Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2020 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 22 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review)

  • Authors:
    • Nnenna Elebo
    • Pascaline Fru
    • Jones Omoshoro‑Jones
    • Geoffrey Patrick Candy
    • Ekene Emmanuel Nweke
  • View Affiliations / Copyright

    Affiliations: Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
    Copyright: © Elebo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4981-4991
    |
    Published online on: October 21, 2020
       https://doi.org/10.3892/mmr.2020.11622
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pancreatic cancer is an aggressive cancer, making it a leading cause of cancer‑related deaths. It is characteristically resistant to treatment, which results in low survival rates. In pancreatic cancer, immune cells undergo transitions that can inhibit or promote their functions, enabling treatment resistance and tumor progression. These transitions can be fostered by metabolic pathways that are dysregulated during tumorigenesis. The present review aimed to summarize the different immune cells and their roles in pancreatic cancer. The review also highlighted the individual metabolic pathways in pancreatic cancer and how they enable transitions in immune cells. Finally, the potential of targeting metabolic pathways for effective therapeutic strategies was considered.
View Figures

Figure 1

Figure 2

View References

1 

Rawla P, Sunkara T and Gaduputi V: Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Ryan DP, Hong TS and Bardeesy N: Pancreatic adenocarcinoma. N Engl J Med. 371:1039–1049. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Polireddy K and Chen Q: Cancer of the pancreas: Molecular pathways and current advancement in treatment. J Cancer. 7:1497–1514. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, et al: Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 467:1114–1147. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Sarantis P, Koustas E, Papadimitropoulou A, Papavassiliou AG and Karamouzis MV: Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World J Gastrointest Oncol. 12:173–181. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Ghesquière B, Wong BW, Kuchnio A and Carmeliet P: Metabolism of stromal and immune cells in health and disease. Nature. 511:167–176. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Hato T and Dagher PC: How the innate immune system senses trouble and causes trouble. Clin J Am Soc Nephrol. 10:1459–1469. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Inman KS, Francis AA and Murray NR: Complex role for the immune system in initiation and progression of pancreatic cancer. World J Gastroenterol. 20:11160–11181. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Pearce EL and Pearce EJ: Metabolic pathways in immune cell activation and quiescence. Immunity. 38:633–643. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Odegaard JI and Chawla A: The immune system as a sensor of the metabolic state. Immunity. 38:644–654. 2013. View Article : Google Scholar : PubMed/NCBI

11 

von Ahrens D, Bhagat TD, Nagrath D, Maitra A and Verma A: The role of stromal cancer-associated fibroblasts in pancreatic cancer. J Hematol Oncol. 10:762017. View Article : Google Scholar : PubMed/NCBI

12 

Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T, Kato K, Kurokawa T, Suzuoki M, Nakakubo Y, et al: CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 28:e26–e31. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Tjomsland V, Sandström P, Spångeus A, Messmer D, Emilsson J, Falkmer U, Falkmer S, Magnusson KE, Borch K and Larsson M: Pancreatic adenocarcinoma exerts systemic effects on the peripheral blood myeloid and plasmacytoid dendritic cells: An indicator of disease severity? BMC Cancer. 10:872010. View Article : Google Scholar : PubMed/NCBI

14 

De Sanctis F, Solito S, Ugel S, Molon B, Bronte V and Marigo I: MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochim Biophys Acta. 1865:35–48. 2016.PubMed/NCBI

15 

Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ and Vonderheide RH: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell. 21:822–835. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Padoan A, Plebani M and Basso D: Inflammation and pancreatic cancer: Focus on metabolism, cytokines, and immunity. Int J Mol Sci. 20:6762019. View Article : Google Scholar

17 

Pergamo M and Miller G: Myeloid-derived suppressor cells and their role in pancreatic cancer. Cancer Gene Therapy. 24:100–105. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Gabitass RF, Annels NE, Stocken DD, Pandha HA and Middleton GW: Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother. 60:1419–1430. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, et al: Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol. 184:1200–1209. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, Sakoda M, Ueno S, Natsugoe S and Takao S: Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res. 167:e211–e219. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Mielgo A and Schmid MC: Impact of tumour associated macrophages in pancreatic cancer. BMB Rep. 46:131–138. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Esposito I, Menicagli M, Funel N, Bergmann F, Boggi U, Mosca F, Bevilacqua G and Campani D: Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol. 57:630–636. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Klöppel G, Yoshimura A, Reindl W, Sipos B, Akira S, et al: Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 19:456–469. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Kim JS, Park YS, Kim JY, Kim YG, Kim YJ, Lee HK, Kim HS, Hong JT, Kim Y and Han SB: Inhibition of human pancreatic tumor growth by cytokine-induced killer cells in nude mouse xenograft model. Immune Netw. 12:247–252. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Liu L, Zhao G, Wu W, Rong Y, Jin D, Wang D, Lou W and Qin X: Low intratumoral regulatory T cells and high peritumoral CD8(+) T cells relate to long-term survival in patients with pancreatic ductal adenocarcinoma after pancreatectomy. Cancer Immunol Immunother. 65:73–82. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Kurts C: Th17 cells: A third subset of CD4+ T effector cells involved in organ-specific autoimmunity. Nephrol Dial Transplant. 23:816–819. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, Sohn ASW, Mukhopadhyay S, Lin EY, Parker SJ, et al: Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 581:100–105. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, et al: Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 16:880–886. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, Zambirinis CP, Fallon NC, Rehman A, Pylayeva-Gupta Y, et al: MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 209:1671–1687. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y and Hiraoka N: Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 108:914–923. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Hiraoka N, Onozato K, Kosuge T and Hirohashi S: Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 12:5423–5434. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Knutson KL and Disis ML: Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 54:721–728. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Wörmann SM, Diakopoulos KN, Lesina M and Algül H: The immune network in pancreatic cancer development and progression. Oncogene. 33:29562013. View Article : Google Scholar : PubMed/NCBI

34 

Zou W and Restifo NP: TH17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 10:248–256. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Gnerlich JL, Mitchem JB, Weir JS, Sankpal NV, Kashiwagi H, Belt BA, Porembka MR, Herndon JM, Eberlein TJ, Goedegebuure P and Linehan DC: Induction of Th17 cells in the tumor microenvironment improves survival in a murine model of pancreatic cancer. J Immunol. 185:4063–4071. 2010. View Article : Google Scholar : PubMed/NCBI

36 

He Q, Luo X, Huang Y and Sheikh MS: Apo2L/TRAIL differentially modulates the apoptotic effects of sulindac and a COX-2 selective non-steroidal anti-inflammatory agent in Bax-deficient cells. Oncogene. 21:6032–6040. 2002. View Article : Google Scholar : PubMed/NCBI

37 

He S, Fei M, Wu Y, Zheng D, Wan D, Wang L and Li D: Distribution and clinical significance of Th17 cells in the tumor microenvironment and peripheral blood of pancreatic cancer patients. Int J Mol Sci. 12:7424–7437. 2011. View Article : Google Scholar : PubMed/NCBI

38 

De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Carlo VD, Doglioni C and Protti MP: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 208:469–478. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Bellone G, Turletti A, Artusio E, Mareschi K, Carbone A, Tibaudi D, Robecchi A, Emanuelli G and Rodeck U: Tumor-associated transforming growth factor-β and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol. 155:537–547. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, Anderson SM, Abel ED, Chen BJ, Hale LP and Rathmell JC: The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20:61–72. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Cham CM, Driessens G, O'Keefe JP and Gajewski TF: Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol. 38:2438–2450. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Sakaguchi S, Miyara M, Costantino CM and Hafler DA: FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 10:490–500. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Walker LS and Sansom DM: The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 11:852–863. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Yamamoto T, Yanagimoto H, Satoi S, Toyokawa H, Hirooka S, Yamaki S, Yui R, Yamao J, Kim S and Kwon AH: Circulating CD4+CD25+ regulatory T cells in patients with pancreatic cancer. Pancreas. 41:409–415. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Chang DZ, Ma Y, Ji B, Wang H, Deng D, Liu Y, Abbruzzese JL, Liu YJ, Logsdon CD and Hwu P: Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res. 17:7015–7023. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Ito T, Amakawa R, Inaba M, Ikehara S, Inaba K and Fukuhara S: Differential regulation of human blood dendritic cell subsets by IFNs. J Immunol. 166:2961–2969. 2001. View Article : Google Scholar : PubMed/NCBI

47 

Duan X, Deng L, Chen X, Lu Y, Zhang Q, Zhang K, Hu Y, Zeng J and Sun W: Clinical significance of the immunostimulatory MHC class I chain-related molecule A and NKG2D receptor on NK cells in pancreatic cancer. Med Oncol. 28:466–474. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Cai SW, Yang SZ, Gao J, Pan K, Chen JY, Wang YL, Wei LX and Dong JH: Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery. 149:576–584. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, Melstrom LG, Dangi-Garimella S, Wang E, Munshi HG, Khazaie K and Bentrem DJ: Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res. 16:2257–2265. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Feig C, Gopinathan A, Neesse A, Chan DS, Cook N and Tuveson DA: The pancreas cancer microenvironment. Clin Cancer Res. 18:4266–4276. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Stopa BK, Kusiak AA, Szopa DM, Ferdek EP and Jakubowska AM: Pancreatic cancer and its microenvironment-recent advances and current controversies. Int J Mol Sci. 21:32182020. View Article : Google Scholar

52 

Li KY, Yuan JL, Trafton D, Wang JX, Niu N, Yuan CH, Liu XB and Zheng L: Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis Transl Med. 6:6–17. 2020.PubMed/NCBI

53 

Li X, Wenes M, Romero P, Huang SC, Fendt SM and Ho PC: Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 16:425–441. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Yao W, Maitra A and Ying H: Recent insights into the biology of pancreatic cancer. EBioMedicine. 53:1026552020. View Article : Google Scholar : PubMed/NCBI

55 

O'Neill LAJ, Kishton RJ and Rathmell J: A guide to immunometabolism for immunologists. Nat Rev Immunol. 16:553–565. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Palmer CS, Ostrowski M, Balderson B, Christian N and Crowe SM: Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 6:12015. View Article : Google Scholar : PubMed/NCBI

57 

Chung JC, Oh MJ, Choi SH and Bae CD: Proteomic analysis to identify biomarker proteins in pancreatic ductal adenocarcinoma. ANZ J Surg. 78:245–251. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Yoon DY, Buchler P, Saarikoski ST, Hines OJ, Reber HA and Hankinson O: Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem Biophys Res Commun. 288:882–886. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Natsuizaka M, Ozasa M, Darmanin S, Miyamoto M, Kondo S, Kamada S, Shindoh M, Higashino F, Suhara W, Koide H, et al: Synergistic up-regulation of Hexokinase-2, glucose transporters and angiogenic factors in pancreatic cancer cells by glucose deprivation and hypoxia. Exp Cell Res. 313:3337–3348. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Cameron ME, Yakovenko A and Trevino JG: Glucose and lactate transport in pancreatic cancer: Glycolytic metabolism revisited. J Oncol. 2018:62148382018. View Article : Google Scholar : PubMed/NCBI

61 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

63 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Choi SYC, Collins CC, Gout PW and Wang Y: Cancer-generated lactic acid: A regulatory, immunosuppressive metabolite? J Pathol. 230:350–355. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Mills EL and O'Neill LA: Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 46:13–21. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Rodríguez-Prados JC, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, Cascante M and Boscá L: Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. J Immunol. 185:605–614. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Li Y and Zhu B: Editorial: Metabolism of cancer cells and immune cells in the tumor microenvironment. Front Immunol. 9:30802018. View Article : Google Scholar : PubMed/NCBI

69 

Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG and Rathmell JC: Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 186:3299–3303. 2011. View Article : Google Scholar : PubMed/NCBI

70 

MacIver NJ, Michalek RD and Rathmell JC: Metabolic regulation of T lymphocytes. Annu Rev Immunol. 31:259–283. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Waickman AT and Powell JD: mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev. 249:43–58. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Mao Z and Zhang W: Role of mTOR in glucose and lipid metabolism. Int J Mol Sci. 19:20432018. View Article : Google Scholar

73 

Ersahin T, Tuncbag N and Cetin-Atalay R: The PI3K/AKT/mTOR interactive pathway. Mol Biosyst. 11:1946–1954. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF and Chiles TC: Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: Role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood. 107:4458–4465. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MMB, López-Villegas EO and Sánchez-García FJ: Metabolic requirements for neutrophil extracellular traps formation. Immunology. 145:213–224. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Dallal RM, Christakos P, Lee K, Egawa S, Son YI and Lotze MT: Paucity of dendritic cells in pancreatic cancer. Surgery. 131:135–138. 2002. View Article : Google Scholar : PubMed/NCBI

77 

Banchereau J and Steinman RM: Dendritic cells and the control of immunity. Nature. 392:245–252. 1998. View Article : Google Scholar : PubMed/NCBI

78 

Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG and Pearce EJ: Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 115:4742–4749. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJ, et al: TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat Immunol. 15:323–332. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Martínez-Reyes I and Chandel NS: Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 11:1022020. View Article : Google Scholar : PubMed/NCBI

81 

Reyes-Castellanos G, Masoud R and Carrier A: Mitochondrial metabolism in PDAC: From better knowledge to new targeting strategies. Biomedicines. 8:2702020. View Article : Google Scholar

82 

Laurenti G and Tennant DA: Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): Three players for one phenotype in cancer? Biochem Soc Trans. 44:1111–1116. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Waitkus MS, Diplas BH and Yan H: Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 34:186–195. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Nogueira V and Hay N: Molecular pathways: Reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 19:4309–4314. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Schlichtholz B, Turyn J, Goyke E, Biernacki M, Jaskiewicz K, Sledzinski Z and Swierczynski J: Enhanced citrate synthase activity in human pancreatic cancer. Pancreas. 30:99–104. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Swierczynski J, Hebanowska A and Sledzinski T: Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol. 20:2279–2303. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Halabe Bucay A: Hypothesis proved...citric acid (citrate) does improve cancer: A case of a patient suffering from medullary thyroid cancer. Med Hypotheses. 73:2712009. View Article : Google Scholar : PubMed/NCBI

88 

Amedei A, Niccolai E and Prisco D: Pancreatic cancer: Role of the immune system in cancer progression and vaccine-based immunotherapy. Hum Vaccin Immunother. 10:3354–3368. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Liu H, Huang D, McArthur DL, Boros LG, Nissen N and Heaney AP: Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 70:6368–6376. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, King RJ, Abrego J, Goode GD, Dasgupta A, et al: MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 32:71–87.e7. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, et al: The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15:813–826. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR, Domingo-Fernandez R, Johnston DG, et al: Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21:65–80. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Fernandez-Zapico M, Kim DW, Philip P, Vandell A, Eckard J, Korn R, Del Priore G and Simeone D: Abstract B15: Therapeutic potential of targeting amino acid metabolism in pancreatic cancer. Cancer Res. 79:B152019.

95 

Altan B, Kaira K, Watanabe A, Kubo N, Bao P, Dolgormaa G, Bilguun EO, Araki K, Kanai Y, Yokobori T, et al: Relationship between LAT1 expression and resistance to chemotherapy in pancreatic ductal adenocarcinoma. Cancer Chemother Pharmacol. 81:141–153. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, et al: Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 497:633–637. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Ananieva EA and Wilkinson AC: Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care. 21:64–70. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, et al: Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 5:e102502016. View Article : Google Scholar : PubMed/NCBI

99 

Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, Vander Heiden MG, Miller G, Drebin JA, Bar-Sagi D, et al: Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75:544–553. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et al: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Singer K, Cheng WC, Kreutz M, Ho PC and Siska PJ: Immunometabolism in cancer at a glance. Dis Models Mech. 11:dmm0342722018. View Article : Google Scholar

102 

Sinclair LV, Rolf J, Emslie E, Shi Y-B, Taylor PM and Cantrell DA: Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. 14:500–508. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frédérick R, De Plaen E, Uyttenhove C, Wouters J, Masereel B and Van den Eynde BJ: Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA. 109:24972012. View Article : Google Scholar : PubMed/NCBI

104 

Cluntun AA, Lukey MJ, Cerione RA and Locasale JW: Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Nzeako UC and Gores GJ: Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors. Cancer. 94:1903–1904. 2002. View Article : Google Scholar : PubMed/NCBI

106 

Asano T, Shoda J, Ueda T, Kawamoto T, Todoroki T, Shimonishi M, Tanabe T, Sugimoto Y, Ichikawa A, Mutoh M, et al: Expressions of cyclooxygenase-2 and prostaglandin E-receptors in carcinoma of the gallbladder: Crucial role of arachidonate metabolism in tumor growth and progression. Clin Cancer Res. 8:1157–1167. 2002.PubMed/NCBI

107 

Molina MA, Sitja-Arnau M, Lemoine MG, Frazier ML and Sinicrope FA: Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines. Cancer Res. 59:4356–4362. 1999.PubMed/NCBI

108 

DuBois RN, Awad J, Morrow J, Roberts LJ II and Bishop PR: Regulation of eicosanoid production and mitogenesis in rat intestinal epithelial cells by transforming growth factor-alpha and phorbol ester. J Clin Invest. 93:493–498. 1994. View Article : Google Scholar : PubMed/NCBI

109 

Sato T, Nakajima H, Fujio K and Mori Y: Enhancement of prostaglandin E2 production by epidermal growth factor requires the coordinate activation of cytosolic phospholipase A2 and cyclooxygenase 2 in human squamous carcinoma A431 cells. Prostaglandins. 53:355–369. 1997. View Article : Google Scholar : PubMed/NCBI

110 

O'Sullivan D, van der Windt GJW, Huang SC, Curtis JD, Chang CH, Buck MD, Qiu J, Smith AM, Lam WY, DiPlato LM, et al: Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 41:75–88. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Zhang A, Sun H, Wang P, Han Y and Wang X: Modern analytical techniques in metabolomics analysis. Analyst. 137:293–300. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA and Thompson CB: ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 8:311–321. 2005. View Article : Google Scholar : PubMed/NCBI

113 

Tadros S, Shukla SK, King RJ, Gunda V, Vernucci E, Abrego J, Chaika NV, Yu F, Lazenby AJ, Berim L, et al: De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res. 77:5503–5517. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Walter K, Hong SM, Nyhan S, Canto M, Fedarko N, Klein A, Griffith M, Omura N, Medghalchi S, Kuhajda F and Goggins M: Serum fatty acid synthase as a marker of pancreatic neoplasia. Cancer Epidemiol Biomarkers Prev. 18:2380–2385. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Coleman RA, Lewin TM, Van Horn CG and Gonzalez-Baró MR: Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr. 132:2123–2126. 2002. View Article : Google Scholar : PubMed/NCBI

116 

Macášek J, Vecka M, Žák A, Urbánek M, Krechler T, Petruželka L, Staňková B and Zeman M: Plasma fatty acid composition in patients with pancreatic cancer: Correlations to clinical parameters. Nutr Cancer. 64:946–955. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Chung YT, Matkowskyj KA, Li H, Bai H, Zhang W, Tsao MS, Liao J and Yang GY: Overexpression and oncogenic function of aldo-keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod Pathol. 25:758–766. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, Lac S, Borge L, Roques J, Gayet O, et al: Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci USA. 112:2473–2478. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Alistar AT, Morris B, Harrison L, Bickenbach K, Starker L, Ginder N, McIlwain L, Luther S, Pardee TS and Alpert J: A single-arm, open-label, phase I study of CPI-613 (Devimistat) in combination with gemcitabine and nab-paclitaxel for patients with locally advanced or metastatic pancreatic adenocarcinoma. J Clin Oncol. 38:4635. 2020. View Article : Google Scholar

120 

Philip PA, Buyse ME, Alistar AT, Rocha Lima CMSP, Luther S, Pardee TS and Van Cutsem E: Avenger 500, a phase III open-label randomized trial of the combination of CPI-613 with modified FOLFIRINOX (mFFX) versus FOLFIRINOX (FFX) in patients with metastatic adenocarcinoma of the pancreas. J Clin Oncol. 37:TPS4792019. View Article : Google Scholar

121 

O'Donnell JS, Massi D, Teng MWL and Mandala M: PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol. 48:91–103. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Jin J and Zhao Q: Emerging role of mTOR in tumor immune contexture: Impact on chemokine-related immune cells migration. Theranostics. 10:6231–6244. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Allard B, Longhi MS, Robson SC and Stagg J: The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 276:121–144. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Arina A and Bronte V: Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells. Curr Opin Immunol. 33:120–125. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al: LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al: Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 204:1257–1265. 2007. View Article : Google Scholar : PubMed/NCBI

127 

Hiraoka N, Toue S, Okamoto C, Kikuchi S, Ino Y, Yamazaki-Itoh R, Esaki M, Nara S, Kishi Y, Imaizumi A, et al: Tissue amino acid profiles are characteristic of tumor type, malignant phenotype, and tumor progression in pancreatic tumors. Sci Rep. 9:98162019. View Article : Google Scholar : PubMed/NCBI

128 

Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, et al: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 3:1236–1247. 2015. View Article : Google Scholar : PubMed/NCBI

129 

Kalinski P: Regulation of immune responses by prostaglandin E2. J Immunol. 188:21–28. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Korangath P, Teo WW, Sadik H, Han L, Mori N, Huijts CM, Wildes F, Bharti S, Zhang Z, Santa-Maria CA, et al: Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin Cancer Res. 21:3263–3273. 2015. View Article : Google Scholar : PubMed/NCBI

131 

Leone RD and Emens LA: Targeting adenosine for cancer immunotherapy. J Immunother Cancer. 6:572018. View Article : Google Scholar : PubMed/NCBI

132 

Li M, Tan SY and Wang XF: Paeonol exerts an anticancer effect on human colorectal cancer cells through inhibition of PGE2 synthesis and COX-2 expression. Oncol Rep. 32:2845–2853. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Liu WR, Tian MX, Yang LX, Lin YL, Jin L, Ding ZB, Shen YH, Peng YF, Gao DM, Zhou J, et al: PKM2 promotes metastasis by recruiting myeloid-derived suppressor cells and indicates poor prognosis for hepatocellular carcinoma. Oncotarget. 6:846–861. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Mohammad GH, Olde Damink SW, Malago M, Dhar DK and Pereira SP: Pyruvate kinase M2 and lactate dehydrogenase A are overexpressed in pancreatic cancer and correlate with poor outcome. PLoS One. 11:e01516352016. View Article : Google Scholar : PubMed/NCBI

135 

Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, et al: PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 6:66922015. View Article : Google Scholar : PubMed/NCBI

136 

Yu CP, Fu SF, Chen X, Ye J, Ye Y, Kong LD and Zhu Z: The clinicopathological and prognostic significance of IDO1 expression in human solid tumors: evidence from a systematic review and meta-analysis. Cell Physiol Biochem. 49:134–143. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Biswas SK: Metabolic reprogramming of immune cells in cancer progression. Immunity. 43:435–449. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Elebo N, Fru P, Omoshoro‑Jones J, Patrick Candy G and Nweke EE: Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Mol Med Rep 22: 4981-4991, 2020.
APA
Elebo, N., Fru, P., Omoshoro‑Jones, J., Patrick Candy, G., & Nweke, E.E. (2020). Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Molecular Medicine Reports, 22, 4981-4991. https://doi.org/10.3892/mmr.2020.11622
MLA
Elebo, N., Fru, P., Omoshoro‑Jones, J., Patrick Candy, G., Nweke, E. E."Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review)". Molecular Medicine Reports 22.6 (2020): 4981-4991.
Chicago
Elebo, N., Fru, P., Omoshoro‑Jones, J., Patrick Candy, G., Nweke, E. E."Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review)". Molecular Medicine Reports 22, no. 6 (2020): 4981-4991. https://doi.org/10.3892/mmr.2020.11622
Copy and paste a formatted citation
x
Spandidos Publications style
Elebo N, Fru P, Omoshoro‑Jones J, Patrick Candy G and Nweke EE: Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Mol Med Rep 22: 4981-4991, 2020.
APA
Elebo, N., Fru, P., Omoshoro‑Jones, J., Patrick Candy, G., & Nweke, E.E. (2020). Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Molecular Medicine Reports, 22, 4981-4991. https://doi.org/10.3892/mmr.2020.11622
MLA
Elebo, N., Fru, P., Omoshoro‑Jones, J., Patrick Candy, G., Nweke, E. E."Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review)". Molecular Medicine Reports 22.6 (2020): 4981-4991.
Chicago
Elebo, N., Fru, P., Omoshoro‑Jones, J., Patrick Candy, G., Nweke, E. E."Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review)". Molecular Medicine Reports 22, no. 6 (2020): 4981-4991. https://doi.org/10.3892/mmr.2020.11622
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team