You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Lagunas-Rangel FA: Circular RNAs and their participation in stemness of cancer. Med Oncol. 37:422020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Cui G, Yu B, Sun M and Yang H: Cancer stem cell niche in colorectal cancer and targeted therapies. Curr Pharm Des. 26:1979–1993. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sureshbabu SK, Chaukar D and Chiplunkar SV: Hypoxia regulates the differentiation and anti-tumor effector functions of γδT cells in oral cancer. Clin Exp Immunol. 201:40–57. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 113:E2047–E2056. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xu QH, Xiao Y, Li XQ, Fan L, Zhou CC, Cheng L, Jiang ZD and Wang GH: Resveratrol Counteracts Hypoxia-Induced Gastric Cancer Invasion and EMT through Hedgehog Pathway Suppression. Anticancer Agents Med Chem. 20:1105–1114. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ajduković J: HIF-1 - a big chapter in the cancer tale. Exp Oncol. 38:9–12. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schito L and Semenza GL: Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer. 2:758–770. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Wang L, Ding W, Wang D, Wang X, Luo Q and Zhu L: Ammonia mediates mitochondrial uncoupling and promotes glycolysis via HIF-1 activation in human breast cancer MDA-MB-231 cells. Biochem Biophys Res Commun. 519:153–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Azimi I: The interplay between HIF-1 and calcium signalling in cancer. Int J Biochem Cell Biol. 97:73–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hong M, Shi H, Wang N, Tan HY, Wang Q and Feng Y: Dual effects of Chinese herbal medicines on angiogenesis in cancer and ischemic stroke treatments: Role of HIF-1 network. Front Pharmacol. 10:6962019. View Article : Google Scholar : PubMed/NCBI | |
|
Albadari N, Deng S and Li W: The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov. 14:667–682. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Garner KEL, Hull NJ, Sims AH, Lamb R and Clarke RB: The milk protein alpha-casein suppresses triple negative breast cancer stem cell activity via STAT and HIF-1alpha signalling pathways in breast cancer cells and fibroblasts. J Mammary Gland Biol Neoplasia. 24:245–256. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chan ST, Patel PR, Ransom TR, Henrich CJ, McKee TC, Goey AK, Cook KM, Figg WD, McMahon JB, Schnermann MJ, et al: Structural elucidation and synthesis of eudistidine A: An unusual polycyclic marine alkaloid that blocks interaction of the protein binding domains of p300 and HIF-1α. J Am Chem Soc. 137:5569–5575. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Freedman SJ, Sun ZY, Kung AL, France DS, Wagner G and Eck MJ: Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol. 10:504–512. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J, Baudino TA, Cleveland JL and Brindle PK: Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J. 24:3846–3858. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ and Arora PS: Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate alpha-helix. J Am Chem Soc. 132:941–943. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cai X, Huang Y, Zhang X, Wang S, Zou Z, Wang G, Wang Y and Zhang Z: Cloning, characterization, hypoxia and heat shock response of hypoxia inducible factor-1 (HIF-1) from the small abalone Haliotis diversicolor. Gene. 534:256–264. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hu CJ, Sataur A, Wang L, Chen H and Simon MC: The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell. 18:4528–4542. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Soñanez-Organis JG, Peregrino-Uriarte AB, Gómez-Jiménez S, López-Zavala A, Forman HJ and Yepiz-Plascencia G: Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp Biochem Physiol C Toxicol Pharmacol. 150:395–405. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Soni S and Padwad YS: HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncol. 56:503–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ju UI, Park JW, Park HS, Kim SJ and Chun YS: FBXO11 represses cellular response to hypoxia by destabilizing hypoxia-inducible factor-1α mRNA. Biochem Biophys Res Commun. 464:1008–1015. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mandl M and Depping R: Hypoxia-inducible aryl hydrocarbon receptor nuclear translocator (ARNT) (HIF-1β): Is it a rare exception? Mol Med. 20:215–220. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu Y, Shan W, Yang Y, Jin M, Dai Y, Yang H, Jiao R, Xia Y, Liu Q, Ju L, et al: Reversal of sorafenib resistance in hepatocellular carcinoma: Epigenetically regulated disruption of 14-3-3η/hypoxia-inducible factor-1α. Cell Death Discov. 5:1202019. View Article : Google Scholar : PubMed/NCBI | |
|
Karagiota A, Kourti M, Simos G and Mylonis I: HIF-1α-derived cell-penetrating peptides inhibit ERK-dependent activation of HIF-1 and trigger apoptosis of cancer cells under hypoxia. Cell Mol Life Sci. 76:809–825. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Singh A, Gupta S and Sachan M: Epigenetic biomarkers in the management of ovarian cancer: Current prospectives. Front Cell Dev Biol. 7:1822019. View Article : Google Scholar : PubMed/NCBI | |
|
Urbano A, Smith J, Weeks RJ and Chatterjee A: Gene-specific targeting of DNA methylation in the mammalian genome. Cancers. 11:15152019. View Article : Google Scholar | |
|
Liu Q, Liu L, Zhao Y, Zhang J, Wang D, Chen J, He Y, Wu J, Zhang Z and Liu Z: Hypoxia induces genomic DNA demethylation through the activation of HIF-1α and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther. 10:1113–1123. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Han ZJ, Feng YH, Gu BH, Li YM and Chen H: The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 52:1081–1094. 2018.PubMed/NCBI | |
|
Bao L, Chen Y, Lai HT, Wu SY, Wang JE, Hatanpaa KJ, Raisanen JM, Fontenot M, Lega B, Chiang CM, et al: Methylation of hypoxia-inducible factor (HIF)-1α by G9a/GLP inhibits HIF-1 transcriptional activity and cell migration. Nucleic Acids Res. 46:6576–6591. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui CP, Wong CC, Kai AK, Ho DW, Lau EY, Tsui YM, Chan LK, Cheung TT, Chok KS, Chan AC, et al: SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop. Gut. 66:2149–2159. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Liang X, Liang H and Wang B: SENP1/HIF-1α feedback loop modulates hypoxia-induced cell proliferation, invasion, and EMT in human osteosarcoma cells. J Cell Biochem. 119:1819–1826. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mylonis I, Kourti M, Samiotaki M, Panayotou G and Simos G: Mortalin-mediated and ERK-controlled targeting of HIF-1α to mitochondria confers resistance to apoptosis under hypoxia. J Cell Sci. 130:466–479. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bullen JW, Tchernyshyov I, Holewinski RJ, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, Van Eyk J and Semenza GL: Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal. 9:ra562016. View Article : Google Scholar : PubMed/NCBI | |
|
Gong H, Gao S, Yu C, Li M, Liu P, Zhang G, Song J and Zheng J: Effect and mechanism of YB-1 knockdown on glioma cell growth, migration, and apoptosis. Acta Biochim Biophys Sin (Shanghai). 52:168–179. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
El-Naggar AM, Veinotte CJ, Cheng H, Grunewald TG, Negri GL, Somasekharan SP, Corkery DP, Tirode F, Mathers J, Khan D, et al: Translational activation of HIF1α by YB-1 promotes sarcoma metastasis. Cancer Cell. 27:682–697. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yu AM, Batra N, Tu MJ and Sweeney C: Novel approaches for efficient in vivo fermentation production of noncoding RNAs. Appl Microbiol Biotechnol. 104:1927–1937. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Panir K, Schjenken JE, Robertson SA and Hull ML: Non-coding RNAs in endometriosis: A narrative review. Hum Reprod Update. 24:497–515. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Xing H, Guo C, Yang Z and Wang Y and Wang Y: MiR-124 reversed the doxorubicin resistance of breast cancer stem cells through STAT3/HIF-1 signaling pathways. Cell Cycle. 18:2215–2227. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bartoszewski R, Serocki M, Janaszak-Jasiecka A, Bartoszewska S, Kochan-Jamrozy K, Piotrowski A, Króliczewski J and Collawn JF: miR-200b downregulates Krüppel Like Factor 2 (KLF2) during acute hypoxia in human endothelial cells. Eur J Cell Biol. 96:758–766. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Byun Y, Choi YC, Jeong Y, Lee G, Yoon S, Jeong Y, Yoon J and Baek K: MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells. Cell Mol Biol Lett. 24:282019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Wu L, Li D, Xu Y, Zhang L, Niu K, Kong R, Gu J, Xu Z, Chen Z, et al: Radiosensitizing effects of miR-18a-5p on lung cancer stem-like cells via downregulating both ATM and HIF-1α. Cancer Med. 7:3834–3847. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Krutilina R, Sun W, Sethuraman A, Brown M, Seagroves TN, Pfeffer LM, Ignatova T and Fan M: MicroRNA-18a inhibits hypoxia-inducible factor 1α activity and lung metastasis in basal breast cancers. Breast Cancer Res. 16:R782014. View Article : Google Scholar : PubMed/NCBI | |
|
Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M, et al: HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 71:4640–4652. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le QT and Koong AC: Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol. 3:109–113. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sabry D, El-Deek SE, Maher M, El-Baz MA, El-Bader HM, Amer E, Hassan EA, Fathy W and El-Deek HE: Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: Impact of HIF-1α-VEGF signaling pathway. Mol Cell Biochem. 454:177–189. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Wei J, Guo T, Shen Y and Liu F: Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance. Exp Cell Res. 326:22–35. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N, Zhu Z, Mo Z, Wu C and Chen X: MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci. 103:1058–1064. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hermansen SK, Nielsen BS, Aaberg-Jessen C and Kristensen BW: miR-21 is linked to glioma angiogenesis: A co-localization study. J Histochem Cytochem. 64:138–148. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Xiao Z, Yang L, Gao Y, Zhu Q, Hu L, Huang D and Xu Q: Hypoxia inducible factors in hepatocellular carcinoma (Review). Oncol Rep. 43:3–15. 2020.PubMed/NCBI | |
|
Jiang N, Zou C, Zhu Y, Luo Y, Chen L, Lei Y, Tang K, Sun Y, Zhang W, Li S, et al: HIF-1α-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Theranostics. 10:2553–2570. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ge X, Liu X, Lin F, Li P, Liu K, Geng R, Dai C, Lin Y, Tang W, Wu Z, et al: MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget. 7:24466–24482. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Zhou X, Xiao Q, Wang T, Shao G, Li Y and Zhang Z: MiR-107 suppresses cell proliferation and tube formation of Ewing sarcoma cells partly by targeting HIF-1β. Hum Cell. 31:42–49. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Han Y, Cheng K, Zhang G and Wang X: miR-99a directly targets the mTOR signalling pathway in breast cancer side population cells. Cell Prolif. 47:587–595. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu CJ, Tsai MM, Hung PS, Kao SY, Liu TY, Wu KJ, Chiou SH, Lin SC and Chang KW: miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 70:1635–1644. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hung PS, Tu HF, Kao SY, Yang CC, Liu CJ, Huang TY, Chang KW and Lin SC: miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis. 35:1162–1171. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen T, Yao LQ, Shi Q, Ren Z, Ye LC, Xu JM, Zhou PH and Zhong YS: MicroRNA-31 contributes to colorectal cancer development by targeting factor inhibiting HIF-1α (FIH-1). Cancer Biol Ther. 15:516–523. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Jin S, Zhang W, Wu D, Li J, Xu J and Gao W: Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer. 10:6003–6013. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu B, Cao X, Zhang W, Pan G, Yi Q, Zhong W and Yan D: MicroRNA-31-5p enhances the Warburg effect via targeting FIH. FASEB J. 33:545–556. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kao SY, Tsai MM, Wu CH, Chen JJ, Tseng SH, Lin SC and Chang KW: Co-targeting of multiple microRNAs on factor-Inhibiting hypoxia-Inducible factor gene for the pathogenesis of head and neck carcinomas. Head Neck. 38:522–528. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shih JW and Kung HJ: Long non-coding RNA and tumor hypoxia: New players ushered toward an old arena. J Biomed Sci. 24:532017. View Article : Google Scholar : PubMed/NCBI | |
|
Dong J, Xu J, Wang X and Jin B: Influence of the interaction between long noncoding RNAs and hypoxia on tumorigenesis. Tumour Biol. 37:1379–1385. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ge H, Yan Y, Wu D, Huang Y and Tian F: Potential role of LINC00996 in colorectal cancer: A study based on data mining and bioinformatics. OncoTargets Ther. 11:4845–4855. 2018. View Article : Google Scholar | |
|
Yang F, Zhang H, Mei Y and Wu M: Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol Cell. 53:88–100. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Y, Liu Y, Sun T and Yang W: LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp Cell Res. 358:188–198. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shih JW, Chiang WF, Wu AT, Wu MH, Wang LY, Yu YL, Hung YW, Wang WC, Chu CY, Hung CL, et al: Long noncoding RNA LncHIFCAR/MIR31HG is a HIF-1α co-activator driving oral cancer progression. Nat Commun. 8:158742017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Jin HY, Wu Y, Zheng ZC, Guo S, Wang Y, Yang D, Meng XY, Xu X and Zhao Y: Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin Transl Oncol. 21:1142–1151. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Wang J, Chai R, Zhong G, Zhang C, Cao W, Yan L, Zhang X and Xu Z: Hypoxia-regulated lncRNA CRPAT4 promotes cell migration via regulating AVL9 in clear cell renal cell carcinomas. OncoTargets Ther. 11:4537–4545. 2018. View Article : Google Scholar | |
|
Yang W, Sun T, Cao J and Fan S: Hypoxia-inducible factor-1α downregulation by small interfering RNA inhibits proliferation, induces apoptosis, and enhances radiosensitivity in chemical hypoxic human hepatoma SMMC-7721 cells. Cancer Biother Radiopharm. 26:565–571. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Staab A, Fleischer M, Loeffler J, Said HM, Katzer A, Plathow C, Einsele H, Flentje M and Vordermark D: Small interfering RNA targeting HIF-1alpha reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro. Strahlenther Onkol. 187:252–259. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Hu L, Li S, Shen J, Wang D, Xu R and Yang H: Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis. 10:2802019. View Article : Google Scholar : PubMed/NCBI | |
|
Augoff K, McCue B, Plow EF and Sossey-Alaoui K: miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 11:52012. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Jia X, Wang M and Deng Y: Long noncoding RNA MIR31HG abrogates the availability of tumor suppressor microRNA-361 for the growth of osteosarcoma. Cancer Manag Res. 11:8055–8064. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Zhu J, Ma X, Han S, Xiao D, Jia Y and Wang Y: ceRNA network construction and comparison of gastric cancer with or without Helicobacter pylori infection. J Cell Physiol. 234:7128–7140. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Yan J, Yuan X, Yang R, Dan T, Wang X, Kong G and Gao S: A computationally constructed ceRNA interaction network based on a comparison of the SHEE and SHEEC cell lines. Cell Mol Biol Lett. 21:212016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Cheng Q, Xia M, Huang X, He X and Liao J: Hypoxia-induced lncRNA-NEAT1 sustains the growth of hepatocellular carcinoma via regulation of miR-199a-3p/UCK2. Front Oncol. 10:9982020. View Article : Google Scholar : PubMed/NCBI | |
|
van Schaijik B, Davis PF, Wickremesekera AC, Tan ST and Itinteang T: Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: A review. J Clin Pathol. 71:88–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z and Zöller M: Exosomes, metastases, and the miracle of cancer stem cell markers. Cancer Metastasis Rev. 38:259–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lin YT and Wu KJ: Epigenetic regulation of epithelial-mesenchymal transition: Focusing on hypoxia and TGF-β signaling. J Biomed Sci. 27:392020. View Article : Google Scholar : PubMed/NCBI | |
|
Rankin EB, Nam JM and Giaccia AJ: Hypoxia: Signaling the metastatic cascade. Trends Cancer. 2:295–304. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hajizadeh F, Okoye I, Esmaily M, Ghasemi Chaleshtari M, Masjedi A, Azizi G, Irandoust M, Ghalamfarsa G and Jadidi-Niaragh F: Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sci. 237:1169522019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, Gilkes DM, He J and Semenza GL: HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci USA. 112:E6215–E6223. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Thomas S, Harding MA, Smith SC, Overdevest JB, Nitz MD, Frierson HF, Tomlins SA, Kristiansen G and Theodorescu D: CD24 is an effector of HIF-1-driven primary tumor growth and metastasis. Cancer Res. 72:5600–5612. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ohnishi S, Maehara O, Nakagawa K, Kameya A, Otaki K, Fujita H, Higashi R, Takagi K, Asaka M, Sakamoto N, et al: hypoxia-inducible factors activate CD133 promoter through ETS family transcription factors. PLoS One. 8:e662552013. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H and Hori Y: Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology. 78:181–192. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chiu DK, Zhang MS, Tse AP and Wong CC: Assessment of stabilization and activity of the HIFs important for hypoxia-induced signalling in cancer cells. Methods Mol Biol. 1928:77–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, et al: Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 28:3949–3959. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto K, Aoyagi K, Isobe T, Kouhuji K and Shirouzu K: Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer. 17:97–106. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K, Hayashi T, Shinchi H, Natsugoe S and Takao S: CD133 modulate HIF-1alpha expression under hypoxia in EMT phenotype pancreatic cancer stem-like cells. Int J Mol Sci. 17:10252016. View Article : Google Scholar | |
|
Matsumoto K, Arao T, Tanaka K, Kaneda H, Kudo K, Fujita Y, Tamura D, Aomatsu K, Tamura T, Yamada Y, et al: mTOR signal and hypoxia-inducible factor-1 alpha regulate CD133 expression in cancer cells. Cancer Res. 69:7160–7164. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Li SW, Wu XL, Dong CL, Xie XY, Wu JF and Zhang X: The differential expression of OCT4 isoforms in cervical carcinoma. PLoS One. 10:e01180332015. View Article : Google Scholar : PubMed/NCBI | |
|
Ciccone V, Terzuoli E, Donnini S, Giachetti A, Morbidelli L and Ziche M: Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1α/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res. 37:3112018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Xu H, Shi Q, Gu M, Wan X, Chen Q and Wang Z: Hypoxia-inducible factor 1α (HIF-1α) mediates the epithelial-mesenchymal transition in benign prostatic hyperplasia. Int J Clin Exp Pathol. 12:295–304. 2019.PubMed/NCBI | |
|
Abouhashem NS, Ibrahim DA and Mohamed AM: Prognostic implications of epithelial to mesenchymal transition related proteins (E-cadherin, Snail) and hypoxia inducible factor 1α in endometrioid endometrial carcinoma. Ann Diagn Pathol. 22:1–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG, Han SI and Kang HS: Oncogenic metabolism acts as a prerequisite step for induction of cancer metastasis and cancer stem cell phenotype. Oxid Med Cell Longev. 2018:10274532018. View Article : Google Scholar : PubMed/NCBI | |
|
Kouvaras E, Christoni Z, Siasios I, Malizos K, Koukoulis GK and Ioannou M: Hypoxia-inducible factor 1-alpha and vascular endothelial growth factor in cartilage tumors. Biotech Histochem. 94:283–289. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chabi S, Uzan B, Naguibneva I, Rucci J, Fahy L, Calvo J, Arcangeli ML, Mazurier F, Pflumio F and Haddad R: Hypoxia regulates lymphoid development of human hematopoietic progenitors. Cell Rep. 29:2307–2320.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Barsoum IB, Smallwood CA, Siemens DR and Graham CH: A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74:665–674. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Polke M, Seiler F, Lepper PM, Kamyschnikow A, Langer F, Monz D, Herr C, Bals R and Beisswenger C: Hypoxia and the hypoxia-regulated transcription factor HIF-1α suppress the host defence of airway epithelial cells. Innate Immun. 23:373–380. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Flück K, Breves G, Fandrey J and Winning S: Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol. 9:379–390. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Kanwar JR, Leung E, Lehnert K, Wang D and Krissansen GW: Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther. 8:638–645. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Wang P, Jiang X, Tan G, Qiao H, Jiang H, Krissansen GW and Sun X: Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma. Cancer Sci. 99:2055–2061. 2008.PubMed/NCBI | |
|
Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, et al: Angiogenesis and immunity: A bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 30:83–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, Melillo G, Priebe W and Heimberger AB: Hypoxia potentiates glioma-mediated immunosuppression. PLoS One. 6:e161952011. View Article : Google Scholar : PubMed/NCBI | |
|
Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R and Heimberger AB: Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 12:1113–1125. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, et al: Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. 9:67–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, Xia XF, Sun X, Li GG, Hu QD, Fu QH, et al: Hypoxia-induced epithelial-to-Mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res. 76:818–830. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B and Chouaib S: Hypoxia: A key player in antitumor immune response. A review in the theme: Cellular responses to hypoxia. Am J Physiol Cell Physiol. 309:C569–C579. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X, Zhang J, Xu S, Li T, Zhang P, et al: Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget. 7:80521–80542. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Li Z, Zhang Y, Xu M, Che Y, Tian X, Wang R, Zou K and Zou L: β-elemene inhibits radiation and hypoxia-induced macrophages infiltration via Prx-1/NF-κB/HIF-1α signaling pathway. OncoTargets Ther. 12:4203–4211. 2019. View Article : Google Scholar | |
|
Cecil DL, Slota M, O'Meara MM, Curtis BC, Gad E, Dang Y, Herendeen D, Rastetter L and Disis ML: Immunization against HIF-1α inhibits the growth of basal mammary tumors and targets mammary stem cells in vivo. Clin Cancer Res. 23:3396–3404. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
de Almeida PE, Mak J, Hernandez G, Jesudason R, Herault A, Javinal V, Borneo J, Kim JM and Walsh KB: Anti-VEGF treatment enhances CD8+ T-cell antitumor activity by amplifying hypoxia. Cancer Immunol Res. 8:806–818. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hasmim M, Noman MZ, Lauriol J, Benlalam H, Mallavialle A, Rosselli F, Mami-Chouaib F, Alcaide-Loridan C and Chouaib S: Hypoxia-dependent inhibition of tumor cell susceptibility to CTL-mediated lysis involves NANOG induction in target cells. J Immunol. 187:4031–4039. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hasmim M, Noman MZ, Messai Y, Bordereaux D, Gros G, Baud V and Chouaib S: Cutting edge: Hypoxia-induced Nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-β1. J Immunol. 191:5802–5806. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nam K, Oh S and Shin I: Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKα pathway. Biochem J. 473:3013–3030. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Moldogazieva NT, Mokhosoev IM and Terentiev AA: Metabolic heterogeneity of cancer cells: An interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel). 12:8622020. View Article : Google Scholar | |
|
Semenza GL: Hypoxia-inducible factors: Coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 36:252–259. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kuo CY, Cheng CT, Hou P, Lin YP, Ma H, Chung Y, Chi K, Chen Y, Li W, Kung HJ, et al: HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity. Oncotarget. 7:34052–34069. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Deshmukh A, Deshpande K, Arfuso F, Newsholme P and Dharmarajan A: Cancer stem cell metabolism: A potential target for cancer therapy. Mol Cancer. 15:692016. View Article : Google Scholar : PubMed/NCBI | |
|
Shen YA, Pan SC, Chu I, Lai RY and Wei YH: Targeting cancer stem cells from a metabolic perspective. Exp Biol Med (Maywood). 245:465–476. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lai HT, Chiang CT, Tseng WK, Chao TC and Su Y: GATA6 enhances the stemness of human colon cancer cells by creating a metabolic symbiosis through upregulating LRH-1 expression. Mol Oncol. 14:1327–1347. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Song KH, Kim JH, Lee YH, Bae HC, Lee HJ, Woo SR, Oh SJ, Lee KM, Yee C, Kim BW, et al: Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 128:4098–4114. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tang K, Yu Y, Zhu L, Xu P, Chen J, Ma J, Zhang H, Fang H, Sun W, Zhou L, et al: Hypoxia-reprogrammed tricarboxylic acid cycle promotes the growth of human breast tumorigenic cells. Oncogene. 38:6970–6984. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Patra K, Jana S, Sarkar A, Mandal DP and Bhattacharjee S: The inhibition of hypoxia-induced angiogenesis and metastasis by cinnamaldehyde is mediated by decreasing HIF-1α protein synthesis via PI3K/Akt pathway. Biofactors. 45:401–415. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Marhold M, Tomasich E, El-Gazzar A, Heller G, Spittler A, Horvat R, Krainer M and Horak P: HIF1α regulates mTOR signaling and viability of prostate cancer stem cells. Mol Cancer Res. 13:556–564. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jung J, Zhang Y, Celiku O, Zhang W, Song H, Williams BJ, Giles AJ, Rich JN, Abounader R, Gilbert MR, et al: Mitochondrial NIX promotes tumor survival in the hypoxic niche of glioblastoma. Cancer Res. 79:5218–5232. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lv Z, Liu RD, Chen XQ, Wang B, Li LF, Guo YS, Chen XJ and Ren XQ: HIF 1α promotes the stemness of oesophageal squamous cell carcinoma by activating the Wnt/β catenin pathway. Oncol Rep. 42:726–734. 2019.PubMed/NCBI | |
|
Xiang L, Gilkes DM, Hu H, Luo W, Bullen JW, Liang H and Semenza GL: HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget. 6:11768–11778. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Shi H, Chen H, Gong A, Liu Y, Song L, Xu X, You T, Fan X, Wang D, et al: Dedifferentiation process driven by radiotherapy-induced HMGB1/TLR2/YAP/HIF-1α signaling enhances pancreatic cancer stemness. Cell Death Dis. 10:7242019. View Article : Google Scholar : PubMed/NCBI | |
|
Qian J and Rankin EB: Hypoxia-induced phenotypes that mediate tumor heterogeneity. Adv Exp Med Biol. 1136:43–55. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, Conley S, Fath MA, Davis A, Gheordunescu E, et al: Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 28:69–86.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Liu Y, Malek SN, Zheng P and Liu Y: Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 8:399–411. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K and Kageyama R: Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science. 298:840–843. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Almiron Bonnin DA, Havrda MC, Lee MC, Liu H, Zhang Z, Nguyen LN, Harrington LX, Hassanpour S, Cheng C and Israel MA: Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene. 37:1107–1118. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, et al: Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor −1α in hepatocellular carcinoma. BMC Cancer. 13:1082013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang SW, Zhang ZG, Hao YX, Zhao YL, Qian F, Shi Y, Li PA, Liu CY and Yu PW: HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway. Oncotarget. 8:9535–9545. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Sun B, Zhao X, Gu Q, Dong X, Mo J, Sun T, Wang J, Sun R and Liu Y: Hypoxia promotes vasculogenic mimicry formation by inducing epithelial-mesenchymal transition in ovarian carcinoma. Gynecol Oncol. 133:575–583. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lu H, Tran L, Park Y, Chen I, Lan J, Xie Y and Semenza GL: Reciprocal regulation of DUSP9 and DUSP16 expression by HIF1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment. Cancer Res. 78:4191–4202. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bhuria V, Xing J, Scholta T, Bui KC, Nguyen MLT, Malek NP, Bozko P and Plentz RR: Hypoxia induced Sonic Hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res. 385:1116712019. View Article : Google Scholar : PubMed/NCBI | |
|
Lv L, Yang Z, Ma T and Xuan Y: Gli1, a potential cancer stem cell marker, is strongly associated with prognosis in prostate cancer. Int J Clin Exp Pathol. 11:4957–4966. 2018.PubMed/NCBI | |
|
Qin J, Liu Y, Lu Y, Liu M, Li M, Li J and Wu L: Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep. 7:105922017. View Article : Google Scholar : PubMed/NCBI | |
|
Guan Z, Ding C, Du Y, Zhang K, Zhu JN, Zhang T, He D, Xu S, Wang X and Fan J: HAF drives the switch of HIF-1α to HIF-2α by activating the NF-κB pathway, leading to malignant behavior of T24 bladder cancer cells. Int J Oncol. 44:393–402. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mendonça DB, Mendonça G, Aragão FJ and Cooper LF: NF-κB suppresses HIF-1α response by competing for P300 binding. Biochem Biophys Res Commun. 404:997–1003. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Jiang X, Qin X, Ye D, Yi Z, Liu M, Bai O, Liu W, Xie X, Wang Z, et al: RKTG inhibits angiogenesis by suppressing MAPK-mediated autocrine VEGF signaling and is downregulated in clear-cell renal cell carcinoma. Oncogene. 29:5404–5415. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Roth U, Curth K, Unterman TG and Kietzmann T: The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 279:2623–2631. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Niu F, Li Y, Lai FF, Ni L, Ji M, Jin J, Yang HZ, Wang C, Zhang DM and Chen XG: LB-1 exerts antitumor activity in pancreatic cancer by inhibiting HIF-1α and Stat3 signaling. J Cell Physiol. 230:2212–2223. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kida A and Kahn M: Hypoxia selects for a quiescent, CML stem/leukemia initiating-like population dependent on CBP/catenin transcription. Curr Mol Pharmacol. 6:204–210. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bordonaro M and Lazarova DL: CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer. World J Gastroenterol. 21:8238–8248. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon H, Lim JH, Cho CH, Huang LE and Park JW: CITED2 controls the hypoxic signaling by snatching p300 from the two distinct activation domains of HIF-1α. Biochim Biophys Acta. 1813:2008–2016. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jin P, Kang J, Lee MK and Park JW: Ferritin heavy chain controls the HIF-driven hypoxic response by activating the asparaginyl hydroxylase FIH. Biochem Biophys Res Commun. 499:475–481. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee GY, Shin SH, Shin HW, Chun YS and Park JW: NDRG3 lowers the metastatic potential in prostate cancer as a feedback controller of hypoxia-inducible factors. Exp Mol Med. 50:1–13. 2018. View Article : Google Scholar | |
|
Papale M, Buccarelli M, Mollinari C, Russo MA, Pallini R, Ricci-Vitiani L and Tafani M: Hypoxia, inflammation and necrosis as determinants of glioblastoma cancer stem cells progression. Int J Mol Sci. 21:26602020. View Article : Google Scholar | |
|
Kessler J, Hahnel A, Wichmann H, Rot S, Kappler M, Bache M and Vordermark D: HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: Effects on hypoxic radioresistance and monitoring via CA9 expression. BMC Cancer. 10:6052010. View Article : Google Scholar : PubMed/NCBI | |
|
Lo WL, Chien Y, Chiou GY, Tseng LM, Hsu HS, Chang YL, Lu KH, Chien CS, Wang ML, Chen YW, et al: Nuclear localization signal-enhanced RNA interference of EZH2 and Oct4 in the eradication of head and neck squamous cell carcinoma-derived cancer stem cells. Biomaterials. 33:3693–3709. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li SH, Shin DH, Chun YS, Lee MK, Kim MS and Park JW: A novel mode of action of YC-1 in HIF inhibition: Stimulation of FIH-dependent p300 dissociation from HIF-1{alpha}. Mol Cancer Ther. 7:3729–3738. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Shin DH, Chun YS, Lee DS, Huang LE and Park JW: Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood. 111:3131–3136. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Wang W, Li GD, Zhong HJ, Dong ZZ, Wong CY, Kwong DW, Ma DL and Leung CH: Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Sci Rep. 7:428602017. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandez EV, Reece KM, Ley AM, Troutman SM, Sissung TM, Price DK, Chau CH and Figg WD: Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells. Mol Pharmacol. 87:1006–1012. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H and Abdollahi M: Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol Appl Pharmacol. 335:56–63. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Harris EM, Strope JD, Beedie SL, Huang PA, Goey AK, Cook KM, Schofield CJ, Chau CH, Cadelis MM, Copp BR, et al: Preclinical evaluation of discorhabdins in antiangiogenic and antitumor models. Mar Drugs. 16:2412018. View Article : Google Scholar | |
|
Chen H, Guan Y, Yuan G, Zhang Q and Jing N: A perylene derivative regulates HIF-1α and Stat3 signaling pathways. Bioorg Med Chem. 22:1496–1505. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
McGinn O, Gupta VK, Dauer P, Arora N, Sharma N, Nomura A, Dudeja V, Saluja A and Banerjee S: Inhibition of hypoxic response decreases stemness and reduces tumorigenic signaling due to impaired assembly of HIF1 transcription complex in pancreatic cancer. Sci Rep. 7:78722017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, Shamaileh HA, Yin W, Zhou SF, Zhao X, et al: Cancer stem cell targeted therapy: Progress amid controversies. Oncotarget. 6:44191–44206. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang L and Semenza GL: Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Adv Cancer Res. 141:175–212. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yeo CD, Kang N, Choi SY, Kim BN, Park CK, Kim JW, Kim YK and Kim SJ: The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: A possible link to epigenetic regulation. Korean J Intern Med. 32:589–599. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JH, Hur W, Hong SW, Kim JH, Kim SM, Lee EB and Yoon SK: ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α. Oncol Rep. 37:813–822. 2017. View Article : Google Scholar : PubMed/NCBI |