|
1
|
Nesbitt G, McKenna K, Mays V, Carpenter A,
Miller K and Williams M; EPGP Investigators, : The epilepsy
phenome/genome project (EPGP) informatics platform. Int J Med
Inform. 82:248–259. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Keezer MR, Sisodiya SM and Sander JW:
Comorbidities of epilepsy: Current concepts and future
perspectives. Lancet Neurol. 15:106–115. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chen H, He H, Xiao Y, Luo M, Luo H and
Wang J: Losigamone add-on therapy for focal epilepsy. Cochrane
Database Syst Rev. 12:CD0093242019.PubMed/NCBI
|
|
4
|
Engel J: Etiology as a risk factor for
medically refractory epilepsy: A case for early surgical
intervention. Neurology. 51:1243–1244. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shaw JA, Perry VH and Mellanby J: MHC
Class II expression by microglia in tetanus toxin-induced
experimental epilepsy in the rat. Neuropathol Appl Neurobiol.
20:392–398. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhvaniia MG, Bolkvadze TN, Chkhikvishvili
TsG, Kotariia NT, Dzhaparidze HD, Lordkipanidze TG and Bikashvili
TZ: Quantitative analysis of gliocytes and macrogliocyte-neuronal
ratio in the rat hippocampus after kindling. Morfologiia.
136:18–21. 2009.(In Russian). PubMed/NCBI
|
|
7
|
Yu C, Li P, Qi D, Wang L, Qu HL, Zhang YJ,
Wang XK and Fan HY: Osthole protects sepsis-induced acute kidney
injury via down-regulating NF-κB signal pathway. Oncotarget.
8:4796–4813. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liao M, Diao X, Cheng X, Sun Y and Zhang
L: Nontargeted SWATH acquisition mode for metabolites
identification of osthole in rats using ultra-high-performance
liquid chromatography coupled to quadrupole time-of-flight mass
spectrometry. RSC Adv. 8:14925–14935. 2018. View Article : Google Scholar
|
|
9
|
Bao Y, Meng X, Liu F, Wang F, Yang J, Wang
H and Xie G: Protective effects of osthole against inflammation
induced by lipopolysaccharide in BV2 cells. Mol Med Rep.
17:4561–4566. 2018.PubMed/NCBI
|
|
10
|
Yao Y, Wang Y, Kong L, Chen Y and Yang J:
Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β
signaling pathway in Alzheimer's disease. Life Sci. 217:16–24.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Du G, Song Y, Wei L, Li L, Wang X, Xu Q,
Zhan H, Cao Y, Zheng Y and Ding D: Osthole inhibits proliferation
and induces catabolism in rat chondrocytes and cartilage tissue.
Cell Physiol Biochem. 36:2480–2493. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Luszczki JJ, Wojda E, Andres-Mach M,
Cisowski W, Glensk M, Glowniak K and Czucuwar SJ: Anticonvulsant
and acute neurotoxic effects of imperatorin, osthole and valproate
in the maximal electroshock seizure and chimney tests in mice: A
comparative study. Epilepsy Res. 85:293–299. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li ZQ, Zou SF, Zeng CQ, Cui JH, Li XY, Pan
X and Duan CM: Effect of osthole on expression of voltage-gated
potassium channel Kv1.2 in epileptic rats. J Apoplexy Nervous Dis.
29:40–43. 2012.
|
|
14
|
Miele L: Notch signaling. Clin Cancer Res.
12:1074–1079. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tzou WS, Lo YT, Pai TW, Hu CH and Li CH:
Stochastic simulation of notch signaling reveals novel factors that
mediate the differentiation of neural stem cells. J Comput Biol.
21:548–567. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shang Y, Smith S and Hu X: Role of Notch
signaling in regulating innate immunity and inflammation in health
and disease. Protein Cell. 7:159–174. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Grandbarbe L, Bouissac J, Rand M, Hrabé de
Angelis M, Artavanis-Tsakonas S and Mohier E: Delta-Notch signaling
controls the generation of neurons/glia from neural stem cells in a
stepwise process. Development. 130:1391–1402. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Varnholt H, Drebber U, Schulze F,
Wedemeyer I, Schirmacher P, Dienes HP and Odenthal M: MicroRNA gene
expression profile of hepatitis C virus-associated hepatocellular
carcinoma. Hepatology. 47:1223–1232. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ling EA and Wong WC: The origin and nature
of ramified and amoeboid microglia: A historical review and current
concepts. Glia. 7:9–18. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yuan Y, Zha H, Rangarajan P, Ling EA and
Wu C: Anti-inflammatory effects of edaravone and scutellarin in
activated microglia in experimentally induced ischemia injury in
rats and in BV-2 microglia. BMC Neurosci. 15:1252014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur
C and Ling EA: Toll-like receptor 4 mediates microglial activation
and production of inflammatory mediators in neonatal rat brain
following hypoxia: Role of TLR4 in hypoxic microglia. J
Neuroinflammation. 10:232013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Avignone E, Ulmann L, Levavasseur F,
Rassendren F and Audinat E: Status epilepticus induces a particular
microglial activation state characterized by enhanced purinergic
signaling. J Neurosci. 28:9133–9144. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dambach H, Hinkerohe D, Prochnow N,
Stienen MN, Moinfar Z, Haase CG, Hufnagel A and Faustmann PM: Glia
and epilepsy: Experimental investigation of antiepileptic drugs in
an astroglia/microglia co-culture model of inflammation. Epilepsia.
55:184–192. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhao X, Liao Y, Morgan S, Mathur R,
Feustel P, Mazurkiewicz J, Qian J, Chang J, Mathern GW, Adamo MA,
et al: Noninflammatory changes of microglia are sufficient to cause
epilepsy. Cell Rep. 22:2080–2093. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li SH, Gao P, Wang LT, Yan YH, Xia Y, Song
J, Li HY and Yang JX: Osthole stimulated neural stem cells
differentiation into neurons in an Alzheimer's disease cell model
via upregulation of MicroRNA-9 and rescued the functional
impairment of hippocampal neurons in APP/PS1 transgenic mice. Front
Neurosci. 11:3402017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Luszczki JJ, Andres-Mach M, Cisowski W,
Mazol I, Glowniak K and Czuczwar SJ: Osthole suppresses seizures in
the mouse maximal electroshock seizure model. Eur J Pharmacol.
607:107–109. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zeng CQ, Li DP, Tang W, Wang W, Cao PA and
Zou SF: Relevance of potassium channels Kv1.2 to pathogenesis of
epileptic rat. J Apoplexy Nervous Dis. 27:700–703. 2010.
|
|
28
|
Jeske R, Albo J, Marzano M, Bejoy J and Li
Y: Engineering brain-specific pericytes from human pluripotent stem
cells. Tissue Eng Part B Rev. Jun 22–2020.(Online ahead of print).
View Article : Google Scholar
|
|
29
|
Purow BW, Haque RM, Noel MW, Su Q, Burdick
MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, et al:
Expression of Notch-1 and its ligands, Delta-Like-1 and Jagged-1,
is critical for glioma cell survival and proliferation. Cancer Res.
65:2353–2363. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Grandbarbe L, Michelucci A, Heurtaux T,
Hemmer K, Morga E and Heuschling P: Notch signaling modulates the
activation of microglial cells. Glia. 55:1519–1530. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zeng WX, Han YL, Zhu GF, Huang LQ, Deng
YY, Wang QS, Jiang WQ, Wen MY, Han QP, Xie D and Zeng HK:
Hypertonic saline attenuates expression of notch signaling and
proinflammatory mediators in activated microglia in experimentally
induced cerebral ischemia and hypoxic bv-2 microglia. BMC Neurosci.
18:322017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wu L, Li Y, Yu M, Yang F, Tu M and Xu H:
Notch signaling regulates microglial activation and inflammatory
reactions in a rat model of temporal lobe epilepsy. Neurochem Res.
6:1269–1282. 2018. View Article : Google Scholar
|