|
1
|
Rosenfeld MG, Mermod JJ, Amara SG, Swanson
LW, Sawchenko PE, Rivier J, Vale WW and Evans RM: Production of a
novel neuropeptide encoded by the calcitonin gene via
tissue-specific RNA processing. Nature. 304:129–135. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wimalawansa SJ, Morris HR, Etienne A,
Blench I, Panico M and MacIntyre I: Isolation, purification and
characterization of beta-hCGRP from human spinal cord. Biochem
Biophys Res Commun. 167:993–1000. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Peng J and Li YJ: The vanilloid receptor
TRPV1: Role in cardiovascular and gastrointestinal protection. Eur
J Pharmacol. 627:1–7. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li D, Chen BM, Peng J, Zhang YS, Li XH,
Yuan Q, Hu CP, Deng HW and Li YJ: Role of anandamide transporter in
regulating calcitonin gene-related peptide production and blood
pressure in hypertension. J Hypertens. 27:1224–1232. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li XW, Hu CP, Wu WH, Zhang WF, Zou XZ and
Li YJ: Inhibitory effect of calcitonin gene-related peptide on
hypoxia-induced rat pulmonary artery smooth muscle cells
proliferation: Role of ERK1/2 and p27. Eur J Pharmacol.
679:117–126. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Evangelista S: Role of calcitonin
gene-related Peptide in gastric mucosal defence and healing. Curr
Pharm Des. 15:3571–3576. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Feng G, Wang Q, Xu X, Liu Z, Li Z and Liu
G: The protective effects of calcitonin gene-related peptide on
gastric mucosa injury of gastric ischemia reperfusion in rats.
Immunopharmacol Immunotoxicol. 33:84–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sukhishvili E, Bekaia G and Kvachadze I:
Effect of exogenous calcitonin gene-related Peptide on systemic
arterial blood pressure in pregnant and non-pregnant rats. Georgian
Med News. 71–75. 2011.(In Russian). PubMed/NCBI
|
|
9
|
Yang W, Xv M, Yang WC, Wang N, Zhang XZ
and Li WZ: Exogenous α-calcitonin gene-related peptide attenuates
lipopolysaccharide-induced acute lung injury in rats. Mol Med Rep.
12:2181–2188. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang SI, Yuan Y, Jiao S, Luo QI and Yu J:
Calcitonin gene-related peptide protects rats from cerebral
ischemia/reperfusion injury via a mechanism of action in the MAPK
pathway. Biomed Rep. 4:699–703. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chai W, Mehrotra S, Jan Danser AH and
Schoemaker RG: The role of calcitonin gene-related peptide (CGRP)
in ischemic preconditioning in isolated rat hearts. Eur J
Pharmacol. 531:246–253. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Scardi S, Pandullo C, Pivotti F, Ceschia G
and Pollavini G: Hemodynamic and anti-angina effects of transdermal
nitroglycerin after acute and chronic administration. Additive
effect of sublingual isosorbide dinitrate. G Ital Cardiol.
16:895–903. 1986.(In Italian). PubMed/NCBI
|
|
13
|
Li YJ and Du YH: CGRP-mediated
cardiovascular effect of nitroglycerin. Med Hypotheses. 60:693–698.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhou ZH, Peng J, Ye F, Li NS, Deng HW and
Li YJ: Delayed cardioprotection induced by nitroglycerin is
mediated by alpha-calcitonin gene-related peptide. Naunyn
Schmiedebergs Arch Pharmacol. 365:253–259. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Glyceryl trinitrate and angina. Br Med J.
4:2521969. View Article : Google Scholar
|
|
16
|
Munzel T, Daiber A and Mulsch A:
Explaining the phenomenon of nitrate tolerance. Circ Res.
97:618–628. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Booth BP, Tabrizi-Fard MA and Fung H:
Calcitonin gene-related peptide-dependent vascular relaxation of
rat aorta. An additional mechanism for nitroglycerin. Biochem
Pharmacol. 59:1603–1609. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wei EP, Moskowitz MA, Boccalini P and
Kontos HA: Calcitonin gene-related peptide mediates nitroglycerin
and sodium nitroprusside-induced vasodilation in feline cerebral
arterioles. Circ Res. 70:1313–1319. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Song QJ, Li YJ and Deng HW: Early and
delayed cardioprotection by heat stress is mediated by calcitonin
gene-related peptide. Naunyn Schmiedebergs Arch Pharmacol.
359:477–483. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhou ZH, Deng HW and Li YJ: The depressor
effect of nitroglycerin is mediated by calcitonin gene-related
peptide. Life Sci. 69:1313–1320. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Guo R, Chen XP, Guo X, Chen L, Li D, Peng
J and Li YJ: Evidence for involvement of calcitonin gene-related
peptide in nitroglycerin response and association with
mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys
polymorphism. J Am Coll Cardiol. 52:953–960. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Booth BP, Nolan TD and Fung HL:
Nitroglycerin-inhibited whole blood aggregation is partially
mediated by calcitonin gene-related peptide-a neurogenic mechanism.
Br J Pharmacol. 122:577–583. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hu R, Li XH and Li YJ:
Nitroglycerin-induced myocardial protection and tolerance: Role for
CGRP. Trends Pharmacol Sci. 35:369–370. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Binder A, Ali A, Chawla R, Aziz HA, Abbate
A and Jovin IS: Myocardial protection from ischemia-reperfusion
injury post coronary revascularization. Expert Rev Cardiovasc Ther.
13:1045–1057. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhou FW, Li YJ, Lu R and Deng HW:
Protection of calcitonin gene-related peptide-mediated
preconditioning against coronary endothelial dysfunction induced by
reperfusion in the isolated rat heart. Life Sci. 64:1091–1097.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li J, Zhang M, Yang C, Dun Y, Zhang Y and
Hao Y: Nitroglycerin protects small intestine from
ischemia-reperfusion injury via NO-cGMP pathway and upregulation of
alpha-CGRP. J Gastrointest Surg. 13:478–485. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li YJ, Song QJ and Xiao J: Calcitonin
gene-related peptide: An endogenous mediator of preconditioning.
Acta Pharmacol Sin. 21:865–869. 2000.PubMed/NCBI
|
|
28
|
Guo Z, Liu N, Chen L, Zhao X and Li MR:
Independent roles of CGRP in cardioprotection and hemodynamic
regulation in ischemic postconditioning. Eur J Pharmacol.
828:18–25. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang Y, Zhang L, Jia L, Liu J, Liu K, Feng
Q and Wang Q: Calcitonin gene-related peptide in aerobic exercise
induces collateral circulation development in rat ischemia
myocardium. Biomed Pharmacother. 82:561–567. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hu CP, Li YJ and Deng HW: The
cardioprotective effects of nitroglycerin-induced preconditioning
are mediated by calcitonin gene-related peptide. Eur J Pharmacol.
369:189–194. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li TP, Guo Z, Liu CJ, Sun T, Chen L and
Zhao X: Association of down-regulation of calcitonin gene-related
peptide and substance P with increase of myocardial vulnerability
in diabetic neuropathic rats. Peptides. 96:1–7. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Han F, Zhou D, Yin X, Sun Z, Han J, Ye L,
Zhao W, Zhang Y, Wang Z and Zheng L: Paeoniflorin protects diabetic
mice against myocardial ischemic injury via the transient receptor
potential vanilloid 1/calcitonin gene-related peptide pathway. Cell
Biosci. 6:372016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kosarev MM, Obrezan AG, Strel'nikov AA and
Gur'ianov AV: Modern principles of diagnostics of chronic cardiac
insufficiency. Klin Med (Mosk). 89:8–13. 2011.(In Russian).
PubMed/NCBI
|
|
34
|
Peng LM, Chen XP, Sun J, Guo YJ, Li L, Mo
L, Xie W, Li YJ, Yang TL and Li CC: Influence of ALDH2 Glu504Lys
polymorphism on nitroglycerin response in chronic heart failure and
involvement of calcitonin gene related peptide (CGRP). Int J Clin
Pharmacol Ther. 50:701–711. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhou ZH, Jiang JL, Peng J, Deng HW and Li
YJ: Reversal of tolerance to nitroglycerin with N-acetylcysteine or
captopril: A role of calcitonin gene-related peptide. Eur J
Pharmacol. 439:129–134. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen YR, Nie SD, Shan W, Jiang DJ, Shi RZ,
Zhou Z, Guo R, Zhang Z and Li YJ: Decrease in endogenous CGRP
release in nitroglycerin tolerance: Role of ALDH-2. Eur J
Pharmacol. 571:44–50. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou ZH, Deng HW and Li YJ: Involvement of
calcitonin gene-related peptide in the development of tolerance to
nitroglycerin in the rat. Eur J Pharmacol. 427:137–141. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kezeli T, Rukhadze T, Gongadze N, Sukoyan
G, Dolidze N, Chipashvili M and Mirziashvili M: Effect of
calcitonin gene-related peptide antagonist on the cardiovascular
events, mortality, and prostaglandin E2 production by
nitrate-induced tolerant rats with acute myocardial infarction.
EPMA J. 7:62016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Márquez-Rodas I, Longo F, Rothlin RP and
Balfagón G: Pathophysiology and therapeutic possibilities of
calcitonin gene- related peptide in hypertension. J Physiol
Biochem. 62:45–56. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li J, Zhao H, Supowit SC, DiPette DJ and
Wang DH: Activation of the renin-angiotensin system in
alpha-calcitonin gene-related peptide/calcitonin gene knockout
mice. J Hypertens. 22:1345–1349. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Deng PY, Ye F, Cai WJ, Deng HW and Li YJ:
Role of calcitonin gene-related peptide in the phenol-induced
neurogenic hypertension in rats. Regul Pept. 119:155–161. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Skaria T, Mitchell KJ, Vogel O, Walchli T,
Gassmann M and Vogel J: Blood pressure normalization-independent
cardioprotective effects of endogenous, physical activity-induced
αCGRP (α calcitonin gene-related peptide) in chronically
hypertensive mice. Circ Res. 125:1124–1140. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Russell FA, King R, Smillie SJ, Kodji X
and Brain SD: Calcitonin gene-related peptide: Physiology and
pathophysiology. Physiol Rev. 94:1099–1142. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hobara N, Gessei-Tsutsumi N, Goda M,
Takayama F, Akiyama S, Kurosaki Y and Kawasaki H: Long-term
inhibition of angiotensin prevents reduction of periarterial
innervation of calcitonin gene-related peptide (CGRP)-containing
nerves in spontaneously hypertensive rats. Hypertens Res.
28:465–474. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Harada N, Shimozawa N and Okajima K: AT(1)
receptor blockers increase insulin-like growth factor-I production
by stimulating sensory neurons in spontaneously hypertensive rats.
Transl Res. 154:142–152. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shi RZ, Hu CP, Luo D, Li D, Pan W, Li SX,
Yang TL, Li YJ and Zhang GG: Decreased anandamide transporter
activity and calcitonin gene-related peptide production in
spontaneously hypertensive rats: Role of angiotensin II. Eur J
Pharmacol. 680:81–87. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ravarotto V, Pagnin E, Maiolino G,
Fragasso A, Carraro G, Rossi B and Calò LA: The blocking of
angiotensin II type 1 receptor and RhoA/Rho kinase activity in
hypertensive patients: Effect of olmesartan medoxomil and
implication with cardiovascular-renal remodeling. J Renin
Angiotensin Aldosterone Syst. 16:1245–1250. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Jia S and Hu C: Pharmacological effects of
rutaecarpine as a cardiovascular protective agent. Molecules.
15:1873–1881. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang L, Hu CP, Deng PY, Shen SS, Zhu HQ,
Ding JS, Tan GS and Li YJ: The protective effects of rutaecarpine
on gastric mucosa injury in rats. Planta Med. 71:416–419. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hu CP, Li NS, Xiao L, Deng HW and Li YJ:
Involvement of capsaicin-sensitive sensory nerves in
cardioprotection of rutaecarpine in rats. Regul Pept. 114:45–49.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li WQ, Li XH, Du J, Zhang W, Li D, Xiong
XM and Li YJ: Rutaecarpine attenuates hypoxia-induced right
ventricular remodeling in rats. Naunyn Schmiedebergs Arch
Pharmacol. 389:757–767. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yang Y, Chen Q, Jia S, He L, Wang A, Li D,
Li Y and Li X: Involvement of TRPV1 in the expression and release
of calcitonin gene-related peptide induced by rutaecarpine. Mol Med
Rep. 17:5168–5174. 2018.PubMed/NCBI
|
|
53
|
Bivalacqua TJ, Hyman AL, Kadowitz PJ,
Paolocci N, Kass DA and Champion HC: Role of calcitonin
gene-related peptide (CGRP) in chronic hypoxia-induced pulmonary
hypertension in the mouse. Influence of gene transfer in vivo.
Regul Pept. 108:129–133. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Deng PY and Li YJ: Calcitonin gene-related
peptide and hypertension. Peptides. 26:1676–1685. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Deng PY, Ye F, Cai WJ, Tan GS, Hu CP, Deng
HW and Li YJ: Stimulation of calcitonin gene-related peptide
synthesis and release: Mechanisms for a novel antihypertensive
drug, rutaecarpine. J Hypertens. 22:1819–1829. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gumusel B, Hao Q, Hyman AL, Kadowitz PJ,
Champion HC, Chang JK, Mehta JL and Lippton H: Analysis of
responses to adrenomedullin-(13–52) in the pulmonary vascular bed
of rats. Am J Physiol. 274:H1255–H1263. 1998.PubMed/NCBI
|
|
57
|
Zhao Q, Liu Z, Wang Z, Yang C, Liu J and
Lu J: Effect of prepro-calcitonin gene-related peptide-expressing
endothelial progenitor cells on pulmonary hypertension. Ann Thorac
Surg. 84:544–552. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Keith IM, Tjen-A-Looi S, Kraiczi H and
Ekman R: Three-week neonatal hypoxia reduces blood CGRP and causes
persistent pulmonary hypertension in rats. Am J Physiol Heart Circ
Physiol. 279:H1571–H1578. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Qing X and Keith IM: Targeted blocking of
gene expression for CGRP receptors elevates pulmonary artery
pressure in hypoxic rats. Am J Physiol Lung Cell Mol Physiol.
285:L86–L96. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Qin XP, Ye F, Hu CP, Liao DF, Deng HW and
Li YJ: Effect of calcitonin gene-related peptide on angiotensin
II-induced proliferation of rat vascular smooth muscle cells. Eur J
Pharmacol. 488:45–49. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gao YX, Jiang LL, Zhang Q, Zuo DZ and Li
XW: Rutaecarpine protects against bleomycin-induced pulmonary
fibrosis through inhibiting Notch1/eIF3a signaling pathway in rats.
Zhongguo Zhong Yao Za Zhi. 43:3530–3538. 2018.(In Chinese).
PubMed/NCBI
|
|
62
|
Li JZ, Peng J, Xiao L, Zhang YS, Liao MC,
Li XH, Hu CP, Deng HW and Li YJ: Reversal of isoprenaline-induced
cardiac remodeling by rutaecarpine via stimulation of calcitonin
gene-related peptide production. Can J Physiol Pharmacol.
88:949–959. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ma ZG, Yuan YP, Wu HM, Zhang X and Tang
QZ: Cardiac fibrosis: New insights into the pathogenesis. Int J
Biol Sci. 14:1645–1657. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li WQ, Tan SL, Li XH, Sun TL, Li D, Du J,
Wei SS, Li YJ and Zhang BK: Calcitonin gene-related peptide
inhibits the cardiac fibroblasts senescence in cardiac fibrosis via
up-regulating klotho expression. Eur J Pharmacol. 843:96–103. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li J, Carnevale KA, Dipette DJ and Supowit
SC: Renal protective effects of α-calcitonin gene-related peptide
in deoxycorticosterone-salt hypertension. Am J Physiol Renal
Physiol. 304:F1000–F1008. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Huang W, Rubinstein J, Prieto AR, Thang LV
and Wang DH: Transient receptor potential vanilloid gene deletion
exacerbates inflammation and atypical cardiac remodeling after
myocardial infarction. Hypertension. 53:243–250. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Warzecha Z, Dembinski A, Ceranowicz P,
Dembinski M, Cieszkowski J, Kownacki P and Konturek PC: Role of
sensory nerves in gastroprotective effect of anandamide in rats. J
Physiol Pharmacol. 62:207–217. 2011.PubMed/NCBI
|
|
68
|
Young RL, Cooper NJ and Blackshaw LA:
Chemical coding and central projections of gastric vagal afferent
neurons. Neurogastroenterol Motil. 20:708–718. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tache Y, Pappas T, Lauffenburger M, Goto
Y, Walsh JH and Debas H: Calcitonin gene-related peptide: Potent
peripheral inhibitor of gastric acid secretion in rats and dogs.
Gastroenterology. 87:344–349. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Holzer P and Guth PH: Neuropeptide control
of rat gastric mucosal blood flow. Increase by calcitonin
gene-related peptide and vasoactive intestinal polypeptide, but not
substance P and neurokinin A. Circ Res. 68:100–105. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Peskar BM, Ehrlich K and Peskar BA: Role
of ATP-sensitive potassium channels in prostaglandin-mediated
gastroprotection in the rat. J Pharmacol Exp Ther. 301:969–974.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kinoshita Y, Inui T and Chiba T:
Calcitonin gene-related peptide: A neurotransmitter involved in
capsaicin-sensitive afferent nerve-mediated gastric mucosal
protection. J Clin Gastroenterol. 17 (Suppl 1):S27–S32. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hayashi H, Ohno T, Nishiyama K, Boku K,
Katori M and Majima M: Transient prevention of ethanol-induced
gastric lesion by capsaicin due to release of endogenous calcitonin
gene-related peptide in rats. Jpn J Pharmacol. 86:351–354. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ohno T, Hattori Y, Komine R, Ae T,
Mizuguchi S, Arai K, Saeki T, Suzuki T, Hosono K, Hayashi I, et al:
Roles of calcitonin gene-related peptide in maintenance of gastric
mucosal integrity and in enhancement of ulcer healing and
angiogenesis. Gastroenterology. 134:215–225. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Shimozawa N, Okajima K, Harada N, Arai M,
Ishida Y, Shimada S, Kurihara H and Nakagata N: Contribution of
sensory neurons to sex difference in the development of
stress-induced gastric mucosal injury in mice. Gastroenterology.
131:1826–1834. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhao Z, Gong S, Wang S and Ma C: Effect
and mechanism of evodiamine against ethanol-induced gastric ulcer
in mice by suppressing Rho/NF-κB pathway. Int Immunopharmacol.
28:588–595. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li NS, Luo XJ, Dai Z, Liu B, Zhang YS,
Yang ZC and Peng J: Beneficial effects of capsiate on
ethanol-induced mucosal injury in rats are related to stimulation
of calcitonin gene-related Peptide release. Planta Med. 78:24–30.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Luo XJ, Li NS, Zhang YS, Liu B, Yang ZC,
Li YJ, Dong XR and Peng J: Vanillyl nonanoate protects rat gastric
mucosa from ethanol-induced injury through a mechanism involving
calcitonin gene-related peptide. Eur J Pharmacol. 666:211–217.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu YZ, Zhou Y, Li D, Wang L, Hu GY, Peng
J and Li YJ: Reduction of asymmetric dimethylarginine in the
protective effects of rutaecarpine on gastric mucosal injury. Can J
Physiol Pharmacol. 86:675–681. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Luo XJ, Peng J and Li YJ: Recent advances
in the study on capsaicinoids and capsinoids. Eur J Pharmacol.
650:1–7. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Czekaj R, Majka J, Ptak-Belowska A,
Szlachcic A, Targosz A, Magierowska K, Strzalka M, Magierowski M
and Brzozowski T: Role of curcumin in protection of gastric mucosa
against stress-induced gastric mucosal damage. Involvement of
hypoacidity, vasoactive mediators and sensory neuropeptides. J
Physiol Pharmacol. 67:261–275. 2016.PubMed/NCBI
|
|
82
|
Czekaj R, Majka J, Magierowska K,
Sliwowski Z, Magierowski M, Pajdo R, Ptak-Belowska A, Surmiak M,
Kwiecien S and Brzozowski T: Mechanisms of curcumin-induced
gastroprotection against ethanol-induced gastric mucosal lesions. J
Gastroenterol. 53:618–630. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Luo DN, Li FJ and Zou YY: Therapeutic
effects of rutaecarpine on dextran sodium sulfate-induced
experimental colitis in mice. Zhonghua Yi Xue Za Zhi. 98:533–538.
2018.(In Chinese). PubMed/NCBI
|
|
84
|
Satyanarayana MN: Capsaicin and gastric
ulcers. Crit Rev Food Sci Nutr. 46:275–328. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yan L, Li QF, Rong YT, Chen YH, Huang ZH,
Wang ZZ and Peng J: The protective effects of rutaecarpine on acute
pancreatitis. Oncol Lett. 15:3121–3126. 2018.PubMed/NCBI
|
|
86
|
Hu R, Li YJ and Li XH: An overview of
non-neural sources of calcitonin gene-related peptide. Curr Med
Chem. 23:763–773. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Luo D, Zhang YW, Peng WJ, Peng J, Chen QQ,
Li D, Deng HW and Li YJ: Transient receptor potential vanilloid
1-mediated expression and secretion of endothelial cell-derived
calcitonin gene-related peptide. Regul Pept. 150:66–72. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Li W, Zhang Z, Li X, Cai J, Li D, Du J,
Zhang B, Xiang D, Li N and Li Y: CGRP derived from cardiac
fibroblasts is an endogenous suppressor of cardiac fibrosis.
Cardiovasc Res. 116:1335–1348. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhang YM, Peng J, Hu CP, Jiang QT, Jiang
GL and Li YJ: Clonidine induces calcitonin gene-related peptide
expression via nitric oxide pathway in endothelial cells. Peptides.
30:1746–1752. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhou Z, Peng J, Wang CJ, Li D, Li TT, Hu
CP, Chen XP and Li YJ: Accelerated senescence of endothelial
progenitor cells in hypertension is related to the reduction of
calcitonin gene-related peptide. J Hypertens. 28:931–939. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Randhawa PK and Jaggi AS: TRPV1 channels
in cardiovascular system: A double edged sword? Int J Cardiol.
228:103–113. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Eberhardt M, Dux M, Namer B, Miljkovic J,
Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M, Suárez SA,
et al: H2S and NO cooperatively regulate vascular tone by
activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat
Commun. 5:43812014. View Article : Google Scholar : PubMed/NCBI
|