Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2020 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts

  • Authors:
    • Xue Zhao
    • Hao Gu
    • Linghui Wang
    • Peiwen Zhang
    • Jingjing Du
    • Linyuan Shen
    • Dongmei Jiang
    • Jinyong Wang
    • Xuewei Li
    • Shunhua Zhang
    • Mingzhou Li
    • Li Zhu
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China, Chongqing Academy of Animal Science, Chongqing 402460, P.R. China
    Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3705-3714
    |
    Published online on: September 2, 2020
       https://doi.org/10.3892/mmr.2020.11475
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Skeletal myogenesis is a highly ordered and complex biological process that is mediated by numerous regulatory factors. In previous studies, it has been demonstrated that microRNAs (miRs) and long non‑coding RNAs (lncRNAs) serve key roles in skeletal myogenesis. The present study showed that the expression levels of miR‑23a‑5p showed a dynamic change from decrease to increase during C2C12 myoblast proliferation and differentiation. Functional analysis using 5‑ethynyl‑2'‑deoxyuridine proliferation and Cell Counting Kit‑8 detection assays indicated that overexpression of miR‑23a‑5p significantly promoted C2C12 myoblast proliferation compared with the negative control. In addition, in C2C12 myoblasts transfected with miR‑23a‑5p mimics, increased expression levels of regulators associated with cell proliferation (Cyclin E, CCND1 and Cyclin B) were observed compared with the negative control. By contrast, overexpression of miR‑23a‑5p decreased the expression levels of specific‑myogenesis factors (MyoD, MyoG and Myf5) and decreased C2C12 myoblast differentiation. Luciferase activity assays indicated that miR‑23a‑5p suppressed the luciferase activity of lncDum. Further analysis demonstrated that miR‑23a‑5p not only showed an opposite expression level pattern compared with lncDum, which was first increased and then decreased, but also had an opposite effect on the proliferation and differentiation of C2C12 myoblasts compared with lncDum which inhibited cell proliferation and promoted cell differentiation. Taken together, these results indicated that miR‑23a‑5p may mediate the proliferation and differentiation of C2C12 myoblasts, which may be involved in lncDum regulation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Chargé SBP and Rudnicki MA: Cellular and molecular regulation of muscle regeneration. Physiol Rev. 84:209–238. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Ijuin T, Hatano N, Hosooka T and Takenawa T: Regulation of insulin signaling in skeletal muscle by PIP3 phosphatase, SKIP, and endoplasmic reticulum molecular chaperone glucose-regulated protein 78. Biochim Biophys Acta. 1853:3192–3201. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Pedersen BK and Febbraio MA: Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat Rev Endocrinol. 8:457–465. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Krook A, Björnholm M, Galuska D, Jiang XJ, Fahlman R, Myers MG Jr, Wallberg-Henriksson H and Zierath JR: Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes. 49:284–292. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Jackman RW and Kandarian SC: The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 287:C834–C843. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Tisdale MJ: Loss of skeletal muscle in cancer: biochemical mechanisms. Front Biosci. 6:D164–D174. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D and Relaix F: The formation of skeletal muscle: From somite to limb. J Anat. 202:59–68. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Schiaffino S and Reggiani C: Fiber types in mammalian skeletal muscles. Physiol Rev. 91:1447–1531. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Choe JH, Choi YM, Lee SH, Shin HG, Ryu YC, Hong KC and Kim BC: The relation between glycogen, lactate content and muscle fiber type composition, and their influence on postmortem glycolytic rate and pork quality. Meat Sci. 80:355–362. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Wang L, Chen X, Zheng Y, Li F, Lu Z, Chen C, Liu J, Wang Y, Peng Y, Shen Z, et al: miR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp Cell Res. 318:2324–2334. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Buckingham M: Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev. 16:525–532. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Rudnicki MA and Jaenisch R: The MyoD family of transcription factors and skeletal myogenesis. BioEssays. 17:203–209. 1995. View Article : Google Scholar : PubMed/NCBI

13 

Lu J, McKinsey TA, Zhang CL and Olson EN: Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell. 6:233–244. 2000. View Article : Google Scholar : PubMed/NCBI

14 

Talarico AP: Myf5 does not induce apoptosis in skeletal myoblasts but is regulated by oncogenic ras expression (unpublished PhD thesis). Cleveland State University; 2009

15 

Estrella NL, Desjardins CA, Nocco SE, Clark AL, Maksimenko Y and Naya FJ: MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation. J Biol Chem. 290:1256–1268. 2015. View Article : Google Scholar : PubMed/NCBI

16 

te Pas MF, Soumillion A, Harders FL, Verburg FJ, van den Bosch TJ, Galesloot P and Meuwissen TH: Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J Anim Sci. 77:2352–2356. 1999. View Article : Google Scholar : PubMed/NCBI

17 

Keren A, Tamir Y and Bengal E: The p38 MAPK signaling pathway: A major regulator of skeletal muscle development. Mol Cell Endocrinol. 252:224–230. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Megeney LA, Kablar B, Garrett K, Anderson JE and Rudnicki MA: MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10:1173–1183. 1996. View Article : Google Scholar : PubMed/NCBI

19 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Song G, Xu G, Ji C, Shi C, Shen Y, Chen L, Zhu L, Yang L, Zhao Y and Guo X: The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene. 533:481–487. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Bian H, Zhou Y, Zhou D, Zhang Y, Shang D and Qi J: The latest progress on miR-374 and its functional implications in physiological and pathological processes. J Cell Mol Med. 23:3063–3076. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Gao Y, Lin L, Li T, Yang J and Wei Y: The role of miRNA-223 in cancer: Function, diagnosis and therapy. Gene. 616:1–7. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Cheng Y, Liu X, Zhang S, Lin Y, Yang J and Zhang C: MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 47:5–14. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Callis TE, Deng Z, Chen JF and Wang DZ: Muscling through the microRNA world. Exp Biol Med (Maywood). 233:131–138. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X and Wang DZ: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 190:867–879. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Luo W, Nie Q and Zhang X: MicroRNAs involved in skeletal muscle differentiation. J Genet Genomics. 40:107–116. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Russell AP, Lamon S, Boon H, Wada S, Güller I, Brown EL, Chibalin AV, Zierath JR, Snow RJ, Stepto N, et al: Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol. 591:4637–4653. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Mi L, Li Y, Zhang Q, Zhao C, Peng Y, Yang G and Zheng X: MicroRNA-139-5p regulates C2C12 cell myogenesis through blocking Wnt/β-catenin signaling pathway. Biochem Cell Biol. 93:8–15. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ and Buckingham M: Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA. 106:13383–13387. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Ge Y, Sun Y and Chen J: IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol. 192:69–81. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Huang MB, Xu H, Xie SJ, Zhou H and Qu LH: Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One. 6:e291732011. View Article : Google Scholar : PubMed/NCBI

34 

Dong XZ, Hu Y, Liu P and Lu Y: The research progress of lncRNA as CeRNA in gastric cancer. Chin Pharmacol Bull. 32:1185–1188, 1189, 2016 (In Chinese).

35 

Mueller AC, Cichewicz MA, Dey BK, Layer R, Reon BJ, Gagan JR and Dutta A: MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol. 35:498–513. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Kang X, Zhao Y, Van Arsdell G, Nelson SF and Touma M: Ppp1r1b-lncRNA inhibits PRC2 at myogenic regulatory genes to promote cardiac and skeletal muscle development in mouse and human. RNA. 26:481–491. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Mercatelli N, Fittipaldi S, De Paola E, Dimauro I, Paronetto MP, Jackson MJ and Caporossi D: miR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation. Sci Rep. 7:72192017. View Article : Google Scholar : PubMed/NCBI

38 

Mercatelli N, Fittipaldi S, Dimauro I, Scalabrin M and Caporossi D: TrxR1/miR-23 as a novel molecular axis acting on skeletal muscle differentation. Free Radic Biol Med. 96:S25–S26. 2016. View Article : Google Scholar

39 

Morimoto Y, Kondo Y, Kataoka H, Honda Y, Kozu R, Sakamoto J, Nakano J, Origuchi T, Yoshimura T and Okita M: Heat treatment inhibits skeletal muscle atrophy of glucocorticoid-induced myopathy in rats. Physiol Res. 64:897–905. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

41 

McCarthy JJ: MicroRNA-206: The skeletal muscle-specific myomiR. Biochim Biophys Acta. 1779:682–691. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S and Harel-Bellan A: The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 8:278–284. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Cardinali B, Castellani L, Fasanaro P, Basso A, Alemà S, Martelli F and Falcone G: Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One. 4:e76072009. View Article : Google Scholar : PubMed/NCBI

44 

Shen H, Liu T, Fu L, Zhao S, Fan B, Cao J and Li X: Identification of microRNAs involved in dexamethasone-induced muscle atrophy. Mol Cell Biochem. 381:105–113. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Chromiak JA and Vandenburgh HH: Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation. Am J Physiol. 262:C1471–C1477. 1992. View Article : Google Scholar : PubMed/NCBI

46 

Sun Y, Wang G, Ji Z, Chao T, Liu Z, Wang X, Liu G, Wu C and Wang J: Three slow skeletal muscle troponin genes in small-tailed Han sheep (Ovis aries): Molecular cloning, characterization and expression analysis. Mol Biol Rep. 43:999–1010. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, Chen X, Huang Y, Jauch R, Esteban MA, et al: LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 25:335–350. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Chen Z, Liu H, Yang H, Gao Y, Zhang G and Hu J: The long noncoding RNA, TINCR, functions as a competing endogenous RNA to regulate PDK1 expression by sponging miR-375 in gastric cancer. OncoTargets Ther. 10:3353–3362. 2017. View Article : Google Scholar

49 

Liu W, Ma C, Yang B, Yin C, Zhang B and Xiao Y: LncRNA Gm15290 sponges miR-27b to promote PPARγ-induced fat deposition and contribute to body weight gain in mice. Biochem Biophys Res Commun. 493:1168–1175. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Abmayr SM, Balagopalan L, Galletta BJ and Hong SJ: Cell and molecular biology of myoblast fusion. Int Rev Cytol. 225:33–89. 2003. View Article : Google Scholar : PubMed/NCBI

51 

Mayer M, Shafrir E, Kaiser N, Milholland RJ and Rosen F: Interaction of glucocorticoid hormones with rat skeletal muscle: Catabolic effects and hormone binding. Metabolism. 25:157–167. 1976. View Article : Google Scholar : PubMed/NCBI

52 

Schwartz GK and Shah MA: Targeting the cell cycle: A new approach to cancer therapy. J Clin Oncol. 23:9408–9421. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Bryant P, Zheng Q and Pumiglia K: Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and -independent mechanisms. Mol Cell Biol. 26:4201–4213. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Alt JR, Gladden AB and Diehl JA: p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem. 277:8517–8523. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Dupont J, Karas M and LeRoith D: The cyclin dependent kinase inhibitor p21CIP/WAF is a positive regulator of IGF-1-induced cell proliferation in MCF-7 human breast cancer cells. J Biol Chem. 278:37256–37264. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Wang C, Chen P, Jin H, Yan X, Gan L, Li Y, Zhou S, Chang J, Wang Y, Yang G, et al: Nidus vespae protein inhibiting proliferation of HepG2 hepatoma cells through extracellular signal-regulated kinase signaling pathways and inducing G1 cell cycle arrest. Acta Biochim Biophys Sin (Shanghai). 40:970–978. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R and Beach D: p21 is a universal inhibitor of cyclin kinases. Nature. 366:701–704. 1993. View Article : Google Scholar : PubMed/NCBI

58 

Zammit PS: Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 72:19–32. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Montarras D, Chelly J, Bober E, Arnold H, Ott MO, Gros F and Pinset C: Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New Biol. 3:592–600. 1991.PubMed/NCBI

60 

Braun T and Gautel M: Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol. 12:349–361. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Berkes CA and Tapscott SJ: MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol. 16:585–595. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Edmondson DG and Olson EN: A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 4:1450. 1990. View Article : Google Scholar : PubMed/NCBI

63 

Cheng X, Du J, Shen L, Tan Z, Jiang D, Jiang A, Li Q, Tang G, Jiang Y, Wang J, et al: miR-204-5p regulates C2C12 myoblast differentiation by targeting MEF2C and ERRγ. Biomed Pharmacother. 101:528–535. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Du J, Zhang P, Zhao X, He J, Xu Y, Zou Q, Luo J, Shen L, Gu H, Tang Q, et al: MicroRNA-351-5p mediates skeletal myogenesis by directly targeting lactamase-β and is regulated by lnc-mg. FASEB J. 3:1911–1926. 2019. View Article : Google Scholar

65 

Shen L, Chen L, Zhang S, Du J, Bai L, Zhang Y, Jiang Y, Li X, Wang J and Zhu L: MicroRNA-27b Regulates Mitochondria Biogenesis in Myocytes. PLoS One. 11:e01485322016. View Article : Google Scholar : PubMed/NCBI

66 

Mizunoya W, Iwamoto Y, Sato Y, Tatsumi R and Ikeuchi Y: Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats. Anim Sci J. 85:293–304. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, et al: A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 160:595–606. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao X, Gu H, Wang L, Zhang P, Du J, Shen L, Jiang D, Wang J, Li X, Zhang S, Zhang S, et al: MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts. Mol Med Rep 22: 3705-3714, 2020.
APA
Zhao, X., Gu, H., Wang, L., Zhang, P., Du, J., Shen, L. ... Zhu, L. (2020). MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts. Molecular Medicine Reports, 22, 3705-3714. https://doi.org/10.3892/mmr.2020.11475
MLA
Zhao, X., Gu, H., Wang, L., Zhang, P., Du, J., Shen, L., Jiang, D., Wang, J., Li, X., Zhang, S., Li, M., Zhu, L."MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts". Molecular Medicine Reports 22.5 (2020): 3705-3714.
Chicago
Zhao, X., Gu, H., Wang, L., Zhang, P., Du, J., Shen, L., Jiang, D., Wang, J., Li, X., Zhang, S., Li, M., Zhu, L."MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts". Molecular Medicine Reports 22, no. 5 (2020): 3705-3714. https://doi.org/10.3892/mmr.2020.11475
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao X, Gu H, Wang L, Zhang P, Du J, Shen L, Jiang D, Wang J, Li X, Zhang S, Zhang S, et al: MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts. Mol Med Rep 22: 3705-3714, 2020.
APA
Zhao, X., Gu, H., Wang, L., Zhang, P., Du, J., Shen, L. ... Zhu, L. (2020). MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts. Molecular Medicine Reports, 22, 3705-3714. https://doi.org/10.3892/mmr.2020.11475
MLA
Zhao, X., Gu, H., Wang, L., Zhang, P., Du, J., Shen, L., Jiang, D., Wang, J., Li, X., Zhang, S., Li, M., Zhu, L."MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts". Molecular Medicine Reports 22.5 (2020): 3705-3714.
Chicago
Zhao, X., Gu, H., Wang, L., Zhang, P., Du, J., Shen, L., Jiang, D., Wang, J., Li, X., Zhang, S., Li, M., Zhu, L."MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts". Molecular Medicine Reports 22, no. 5 (2020): 3705-3714. https://doi.org/10.3892/mmr.2020.11475
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team