Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2020 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury

  • Authors:
    • Guo‑Qian He
    • Yan Chen
    • Hui‑Juan Liao
    • Wen‑Ming Xu
    • Wei Zhang
    • Guo‑Lin He
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, Sichuan 610041, P.R. China, Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to School of Medicine, Chengdu, Sichuan 610041, P.R. China
    Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 5083-5094
    |
    Published online on: October 19, 2020
       https://doi.org/10.3892/mmr.2020.11611
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Autophagy and the ubiquitin proteasome system (UPS) are two major protein degradation pathways involved in brain ischemia. Autophagy can compensate for UPS impairment‑induced cellular dysfunction. HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1 (Huwe1), an E3 ubiquitin ligase, serves critical roles in nervous system plasticity, regeneration and disease. However, the role of Huwe1 in autophagy in brain ischemia/reperfusion (I/R) injury remains unknown. The aim of the present study was to investigate the crosstalk between autophagy and the UPS in brain ischemia. The present study established an oxygen‑glucose deprivation and reperfusion (OGD/R) model in rat primary cortex neurons in vitro. Lentiviral interference was used to silence the expression of Huwe1. An autophagy promoter (rapamycin), an autophagy inhibitor (wortmannin) and a JNK pathway inhibitor (SP600125) were also used in the current study. Cellular autophagy‑related proteins, including Beclin‑1, autophagy related (ATG) 7, ATG5, ATG3 and microtubule associated protein 1 light chain 3 α, and apoptosis‑related proteins, such as P53, cleaved caspase 3, Bax and Bcl2, were detected via western blotting and immunocytochemistry. Neuronal apoptosis was evaluated using a TUNEL assay. The results demonstrated that silencing Huwe1 increased the expression levels of autophagy‑related proteins at 24 h after OGD/R. Treatment with a JNK inhibitor or cotreatment with Huwe1 shRNA significantly increased autophagy. Rapamycin increased apoptosis under OGD/R conditions. However, treatment with Huwe1 shRNA decreased the number of TUNEL‑positive cells at 24 h after OGD/R. Cotreatment with Huwe1 shRNA and wortmannin alleviated neuronal apoptosis under OGD/R conditions compared with cotreatment with DMSO. Collectively, the present results suggested that silencing Huwe1 was accompanied by a compensatory induction of autophagy under OGD/R conditions. Furthermore, the JNK pathway may be a key mediator of the interaction between Huwe1 and autophagy in response to UPS impairment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Dikic I: Proteasomal and autophagic degradation systems. Annu Rev Biochem. 86:193–224. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Ardley HC and Robinson PA: E3 ubiquitin ligases. Essays Biochem. 41:15–30. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Finley D: Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 78:477–513. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Zaffagnini G and Martens S: Mechanisms of selective autophagy. J Mol Biol. 428:1714–1724. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Martens S and Behrends C: Molecular mechanisms of selective autophagy. J Mol Biol. 432:1–2. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Schreiber A and Peter M: Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim Biophys Acta. 1843:163–181. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Ji CH and Kwon YT: Crosstalk and interplay between the ubiquitin-proteasome system and autophagy. Mol Cells. 40:441–449. 2017.PubMed/NCBI

8 

Bao X, Ren T, Huang Y, Ren C, Yang K, Zhang H and Guo W: Bortezomib induces apoptosis and suppresses cell growth and metastasis by inactivation of Stat3 signaling in chondrosarcoma. Int J Oncol. 50:477–486. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Lagunas-Martinez A, Garcia-Villa E, Arellano-Gaytán M, Contreras-Ochoa CO, Dimas-González J, López-Arellano ME, Madrid-Marina V and Gariglio P: MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes. Apoptosis. 22:27–40. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Kwon YT and Ciechanover A: The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci. 42:873–886. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Nedelsky NB, Todd PK and Taylor JP: Autophagy and the ubiquitin-proteasome system: Collaborators in neuroprotection. Biochim Biophys Acta. 1782:691–699. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Fan T, Huang Z, Chen L, Wang W, Zhang B, Xu Y, Pan S, Mao Z, Hu H and Geng Q: Associations between autophagy, the ubiquitin-proteasome system and endoplasmic reticulum stress in hypoxia-deoxygenation or ischemia-reperfusion. Eur J Pharmacol. 791:157–167. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Nam T, Han JH, Devkota S and Lee HW: Emerging paradigm of crosstalk between autophagy and the ubiquitin-proteasome system. Mol Cells. 40:897–905. 2017.PubMed/NCBI

14 

Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, Ebner M, Peterbauer T, Sztacho M, Trapannone R, Tarafder AK, et al: p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 37:e983082018. View Article : Google Scholar : PubMed/NCBI

15 

French ME, Klosowiak JL, Aslanian A, Reed SI, Yates JR III and Hunter T: Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. J Biol Chem. 292:10398–10413. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Zhao X, D'Arca D, Lim WK, Brahmachary M, Carro MS, Ludwig T, Cardo CC, Guillemot F, Aldape K, Califano A, et al: The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev Cell. 17:210–221. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F, Iavarone A and Lasorella A: The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol. 10:643–653. 2008. View Article : Google Scholar : PubMed/NCBI

18 

The MULE/HUWE1 E3 ubiquitin ligase is a tumor suppressor. Cancer Discov. 3:OF322013.PubMed/NCBI

19 

Zhou J, Liu Q, Mao M and Tong Y: Huwe1 as a therapeutic target for neural injury. Genet Mol Res. 13:4320–4325. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Li Y, Luo Y, Luo T, Lu B, Wang C, Zhang Y, Piao M, Feng C and Ge P: Trehalose inhibits protein aggregation caused by transient ischemic insults through preservation of proteasome activity, not via induction of autophagy. Mol Neurobiol. 54:6857–6869. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Min JW, Lü L, Freeling JL, Martin DS and Wang H: USP14 inhibitor attenuates cerebral ischemia/reperfusion-induced neuronal injury in mice. J Neurochem. 140:826–833. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Baptista MS, Duarte CB and Maciel P: Role of the ubiquitin-proteasome system in nervous system function and disease: Using C. elegans as a dissecting tool. Cell Mol Life Sci. 69:2691–2715. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Eltzschig HK and Eckle T: Ischemia and reperfusion-from mechanism to translation. Nat Med. 17:1391–1401. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Wang P, Shao BZ, Deng Z, Chen S, Yue Z and Miao CY: Autophagy in ischemic stroke. Prog Neurobiol. 163-164:98–117. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Rami A and Kögel D: Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? Autophagy. 4:422–426. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Wolf MS, Bayir H, Kochanek PM and Clark RSB: The role of autophagy in acute brain injury: A state of flux? Neurobiol Dis. 122:9–15. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Sciarretta S, Hariharan N, Monden Y, Zablocki D and Sadoshima J: Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol. 32:275–281. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Yan W, Zhang H, Bai X, Lu Y, Dong H and Xiong L: Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res. 1402:109–121. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Jiang WW, Huang BS, Han Y, Deng LH and Wu LX: Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats. FEBS Open Bio. 7:1686–1695. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Su J, Zhang T, Wang K, Zhu T and Li X: Autophagy activation contributes to the neuroprotection of remote ischemic perconditioning against focal cerebral ischemia in rats. Neurochem Res. 39:2068–2077. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Qi Z, Dong W, Shi W, Wang R, Zhang C, Zhao Y, Ji X, Liu KJ and Luo Y: Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke. Transl Stroke Res. 6:198–206. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Wei K, Wang P and Miao CY: A double-edged sword with therapeutic potential: An updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther. 18:879–886. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L and Zhang Y: Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One. 7:e460922012. View Article : Google Scholar : PubMed/NCBI

34 

Xu SY, Wu YM, Ji Z, Gao XY and Pan SY: A modified technique for culturing primary fetal rat cortical neurons. J Biomed Biotechnol. 2012:8039302012. View Article : Google Scholar : PubMed/NCBI

35 

Fath T, Ke YD, Gunning P, Götz J and Ittner LM: Primary support cultures of hippocampal and substantia nigra neurons. Nat Protoc. 4:78–85. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Liu Z, Chen Z, Wang J, Zhang M, Li Z, Wang S, Dong B, Zhang C, Gao J and Shen L: Mouse avatar models of esophageal squamous cell carcinoma proved the potential for EGFR-TKI afatinib and uncovered Src family kinases involved in acquired resistance. J Hematol Oncol. 11:1092018. View Article : Google Scholar : PubMed/NCBI

37 

Gertz K, Kronenberg G, Kälin RE, Baldinger T, Werner C, Balkaya M, Eom GD, Hellmann-Regen J, Kröber J, Miller KR, et al: Essential role of interleukin-6 in post-stroke angiogenesis. Brain. 135:1964–1980. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Jones SM, Novak AE and Elliott JP: Primary culture of cellular subtypes from postnatal mouse for in vitro studies of oxygen glucose deprivation. J Neurosci Methods. 199:241–248. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Ding B and Kilpatrick DL: Lentiviral vector production, titration, and transduction of primary neurons. Methods Mol Biol. 1018:119–131. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Reich A, Spering C, Gertz K, Harms C, Gerhardt E, Kronenberg G, Nave KA, Schwab M, Tauber SC, Drinkut A, et al: Fas/CD95 regulatory protein Faim2 is neuroprotective after transient brain ischemia. J Neurosci. 31:225–233. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Nagai N, Yamamoto S, Tsuboi T, Ihara H, Urano T, Takada Y, Terakawa S and Takada A: Tissue-type plasminogen activator is involved in the process of neuronal death induced by oxygen-glucose deprivation in culture. J Cereb Blood Flow Metab. 21:631–634. 2001. View Article : Google Scholar : PubMed/NCBI

42 

He G, Xu W, Tong L, Li S, Su S, Tan X and Li C: Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury. Apoptosis. 21:390–403. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Zhong Q, Gao W, Du F and Wang X: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 121:1085–1095. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Xu F, Gu JH and Qin ZH: Neuronal autophagy in cerebral ischemia. Neurosci Bull. 28:658–666. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Hale AN, Ledbetter DJ, Gawriluk TR and Rucker EB III: Autophagy: Regulation and role in development. Autophagy. 9:951–972. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Li W, Zhu J, Dou J, She H, Tao K, Xu H, Yang Q and Mao Z: Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun. 8:17632017. View Article : Google Scholar : PubMed/NCBI

47 

Bejarano E and Cuervo AM: Chaperone-mediated autophagy. Proc Am Thorac Soc. 7:29–39. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Penke B, Bogár F, Crul T, Sántha M, Tóth ME and Vígh L: Heat shock proteins and autophagy pathways in neuroprotection: From molecular bases to pharmacological interventions. Int J Mol Sci. 19:3252018. View Article : Google Scholar

49 

Zhang Q, Bian H, Guo L and Zhu H: Pharmacologic preconditioning with berberine attenuating ischemia-induced apoptosis and promoting autophagy in neuron. Am J Transl Res. 8:1197–1207. 2016.PubMed/NCBI

50 

Lalaoui N, Lindqvist LM, Sandow JJ and Ekert PG: The molecular relationships between apoptosis, autophagy and necroptosis. Semin Cell Dev Biol. 39:63–69. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Thorburn A: Apoptosis and autophagy: Regulatory connections between two supposedly different processes. Apoptosis. 13:1–9. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Delgado ME, Dyck L, Laussmann MA and Rehm M: Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways. Cell Death Dis. 5:e10112014. View Article : Google Scholar : PubMed/NCBI

53 

Mariño G, Niso-Santano M, Baehrecke EH and Kroemer G: Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Shi R, Weng J, Zhao L, Li XM, Gao TM and Kong J: Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther. 18:250–260. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Grasselli G and Strata P: Structural plasticity of climbing fibers and the growth-associated protein GAP-43. Front Neural Circuits. 7:252013. View Article : Google Scholar : PubMed/NCBI

56 

Lamb CA, Yoshimori T and Tooze SA: The autophagosome: Origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 14:759–774. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Chen K, Cheng HH and Zhou RJ: Molecular mechanisms and functions of autophagy and the ubiquitin-proteasome pathway. Yi Chuan. 34:5–18. 2012.(In Chinese). View Article : Google Scholar : PubMed/NCBI

58 

Hu Z, Yang B, Mo X and Xiao H: Mechanism and regulation of autophagy and its role in neuronal diseases. Mol Neurobiol. 52:1190–1209. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Guo F, He XB, Li S and Le W: A central role for phosphorylated p38α in linking proteasome inhibition-induced apoptosis and autophagy. Mol Neurobiol. 54:7597–7609. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Liu C, Gao Y, Barrett J and Hu B: Autophagy and protein aggregation after brain ischemia. J Neurochem. 115:68–78. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, et al: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 4:151–175. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Thornton C, Leaw B, Mallard C, Nair S, Jinnai M and Hagberg H: Cell death in the developing brain after hypoxia-ischemia. Front Cell Neurosci. 11:2482017. View Article : Google Scholar : PubMed/NCBI

63 

Nozaki K, Nishimura M and Hashimoto N: Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol. 23:1–19. 2001. View Article : Google Scholar : PubMed/NCBI

64 

Wu D and Cederbaum AI: Inhibition of autophagy promotes CYP2E1-dependent toxicity in HepG2 cells via elevated oxidative stress, mitochondria dysfunction and activation of p38 and JNK MAPK. Redox Biol. 1:552–565. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Jia G, Cheng G, Gangahar DM and Agrawal DK: Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol Cell Biol. 84:448–454. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Haberzettl P and Hill BG: Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol. 1:56–64. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Xu P, Das M, Reilly J and Davis RJ: JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 25:310–322. 2011. View Article : Google Scholar : PubMed/NCBI

68 

He GQ, Xu WM, Liao HJ, Jiang C, Li CQ and Zhang W: Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion. Neural Regen Res. 14:1977–1985. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K and Qin ZH: Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 4:762–769. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Kost A, Kasprowska D, Labuzek K, Wiaderkiewicz R and Gabryel B: Autophagy in brain ischemia. Postepy Hig Med Dosw (Online). 65:524–533. 2011.(In Polish). View Article : Google Scholar : PubMed/NCBI

71 

Balduini W, Carloni S and Buonocore G: Autophagy in hypoxia-ischemia induced brain injury. J Matern Fetal Neonatal Med. 25 (Suppl 1):S30–S34. 2012. View Article : Google Scholar

72 

Lu Q, Harris VA, Kumar S, Mansour HM and Black SM: Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress. Redox Biol. 6:516–523. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Qiao L, Fu J, Xue X, Shi Y, Yao L, Huang W, Li J, Zhang D, Liu N, Tong X, et al: Neuronalinjury and roles of apoptosis and autophagy in a neonatal rat model of hypoxia-ischemia-induced periventricular leukomalacia. Mol Med Rep. 17:5940–5949. 2018.PubMed/NCBI

74 

Maiuri MC, Zalckvar E, Kimchi A and Kroemer G: Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar : PubMed/NCBI

75 

He GQ, Xu WM, Li JF, Li SS, Liu B, Tan XD and Li CQ: Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells. Mol Brain. 8:882015. View Article : Google Scholar : PubMed/NCBI

76 

Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Ischemia/reperfusion. Compr Physiol. 7:113–170. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
He GQ, Chen Y, Liao HJ, Xu WM, Zhang W and He GL: Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury . Mol Med Rep 22: 5083-5094, 2020.
APA
He, G., Chen, Y., Liao, H., Xu, W., Zhang, W., & He, G. (2020). Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury . Molecular Medicine Reports, 22, 5083-5094. https://doi.org/10.3892/mmr.2020.11611
MLA
He, G., Chen, Y., Liao, H., Xu, W., Zhang, W., He, G."Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury ". Molecular Medicine Reports 22.6 (2020): 5083-5094.
Chicago
He, G., Chen, Y., Liao, H., Xu, W., Zhang, W., He, G."Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury ". Molecular Medicine Reports 22, no. 6 (2020): 5083-5094. https://doi.org/10.3892/mmr.2020.11611
Copy and paste a formatted citation
x
Spandidos Publications style
He GQ, Chen Y, Liao HJ, Xu WM, Zhang W and He GL: Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury . Mol Med Rep 22: 5083-5094, 2020.
APA
He, G., Chen, Y., Liao, H., Xu, W., Zhang, W., & He, G. (2020). Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury . Molecular Medicine Reports, 22, 5083-5094. https://doi.org/10.3892/mmr.2020.11611
MLA
He, G., Chen, Y., Liao, H., Xu, W., Zhang, W., He, G."Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury ". Molecular Medicine Reports 22.6 (2020): 5083-5094.
Chicago
He, G., Chen, Y., Liao, H., Xu, W., Zhang, W., He, G."Associations between Huwe1 and autophagy in rat cerebral neuron oxygen‑glucose deprivation and reperfusion injury ". Molecular Medicine Reports 22, no. 6 (2020): 5083-5094. https://doi.org/10.3892/mmr.2020.11611
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team