Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2020 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 22 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits

  • Authors:
    • Hongxia Wei
    • Tingting Tan
    • Li Cheng
    • Jiapeng Liu
    • Hongyan Song
    • Lei Li
    • Kui Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China, Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
    Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3327-3337
    |
    Published online on: August 13, 2020
       https://doi.org/10.3892/mmr.2020.11431
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non‑invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)‑labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION‑poly‑l‑lysine (USPION‑PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2‑weighted image fast spin‑echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high‑fat diet. USPION‑labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary‑like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION‑PLL nanoparticles were 10‑20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue‑stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION‑labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Zhang Y, Koradia A, Kamato D, Popat A, Little PJ and Ta HT: Treatment of atherosclerotic plaque: Perspectives on theranostics. J Pharmacy Pharmacol:. 71:3327–1043. 2019. View Article : Google Scholar

2 

World Health Organization (WHO), World Heart Federation, Organization WS, . Global atlas on cardiovascular disease prevention and control Policies, strategies and interventions. WHO; Geneva: 2011

3 

Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al: Heart disease and stroke statistics-2017 update: A report from the american heart association. Circulation. 135:e146–e603. 2017. View Article : Google Scholar : PubMed/NCBI

4 

World Health Organization (WHO), . Cardiovascular diseases (CVDs). WHO; Geneva: 2020, https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)April 6–2020

5 

Biancari F, Anttila V, Dell'Aquila AM, Airaksinen JKE and Brascia D: Control angiography for perioperative myocardial Ischemia after coronary surgery: Meta-analysis. J Cardiothorac Surg. 13:242018. View Article : Google Scholar : PubMed/NCBI

6 

Athyros VG, Tziomalos K, Katsiki N and Mikhailidis DP: Novel data on the pathogenesis of atherosclerosis, treatment targets, and new therapeutic interventions in lipid-related cardiovascular risk factors. Curr Pharm Des. 20:6215–6219. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Rabelink TJ, de Boer HC and van Zonneveld AJ: Endothelial activation and circulating markers of endothelial activation in kidney disease. Nat Rev Nephrol. 6:404–414. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Gimbrone MA Jr and Garcia-Cardena G: Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Cahill PA and Redmond EM: Vascular endothelium-Gatekeeper of vessel health. Atherosclerosis. 248:97–109. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Theodorou K and Boon RA: Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol. 6:822018. View Article : Google Scholar : PubMed/NCBI

11 

Kwon Y, Norby FL, Jensen PN, Agarwal SK, Soliman EZ, Lip GY, Longstreth WT Jr, Alonso A, Heckbert SR and Chen LY: Association of smoking, alcohol, and obesity with cardiovascular death and ischemic stroke in atrial fibrillation: The atherosclerosis risk in communities (ARIC) study and cardiovascular health study (CHS). PLoS One. 11:e01470652016. View Article : Google Scholar : PubMed/NCBI

12 

Ruan C, Shen Y, Chen R, Wang Z, Li J and Jiang Y: Endothelial progenitor cells and atherosclerosis. Front Biosci (Landmark Ed). 18:1194–1201. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Yoder MC: Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2:a0066922012. View Article : Google Scholar : PubMed/NCBI

14 

Peters EB: Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Eng Part B Rev. 24:1–24. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Li DW, Liu ZQ, Wei J, Liu Y and Hu LS: Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med. 30:1000–1006. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Mudyanadzo TA: Endothelial progenitor cells and cardiovascular correlates. Cureus. 10:e33422018.PubMed/NCBI

17 

Grisar JC, Haddad F, Gomari FA and Wu JC: Endothelial progenitor cells in cardiovascular disease and chronic inflammation: From biomarker to therapeutic agent. Biomark Med. 5:731–744. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Dzau VJ, Gnecchi M, Pachori AS, Morello F and Melo LG: Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension. 46:7–18. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Qiu Y, Zhang C, Zhang G and Tao J: Endothelial progenitor cells in cardiovascular diseases. Aging Med. 1:204–208. 2018. View Article : Google Scholar

20 

Gao X, Chen W, Liang Z and Chen L: Autotransplantation of circulating endothelial progenitor cells protects against lipopolysaccharide-induced acute lung injury in rabbit. Int Immunopharmacol. 11:1584–1590. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Chen ZZ, Jiang XD, Zhang LL, Shang JH, Du MX, Xu G and Xu RX: Beneficial effect of autologous transplantation of bone marrow stromal cells and endothelial progenitor cells on cerebral ischemia in rabbits. Neurosci Lett. 445:36–41. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Chen B, Bo CJ, Jia RP, Liu H, Wu R, Wu J, Ge YZ and Teng GJ: The renoprotective effect of bone marrow-derived endothelial progenitor cell transplantation on acute ischemia-reperfusion injury in rats. Transplant Pro. 45:2034–2039. 2013. View Article : Google Scholar

23 

Li ZF, Fang XG, Yang PF, Huang QH, Zhao WY, Liang C, Zhao R and Liu JM: Endothelial progenitor cells contribute to neointima formation in rabbit elastase-induced aneurysm after flow diverter treatment. CNS Neurosci Ther. 19:352–357. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Cui K, Ma X, Yu L, Jiang C, Fu C, Fu X, Yu X, Huang Y, Hou S, Si C, et al: Autologous bone marrow mononuclear cell transplantation delays progression of carotid atherosclerosis in rabbits. Mol Neurobiol. 53:4387–4396. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Zhang M, Malik AB and Rehman J: Endothelial progenitor cells and vascular repair. Curr Opin Hematol. 21:224–228. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G and Nishigaki I: The vascular endothelium and human diseases. Int J Biol Sci. 9:1057–1069. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Kruger-Genge A, Blocki A, Franke RP and Jung F: Vascular endothelial cell biology: An update. Int J Mol Sci. 20:44112019. View Article : Google Scholar

28 

Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G and Isner JM: Isolation of putative progenitor endothelial cells for angiogenesis. Science. 275:964–967. 1997. View Article : Google Scholar : PubMed/NCBI

29 

Pirro M, Stingeni L, Vaudo G, Mannarino MR, Ministrini S, Vonella M, Hansel K, Bagaglia F, Alaeddin A, Lisi P and Mannarino E: Systemic inflammation and imbalance between endothelial injury and repair in patients with psoriasis are associated with preclinical atherosclerosis. Eur J Prev Cardiol. 22:1027–1035. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Groleau J, Dussault S, Haddad P, Turgeon J, Menard C, Chan JS and Rivard A: Essential role of copper-zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 30:2173–2181. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Ankeny RF, Ankeny CJ, Nerem RM and Jo H: Maturing EPCs into endothelial cells: May the force be with the EPCs: Focus on ‘Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells’. Am J Physiol Cell Physiol. 303:C589–C591. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Psaltis PJ and Simari RD: Vascular wall progenitor cells in health and disease. Circ Res. 116:1392–1412. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Zhang X, Mao H, Chen JY, Wen S, Li D, Ye M and Lv Z: Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway. Biochem Biophys Res Commun. 431:404–408. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, Eckey T, Henze E, Zeiher AM and Dimmeler S: Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation. 107:2134–2139. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Asahara T, Kawamoto A and Masuda H: Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells. 29:1650–1655. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Nuzzolo ER, Capodimonti S, Martini M, Iachininoto MG, Bianchi M, Cocomazzi A, Zini G, Leone G, Larocca LM and Teofili L: Adult and cord blood endothelial progenitor cells have different gene expression profiles and immunogenic potential. Blood Transfus. 12 (Suppl 1):S367–S374. 2014.PubMed/NCBI

37 

Souidi N, Stolk M, Rudeck J, Strunk D, Schallmoser K, Volk HD and Seifert M: Stromal cells act as guardians for endothelial progenitors by reducing their immunogenicity after co-transplantation. Stem Cells. 35:1233–1245. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Ladhoff J, Fleischer B, Hara Y, Volk HD and Seifert M: Immune privilege of endothelial cells differentiated from endothelial progenitor cells. Cardiovasc Res. 88:121–129. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Fang J, Guo Y, Tan S, Li Z, Xie H, Chen P, Wang K, He Z, He P, Ke Y, et al: Autologous endothelial progenitor cells transplantation for acute ischemic stroke: A 4-Year Follow-Up Study. Stem Cells Transl Med. 8:14–21. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Fan CL, Gao PJ, Che ZQ, Liu JJ, Wei J and Zhu DL: Therapeutic neovascularization by autologous transplantation with expanded endothelial progenitor cells from peripheral blood into ischemic hind limbs. Acta Pharmacol Sin. 26:1069–1075. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Yin Y, Liu H, Wang F, Li L, Deng M, Huang L and Zhao X: Transplantation of cryopreserved human umbilical cord blood-derived endothelial progenitor cells induces recovery of carotid artery injury in nude rats. Stem Cell Res Ther. 6:372015. View Article : Google Scholar : PubMed/NCBI

42 

Suzuki M, Bachelet-Violette L, Rouzet F, Beilvert A, Autret G, Maire M, Menager C, Louedec L, Choqueux C, Saboural P, et al: Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine (Lond). 10:73–87. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Usman A, Sadat U, Patterson AJ, Tang TY, Varty K, Boyle JR, Armon MP, Hayes PD, Graves MJ and Gillard JH: Use of ultrasmall superparamagnetic iron oxide particles for imaging carotid atherosclerosis. Nanomedicine (Lond). 10:3077–3087. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Zhao X, Zhao H, Chen Z and Lan M: Ultrasmall superparamagnetic iron oxide nanoparticles for magnetic resonance imaging contrast agent. J Nanosci Nanotechnol. 14:210–220. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Fang Y, Wu Y, Liao P, Chen Z, Chen H, Yu J, Liu Y, Li S, Su E, He N, et al: Design and application of a high-throughput sample processing module based on magnetic beads. Nanosci Nanotech Lett. 10:320–328. 2018. View Article : Google Scholar

46 

Chen Z, Wu Y, Kang M, He N, Wan S, Su E and Lijun W: Research on automated nucleic acid extraction instrument based on magnetic nanoparticles separation. Nanosci Nanotech Lett. 10:60–68. 2018. View Article : Google Scholar

47 

Liu H, Dong H, Chen Z, Lin L, Chen H, Li S and Deng Y: Magnetic nanoparticles enhanced microarray detection of multiple foodborne pathogens. J Biomed Nanotech. 13:1333–1343. 2017. View Article : Google Scholar

48 

Wang X, Zhang T, Zhao X, Guan Z, Wang Z, Zhu Z, Xie Q, Wang J and Niu B: Quantification of folate metabolites in serum using ultraperformance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 962:9–13. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Ittrich H, Peldschus K, Raabe N, Kaul M and Adam G: Superparamagnetic iron oxide nanoparticles in biomedicine: Applications and developments in diagnostics and therapy. Rofo. 185:1149–1166. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Guo L, Chen H, He N and Deng Y: Effects of surface modifications on the physicochemical properties of iron oxide nanoparticles and their performance as anticancer drug carriers. Chin Chem Lett. 29:1829–1833. 2018. View Article : Google Scholar

51 

Ma ZL, Mai XL, Sun JH, Ju SH, Yang X, Ni Y and Teng GJ: Inhibited atherosclerotic plaque formation by local administration of magnetically labeled endothelial progenitor cells (EPCs) in a rabbit model. Atherosclerosis. 205:80–86. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Lipman NS, Marini RP and Erdman SE: A comparison of ketamine/xylazine and ketamine/xylazine/acepromazine anesthesia in the rabbit. Lab Anim Sci. 40:395–398. 1990.PubMed/NCBI

53 

Marini RP, Li X, Harpster NK and Dangler C: Cardiovascular pathology possibly associated with ketamine/xylazine anesthesia in Dutch belted rabbits. Lab Anim Sci. 49:153–160. 1999.PubMed/NCBI

54 

Baneux PJ, Garner D, McIntyre HB and Holshuh HJ: Euthanasia of rabbits by intravenous administration of ketamine. J Am Vet Med Assoc. 189:1038–1039. 1986.PubMed/NCBI

55 

Cicero L, Fazzotta S, Palumbo VD, Cassata G and Lo Monte AI: Anesthesia protocols in laboratory animals used for scientific purposes. Acta Biomed. 89:337–342. 2018.PubMed/NCBI

56 

Huang YH, Xu Q, Shen T, Li JK, Sheng JY and Shi HJ: Prevention of in-stent restenosis with endothelial progenitor cell (EPC) capture stent placement combined with regional EPC transplantation: An atherosclerotic rabbit model. Cardiol J. 26:283–291. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Patel J, Seppanen EJ, Rodero MP, Wong HY, Donovan P, Neufeld Z, Fisk NM, Francois M and Khosrotehrani K: Functional definition of progenitors versus mature endothelial cells reveals key SoxF-dependent differentiation process. Circulation. 135:786–805. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Flores-Nascimento MC, Alessio AM, de Andrade Orsi FL and Annichino-Bizzacchi JM: CD144, CD146 and VEGFR-2 properly identify circulating endothelial cell. Rev Bras Hematol Hemoter. 37:98–102. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Wei L, Wei ZZ, Jiang MQ, Mohamad O and Yu SP: Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol. 157:49–78. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Kamelska-Sadowska AM, Wojtkiewicz J and Kowalski IM: Review of the current knowledge on the role of stem cell transplantation in neurorehabilitation. Biomed Res Int. 2019:32908942019. View Article : Google Scholar : PubMed/NCBI

61 

Cho J, D'Antuono M, Glicksman M, Wang J and Jonklaas J: A review of clinical trials: Mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells. 7:82–93. 2018.PubMed/NCBI

62 

Chong MS, Ng WK and Chan JK: Concise review: Endothelial progenitor cells in regenerative medicine: Applications and challenges. Stem Cells Transl Med. 5:530–538. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Peng X, Li C, Bai Y, Wang X, Zhang Y, An Y, Teng GJ and Ju S: Noninvasive evaluation of the migration effect of transplanted endothelial progenitor cells in ischemic muscle using a multimodal imaging agent. Int J Nanomedicine. 13:1819–1829. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Zhang BF, Jiang H, Chen J, Hu Q, Yang S and Liu XP: Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J Cell Physiol. 234:18544–18559. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Leung K: Ultrasmall superparamagnetic iron oxide-Leu-Ile-Lys-Lys-Pro-Phe. Molecular Imaging and Contrast Agent Database (MICAD); Bethesda, MD: 2004

66 

Leung K: Ultrasmall superparamagnetic iron oxide-cyclo(Cys-Asn-Asn-Ser-Lys-Ser-His-Thr-Cys). Molecular Imaging and Contrast Agent Database (MICAD) Bethesda, MD: 2004

67 

Leung K: Ultrasmall superparamagnetic iron oxide nanoparticles conjugated with Ile-Pro-Leu-Pro-Phe-Tyr-Asn. Molecular Imaging and Contrast Agent Database (MICAD) Bethesda, MD: 2004

68 

Zhou Q, Yang KR, Gao P, Chen WL, Yang DY, Liang MJ and Zhu L: An experimental study on MR imaging of atherosclerotic plaque with SPIO marked endothelial cells in a rabbit model. J Magn Reson Imaging. 34:1325–1332. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR, Young V, Sadat U, Howarth SP and Gillard JH: Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol. 29:1001–1008. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Alam SR, Stirrat C, Richards J, Mirsadraee S, Semple SI, Tse G, Henriksen P and Newby DE: Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. J Cardiovasc Magn Reson. 17:832015. View Article : Google Scholar : PubMed/NCBI

71 

Moon SH, Kim SM, Park SJ, Kim H, Bae D, Choi YS and Chung HM: Development of a xeno-free autologous culture system for endothelial progenitor cells derived from human umbilical cord blood. PLoS One. 8:e752242013. View Article : Google Scholar : PubMed/NCBI

72 

Daldrup-Link HE, Rudelius M, Oostendorp RA, Settles M, Piontek G, Metz S, Rosenbrock H, Keller U, Heinzmann U, Rummeny EJ, et al: Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology. 228:760–767. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Matuszewski L, Persigehl T, Wall A, Schwindt W, Tombach B, Fobker M, Poremba C, Ebert W, Heindel W and Bremer C: Cell tagging with clinically approved iron oxides: Feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology. 235:155–161. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Rausch M, Sauter A, Frohlich J, Neubacher U, Radu EW and Rudin M: Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med. 46:1018–1022. 2001. View Article : Google Scholar : PubMed/NCBI

75 

Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U and Jander S: In vivo MRI of brain inflammation in human ischaemic stroke. Brain. 127:1670–1677. 2004. View Article : Google Scholar : PubMed/NCBI

76 

McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB and Olukotun AY: Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging. 4:301–307. 1994. View Article : Google Scholar : PubMed/NCBI

77 

Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P and Lewis J: Superparamagnetic iron oxide: Pharmacokinetics and toxicity. AJR Am J Roentgenol. 152:167–173. 1989. View Article : Google Scholar : PubMed/NCBI

78 

Ryu CW, Kwak HS, Jahng GH and Lee HN: High-resolution MRI of intracranial atherosclerotic disease. Neurointervention. 9:9–20. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Kerwin WS and Canton G: Advanced techniques for MRI of atherosclerotic plaque. Top Magn Reson Imaging. 20:217–225. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Wang E, Shao S, Li S, Yan P, Xiang Y, Wang X, Li J, Wang G, Sun Q and Du Y: A High-resolution MRI study of the relationship between plaque enhancement and ischemic stroke events in patients with intracranial atherosclerotic stenosis. Front Neurol. 9:11542018. View Article : Google Scholar : PubMed/NCBI

81 

Smits LP, Tiessens F, Zheng KH, Stroes ES, Nederveen AJ and Coolen BF: Evaluation of ultrasmall superparamagnetic iron-oxide (USPIO) enhanced MRI with ferumoxytol to quantify arterial wall inflammation. Atherosclerosis. 263:211–218. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Kaneko C, Nitta N, Tsuchiya K, Watanabe S, Nitta-Seko A, Ohta S, Otani H, Sonoda A, Murata K and Shiomi M: MRI study of atherosclerotic plaque progression using ultrasmall superparamagnetic iron oxide in Watanabe heritable hyperlipidemic rabbits. Br J Radiol. 88:201501672015. View Article : Google Scholar : PubMed/NCBI

83 

Yao Y, Li Y, Ma G, Liu N, Ju S, Jin J, Chen Z, Shen C and Teng G: In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats. Mol Imaging Biol. 13:303–313. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M and Nickenig G: Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 93:e17–e24. 2003. View Article : Google Scholar : PubMed/NCBI

85 

George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J, Kopolovich J, Miller H and Keren G: Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 25:2636–2641. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Mergo PJ, Engelken JD, Helmberger T and Ros PR: MRI in focal liver disease: A comparison of small and ultra-small superparamagnetic iron oxide as hepatic contrast agents. J Magn Reson Imaging. 8:1073–1078. 1998. View Article : Google Scholar : PubMed/NCBI

87 

Czarniecki M, Pesapane F, Wood BJ, Choyke PL and Turkbey B: Ultra-small superparamagnetic iron oxide contrast agents for lymph node staging of high-risk prostate cancer. Transl Androl Urol. 7 (Suppl 4):S453–S461. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Matuszewski L, Tombach B, Heindel W and Bremer C: Molecular and parametric imaging with iron oxides. Radiologe. 47:34–42. 2007.(In German). View Article : Google Scholar : PubMed/NCBI

89 

Engels RRM, Israel B, Padhani AR and Barentsz JO: Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: What urologists need to know. Part 1: Acquisition. Eur Urol. 77:457–468. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Yang JX, Pan YY, Wang XX, Qiu YG and Mao W: Endothelial progenitor cells in age-related vascular remodeling. Cell Transplant. 27:786–795. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Simard T, Jung RG, Motazedian P, Di Santo P, Ramirez FD, Russo JJ, Labinaz A, Yousef A, Anantharam B, Pourdjabbar A and Hibbert B: Progenitor cells for arterial repair: Incremental advancements towards therapeutic reality. Stem Cells Int. 2017:82704982017. View Article : Google Scholar : PubMed/NCBI

92 

Lin Y, Weisdorf DJ, Solovey A and Hebbel RP: Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 105:71–77. 2000. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wei H, Tan T, Cheng L, Liu J, Song H, Li L and Zhang K: MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 22: 3327-3337, 2020.
APA
Wei, H., Tan, T., Cheng, L., Liu, J., Song, H., Li, L., & Zhang, K. (2020). MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Molecular Medicine Reports, 22, 3327-3337. https://doi.org/10.3892/mmr.2020.11431
MLA
Wei, H., Tan, T., Cheng, L., Liu, J., Song, H., Li, L., Zhang, K."MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits". Molecular Medicine Reports 22.4 (2020): 3327-3337.
Chicago
Wei, H., Tan, T., Cheng, L., Liu, J., Song, H., Li, L., Zhang, K."MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits". Molecular Medicine Reports 22, no. 4 (2020): 3327-3337. https://doi.org/10.3892/mmr.2020.11431
Copy and paste a formatted citation
x
Spandidos Publications style
Wei H, Tan T, Cheng L, Liu J, Song H, Li L and Zhang K: MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 22: 3327-3337, 2020.
APA
Wei, H., Tan, T., Cheng, L., Liu, J., Song, H., Li, L., & Zhang, K. (2020). MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Molecular Medicine Reports, 22, 3327-3337. https://doi.org/10.3892/mmr.2020.11431
MLA
Wei, H., Tan, T., Cheng, L., Liu, J., Song, H., Li, L., Zhang, K."MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits". Molecular Medicine Reports 22.4 (2020): 3327-3337.
Chicago
Wei, H., Tan, T., Cheng, L., Liu, J., Song, H., Li, L., Zhang, K."MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits". Molecular Medicine Reports 22, no. 4 (2020): 3327-3337. https://doi.org/10.3892/mmr.2020.11431
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team