. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Jeon S, Kim Y, Jeong YM, Bae JS and Jung CK: CCND1 Splice Variant as A Novel Diagnostic and Predictive Biomarker for Thyroid Cancer. Cancers (Basel). 10:4372018. View Article : Google Scholar

88 

Lamba Saini M, Weynand B, Rahier J, Mourad M, Hamoir M and Marbaix E: Cyclin D1 in well differentiated thyroid tumour of uncertain malignant potential. Diagn Pathol. 10:322015. View Article : Google Scholar : PubMed/NCBI

89 

Tsai KW, Leung CM, Lo YH, Chen TW, Chan WC, Yu SY, Tu YT, Lam HC, Li SC, Ger LP, et al: Arm Selection Preference of MicroRNA-193a Varies in Breast Cancer. Sci Rep. 6:281762016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li XJ, Wen R, Wen DY, Lin P, Pan DH, Zhang LJ, He Y, Shi L, Qin YY, Lai YH, Lai YH, et al: Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer. Mol Med Rep 22: 2199-2218, 2020.
APA
Li, X., Wen, R., Wen, D., Lin, P., Pan, D., Zhang, L. ... Pang, Y. (2020). Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer. Molecular Medicine Reports, 22, 2199-2218. https://doi.org/10.3892/mmr.2020.11310
MLA
Li, X., Wen, R., Wen, D., Lin, P., Pan, D., Zhang, L., He, Y., Shi, L., Qin, Y., Lai, Y., Lai, J., Yang, J., Lai, Q., Wang, J., Ma, J., Yang, H., Pang, Y."Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer". Molecular Medicine Reports 22.3 (2020): 2199-2218.
Chicago
Li, X., Wen, R., Wen, D., Lin, P., Pan, D., Zhang, L., He, Y., Shi, L., Qin, Y., Lai, Y., Lai, J., Yang, J., Lai, Q., Wang, J., Ma, J., Yang, H., Pang, Y."Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer". Molecular Medicine Reports 22, no. 3 (2020): 2199-2218. https://doi.org/10.3892/mmr.2020.11310
Copy and paste a formatted citation
x
Spandidos Publications style
Li XJ, Wen R, Wen DY, Lin P, Pan DH, Zhang LJ, He Y, Shi L, Qin YY, Lai YH, Lai YH, et al: Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer. Mol Med Rep 22: 2199-2218, 2020.
APA
Li, X., Wen, R., Wen, D., Lin, P., Pan, D., Zhang, L. ... Pang, Y. (2020). Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer. Molecular Medicine Reports, 22, 2199-2218. https://doi.org/10.3892/mmr.2020.11310
MLA
Li, X., Wen, R., Wen, D., Lin, P., Pan, D., Zhang, L., He, Y., Shi, L., Qin, Y., Lai, Y., Lai, J., Yang, J., Lai, Q., Wang, J., Ma, J., Yang, H., Pang, Y."Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer". Molecular Medicine Reports 22.3 (2020): 2199-2218.
Chicago
Li, X., Wen, R., Wen, D., Lin, P., Pan, D., Zhang, L., He, Y., Shi, L., Qin, Y., Lai, Y., Lai, J., Yang, J., Lai, Q., Wang, J., Ma, J., Yang, H., Pang, Y."Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer". Molecular Medicine Reports 22, no. 3 (2020): 2199-2218. https://doi.org/10.3892/mmr.2020.11310
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team