|
1
|
Radpour R, Gourabi H, Dizaj AV, Holzgreve
W and Zhong XY: Genetic investigations of CFTR mutations in
congenital absence of vas deferens, uterus, and vagina as a cause
of infertility. J Androl. 29:506–513. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gajbhiye R, Kadam K, Khole A, Gaikwad A,
Kadam S, Shah R, Kumaraswamy R and Khole V: Cystic fibrosis
transmembrane conductance regulator (CFTR) gene abnormalities in
Indian males with congenital bilateral absence of vas deferens
& renal anomalies. Indian J Med Res. 143:616–623. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li CY, Jiang LY, Chen WY, Li K, Sheng HQ,
Ni Y, Lu JX, Xu WX, Zhang SY and Shi QX: CFTR is essential for
sperm fertilizing capacity and is correlated with sperm quality in
humans. Hum Reprod. 25:317–327. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ferlin A and Stuppia L: Diagnostics of
CFTR-negative patients with congenital bilateral absence of vas
deferens: Which mutations are of most interest? Expert Rev Mol
Diagn. 20:265–267. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gallego A, Rogel R, Perez-Ardavin J,
Lorenzo L, Lujan S, Oltra S, Molina I and Broseta E: Congenital
bilateral absence of the vas deferens (CBAVD): Do genetic disorders
modify assisted reproductive technologies outcomes? Arch Esp Urol.
72:1038–1042. 2019.(In Spanish). PubMed/NCBI
|
|
6
|
Diao R, Fok KL, Zhao L, Chen H, Tang H,
Chen J, Zheng A, Zhang X, Gui Y, Chan HC and Cai Z: Decreased
expression of cystic fibrosis transmembrane conductance regulator
impairs sperm quality in aged men. Reproduction. 146:637–645. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mak V, Zielenski J, Tsui LC, Durie P, Zini
A, Martin S, Longley TB and Jarvi KA: Proportion of cystic fibrosis
gene mutations not detected by routine testing in men with
obstructive azoospermia. JAMA. 281:2217–2224. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yu J, Chen Z, Ni Y and Li Z: CFTR
mutations in men with congenital bilateral absence of the vas
deferens (CBAVD): A systemic review and meta-analysis. Hum Reprod.
27:25–35. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Riordan JR, Rommens JM, Kerem B, Alon N,
Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et
al: Identification of the cystic fibrosis gene: Cloning and
characterization of complementary DNA. Science. 245:1066–1073.
1989. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tsui LC and Dorfman R: The cystic fibrosis
gene: A molecular genetic perspective. Cold Spring Harb Perspect
Med. 3:a0094722013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Guillot L, Beucher J, Tabary O, Le Rouzic
P, Clement A and Corvol H: Lung disease modifier genes in cystic
fibrosis. Int J Biochem Cell Biol. 52:83–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Linsdell P: Cystic fibrosis transmembrane
conductance regulator chloride channel blockers: Pharmacological,
biophysical and physiological relevance. World J Biol Chem.
5:26–39. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Poroca DR, Amer N, Li A, Hanrahan JW and
Chappe VM: Changes in the R-region interactions depend on
phosphorylation and contribute to PKA and PKC regulation of the
cystic fibrosis transmembrane conductance regulator chloride
channel. FASEB Bioadv. 2:33–48. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jarosz-Griffiths HH, Scambler T, Wong CH,
Lara-Reyna S, Holbrook J, Martinon F, Savic S, Whitaker P,
Etherington C, Spoletini G, et al: Different CFTR modulator
combinations downregulate inflammation differently in cystic
fibrosis. Elife. 9:e545562020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jaworska J, Marach-Mocarska A and Sands D:
Uncommon clinical presentation of cystic fibrosis in a patient
homozygous for a rare CFTR mutation: A case report. BMC Pediatr.
20:902020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen JH: Protein kinase A phosphorylation
potentiates cystic fibrosis transmembrane conductance regulator
gating by relieving autoinhibition on the stimulatory C terminus of
the regulatory domain. J Biol Chem. 295:4577–4590. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
NandyMazumdar M, Yin S, Paranjapye A,
Kerschner JL, Swahn H, Ge A, Leir SH and Harris A: Looping of
upstream cis-regulatory elements is required for CFTR expression in
human airway epithelial cells. Nucleic Acids Res. 48:3513–3524.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Laselva O, Stone TA, Bear CE and Deber CM:
Anti-infectives restore ORKAMBI((R)) rescue of
F508del-CFTR function in human bronchial epithelial cells infected
with clinical strains of P. aeruginosa. Biomolecules. 10:3342020.
View Article : Google Scholar
|
|
19
|
McCarron A, Cmielewski P, Reyne N,
McIntyre C, Finnie J, Craig F, Rout-Pitt N, Delhove J, Schjenken
JE, Chan HY, et al: Phenotypic characterization and comparison of
cystic fibrosis Rat models generated using CRISPR/Cas9 gene
editing. Am J Pathol. 190:977–993. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Froux L, Elbahnsi A, Boucherle B, Billet
A, Baatallah N, Hoffmann B, Alliot J, Zelli R, Zeinyeh W,
Haudecoeur R, et al: Targeting different binding sites in the CFTR
structures allows to synergistically potentiate channel activity.
Eur J Med Chem. 190:1121162020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Choi JY, Muallem D, Kiselyov K, Lee MG,
Thomas PJ and Muallem S: Aberrant CFTR-dependent HCO3- transport in
mutations associated with cystic fibrosis. Nature. 410:94–97. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Van Mourik P, van Haaren P, Kruisselbrink
E, Korkmaz C, Janssens HM, de Winter-de Groot KM, van der Ent CK,
Hagemeijer MC and Beekman JM: R117H-CFTR function and response to
VX-770 correlate with mRNA and protein expression in intestinal
organoids. J Cyst Fibros. 2020.(Epub ahead of print). View Article : Google Scholar
|
|
23
|
De Santi C, Fernandez Fernandez E, Gaul R,
Vencken S, Glasgow A, Oglesby IK, Hurley K, Hawkins F, Mitash N, Mu
F, et al: Precise targeting of miRNA sites restores CFTR activity
in CF bronchial epithelial cells. Mol Ther. 28:1190–1199. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jain R, Middleton PG and Rowe SM: Triple
therapy for cystic fibrosis with a phe508del CFTR mutation. Reply.
N Engl J Med. 382:6842020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Morris-Rosendahl DJ, Edwards M, McDonnell
MJ, John S, Alton EWFW, Davies JC and Simmonds NJ: Whole gene
sequencing of CFTR reveals a high prevalence of the intronic
variant c.3874-4522A>G in cystic fibrosis. Am J Respir Crit Care
Med. 201:1438–1441. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gaillard DA, Carre-Pigeon F and Lallemand
A: Normal vas deferens in fetuses with cystic fibrosis. J Urol.
158:1549–1552. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ferec C and Cutting GR: Assessing the
disease-liability of mutations in CFTR. Cold Spring Harb Perspect
Med. 2:a0094802012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tamburino L, Guglielmino A, Venti E and
Chamayou S: Molecular analysis of mutations and polymorphisms in
the CFTR gene in male infertility. Reprod Biomed Online. 17:27–35.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Patel B, Parets S, Akana M, Kellogg G,
Jansen M, Chang C, Cai Y, Fox R, Niknazar M, Shraga R, et al:
Comprehensive genetic testing for female and male infertility using
next-generation sequencing. J Assist Reprod Genet. 35:1489–1496.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cuppens H and Cassiman JJ: CFTR mutations
and polymorphisms in male infertility. Int J Androl. 27:251–256.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hinzpeter A, Aissat A, Sondo E, Costa C,
Arous N, Gameiro C, Martin N, Tarze A, Weiss L, de Becdelièvre A,
et al: Alternative splicing at a NAGNAG acceptor site as a novel
phenotype modifier. PLoS Genet. 6:e10011532010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kopito RR: Biosynthesis and degradation of
CFTR. Physiol Rev. 79 (1 Suppl):S167–S173. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Schwiebert EM, Egan ME, Hwang TH, Fulmer
SB, Allen SS, Cutting GR and Guggino WB: CFTR regulates outwardly
rectifying chloride channels through an autocrine mechanism
involving ATP. Cell. 81:1063–1073. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Seibert FS, Linsdell P, Loo TW, Hanrahan
JW, Riordan JR and Clarke DM: Cytoplasmic loop three of cystic
fibrosis transmembrane conductance regulator contributes to
regulation of chloride channel activity. J Biol Chem.
271:27493–27499. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Highsmith WE, Burch LH, Zhou Z, Olsen JC,
Boat TE, Spock A, Gorvoy JD, Quittel L, Friedman KJ, Silverman LM,
et al: A novel mutation in the cystic fibrosis gene in patients
with pulmonary disease but normal sweat chloride concentrations. N
Engl J Med. 331:974–980. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Green DM, McDougal KE, Blackman SM, Sosnay
PR, Henderson LB, Naughton KM, Collaco JM and Cutting GR: Mutations
that permit residual CFTR function delay acquisition of multiple
respiratory pathogens in CF patients. Respir Res. 11:1402010.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Haardt M, Benharouga M, Lechardeur D,
Kartner N and Lukacs GL: C-terminal truncations destabilize the
cystic fibrosis transmembrane conductance regulator without
impairing its biogenesis. A novel class of mutation. J Biol Chem.
274:21873–21877. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fulmer SB, Schwiebert EM, Morales MM,
Guggino WB and Cutting GR: Two cystic fibrosis transmembrane
conductance regulator mutations have different effects on both
pulmonary phenotype and regulation of outwardly rectified chloride
currents. Proc Natl Acad Sci USA. 92:6832–6836. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bombieri C, Claustres M, De Boeck K,
Derichs N, Dodge J, Girodon E, Sermet I, Schwarz M, Tzetis M,
Wilschanski M, et al: Recommendations for the classification of
diseases as CFTR-related disorders. J Cyst Fibros. 10 (Suppl
2):S86–S102. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Claustres M, Guittard C, Bozon D,
Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu
T, Lalau G, et al: Spectrum of CFTR mutations in cystic fibrosis
and in congenital absence of the vas deferens in France. Hum Mutat.
16:143–156. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cuppens H, Lin W, Jaspers M, Costes B,
Teng H, Vankeerberghen A, Jorissen M, Droogmans G, Reynaert I,
Goossens M, et al: Polyvariant mutant cystic fibrosis transmembrane
conductance regulator genes. The polymorphic (Tg)m locus explains
the partial penetrance of the T5 polymorphism as a disease
mutation. J Clin Invest. 101:487–496. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kosova G, Pickrell JK, Kelley JL, McArdle
PF, Shuldiner AR, Abney M and Ober C: The CFTR Met 470 allele is
associated with lower birth rates in fertile men from a population
isolate. PLoS Genet. 6:e10009742010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pompei F, Ciminelli BM, Bombieri C,
Ciccacci C, Koudova M, Giorgi S, Belpinati F, Begnini A, Cerny M,
Des Georges M, et al: Haplotype block structure study of the CFTR
gene. Most variants are associated with the M470 allele in several
European populations. Eur J Hum Genet. 14:85–93. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Du Q, Li Z, Pan Y, Liu X, Pan B and Wu B:
The CFTR M470V, intron 8 poly-T, and 8 TG-repeats detection in
Chinese males with congenital bilateral absence of the vas
deferens. Biomed Res Int. 2014:6891852014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kumar S, Tana A and Shankar A: Cystic
fibrosis--what are the prospects for a cure? Eur J Intern Med.
25:803–807. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Leonardi S, Pratico AD, Rotolo N, Di Dio
G, Lionetti E and La Rosa M: Early acute pancreatitis in a child
with compound heterozygosis F508/R1438W/Y1032C cystic fibrosis: A
case report. J Med Case Rep. 7:1882013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu CC, Hsieh-Li HM, Lin YM and Chiang HS:
Cystic fibrosis transmembrane conductance regulator gene screening
and clinical correlation in Taiwanese males with congenital
bilateral absence of the vas deferens. Hum Reprod. 19:250–253.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zvereff VV, Faruki H, Edwards M and
Friedman KJ: Cystic fibrosis carrier screening in a North American
population. Genet Med. 16:539–546. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kornreich R, Ekstein J, Edelmann L and
Desnick RJ: Premarital and prenatal screening for cystic fibrosis:
Experience in the Ashkenazi Jewish population. Genet Med.
6:415–420. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sugarman EA, Rohlfs EM, Silverman LM and
Allitto BA: CFTR mutation distribution among U.S. Hispanic and
African American individuals: Evaluation in cystic fibrosis patient
and carrier screening populations. Genet Med. 6:392–399. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Massie RJ, Poplawski N, Wilcken B,
Goldblatt J, Byrnes C and Robertson C: Intron-8 polythymidine
sequence in Australasian individuals with CF mutations R117H and
R117C. Eur Respir J. 17:1195–1200. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kiesewetter S, Macek M Jr, Davis C,
Curristin SM, Chu CS, Graham C, Shrimpton AE, Cashman SM, Tsui LC,
Mickle J, et al: A mutation in CFTR produces different phenotypes
depending on chromosomal background. Nat Genet. 5:274–278. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Feng J, Wu X and Zhang Y, Yang X, Ma G,
Chen S, Luo S and Zhang Y: A novel mutation (−195C>A) in the
promoter region of CFTR gene is associated with Chinese congenital
bilateral absence of vas deferens (CBAVD). Gene. 719:1440072019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yoshimura K, Nakamura H, Trapnell BC,
Dalemans W, Pavirani A, Lecocq JP and Crystal RG: The cystic
fibrosis gene has a ‘housekeeping’-type promoter and is expressed
at low levels in cells of epithelial origin. J Biol Chem.
266:9140–9144. 1991.PubMed/NCBI
|
|
55
|
McCarthy VA and Harris A: The CFTR gene
and regulation of its expression. Pediatr Pulmonol. 40:1–8. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Giordano S, Amato F, Elce A, Monti M,
Iannone C, Pucci P, Seia M, Angioni A, Zarrilli F, Castaldo G and
Tomaiuolo R: Molecular and functional analysis of the large
5′promoter region of CFTR gene revealed pathogenic mutations in CF
and CFTR-related disorders. J Mol Diagn. 15:331–340. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chillon M, Casals T, Mercier B, Bassas L,
Lissens W, Silber S, Romey MC, Ruiz-Romero J, Verlingue C,
Claustres M, et al: Mutations in the cystic fibrosis gene in
patients with congenital absence of the vas deferens. N Engl J Med.
332:1475–1480. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mak V, Jarvi KA, Zielenski J, Durie P and
Tsui LC: Higher proportion of intact exon 9 CFTR mRNA in nasal
epithelium compared with vas deferens. Hum Mol Genet. 6:2099–2107.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hwang TC and Sheppard DN: Gating of the
CFTR Cl- channel by ATP-driven nucleotide-binding domain
dimerisation. J Physiol. 587:2151–2161. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Radpour R, Gilani MA, Gourabi H, Dizaj AV
and Mollamohamadi S: Molecular analysis of the IVS8-T splice
variant 5T and M470V exon 10 missense polymorphism in Iranian males
with congenital bilateral absence of the vas deferens. Mol Hum
Reprod. 12:469–473. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Anzai C, Morokawa N, Okada H, Kamidono S,
Eto Y and Yoshimura K: CFTR gene mutations in Japanese individuals
with congenital bilateral absence of the vas deferens. J Cyst
Fibros. 2:14–18. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Disset A, Michot C, Harris A, Buratti E,
Claustres M and Tuffery-Giraud S: A T3 allele in the CFTR gene
exacerbates exon 9 skipping in vas deferens and epididymal cell
lines and is associated with congenital bilateral absence of vas
deferens (CBAVD). Hum Mutat. 25:72–81. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nam MH, Hijikata M, Tuan LA, Lien LT,
Shojima J, Horie T, Nakata K, Matsushita I, Ohashi J, Tokunaga K
and Keicho N: Variations of the CFTR gene in the Hanoi-Vietnamese.
Am J Med Genet A. 136:249–253. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ranum LP and Cooper TA: RNA-mediated
neuromuscular disorders. Annu Rev Neurosci. 29:259–277. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Czajka-Oraniec I, Zgliczynski W,
Kurylowicz A, Mikula M and Ostrowski J: Association between
gynecomastia and aromatase (CYP19) polymorphisms. Eur J Endocrinol.
158:721–727. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Martin P, Makepeace K, Hill SA, Hood DW
and Moxon ER: Microsatellite instability regulates transcription
factor binding and gene expression. Proc Natl Acad Sci USA.
102:3800–3804. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lopez E, Viart V, Guittard C, Templin C,
René C, Méchin D, Des Georges M, Claustres M, Romey-Chatelain MC
and Taulan M: Variants in CFTR untranslated regions are associated
with congenital bilateral absence of the vas deferens. J Med Genet.
48:152–159. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Silber SJ, Balmaceda J, Borrero C, Ord T
and Asch R: Pregnancy with sperm aspiration from the proximal head
of the epididymis: A new treatment for congenital absence of the
vas deferens. Fertil Steril. 50:525–528. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Nicopoullos JD, Gilling-Smith C, Almeida
PA and Ramsay JW: The results of 154 ICSI cycles using surgically
retrieved sperm from azoospermic men. Hum Reprod. 19:579–585. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu J, Lissens W, Silber SJ, Devroey P,
Liebaers I and Van Steirteghem A: Birth after preimplantation
diagnosis of the cystic fibrosis delta F508 mutation by polymerase
chain reaction in human embryos resulting from intracytoplasmic
sperm injection with epididymal sperm. JAMA. 272:1858–1860. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rechitsky S, Verlinsky O and Kuliev A: PGD
for cystic fibrosis patients and couples at risk of an additional
genetic disorder combined with 24-chromosome aneuploidy testing.
Reprod Biomed Online. 26:420–430. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Girardet A, Ishmukhametova A, Willems M,
Coubes C, Hamamah S, Anahory T, Des Georges M and Claustres M:
Preimplantation genetic diagnosis for cystic fibrosis: The
montpellier center's 10-year experience. Clin Genet. 87:124–132.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
McCallum TJ, Milunsky JM, Cunningham DL,
Harris DH, Maher TA and Oates RD: Fertility in men with cystic
fibrosis: An update on current surgical practices and outcomes.
Chest. 118:1059–1062. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chiang HS, Wu CC, Wu YN, Lu JF, Lin GH and
Hwang JL: CFTR mutation analysis of a Caucasian father with
congenital bilateral absence of vas deferens, a Taiwanese mother,
and twins resulting from ICSI procedure. J Formos Med Assoc.
107:736–740. 2008. View Article : Google Scholar : PubMed/NCBI
|